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ABSTRACT In this paper, we introduce an intelligent reflecting surface (IRS) to provide a programmable

wireless environment for physical layer security. By adjusting the reflecting coefficients, the IRS can change

the attenuation and scattering of the incident electromagnetic wave so that it can propagate in the desired

way toward the intended receiver. Specifically, we consider a downlinkmultiple-input single-output (MISO)

broadcast system, where the base station (BS) transmits independent data streams to multiple legitimate

receivers and keeps them secret from multiple eavesdroppers. By jointly optimizing the beamformers at

the BS and reflecting coefficients at the IRS, we formulate a minimum-secrecy-rate maximization problem

under various practical constraints on the reflecting coefficients. The constraints capture the scenarios of

both continuous and discrete reflecting coefficients of the reflecting elements. Due to the non-convexity of

the formulated problem, we propose an efficient algorithm based on the alternating optimization and the

path-following algorithm to solve it in an iterative manner. Besides, we show that the proposed algorithm

can converge to a local (global) optimum. Furthermore, we develop two suboptimal algorithms with some

forms of closed-form solutions to reduce computational complexity. Finally, the simulation results validate

the advantages of the introduced IRS and the effectiveness of the proposed algorithms.

INDEX TERMS Intelligent reflecting surface, programmable wireless environment, physical layer security,

beamforming.

I. INTRODUCTION

A variety of wireless technologies have been proposed to

enhance the spectrum- and energy-efficiency due to the

tremendous growth in the number of communication devices,

such as multiple-input multiple-output (MIMO) [1], coop-

erative communications [2], cognitive radio (CR) [3] and

so on. However, these techniques only focus on the signal

processing at the transceiver to adapt the changes of the wire-

less environment, but cannot eliminate the negative effects

caused by the uncontrollable electromagnetic wave propaga-

tion environment [4], [5].

The associate editor coordinating the review of this manuscript and
approving it for publication was Matti Hämäläinen.

Recently, intelligent reflecting surface (IRS) has been

proposed as a promising technique due to its capability to

achieve high spectrum-/energy-efficiency through control-

ling the wireless propagation environment [6]. Specifically,

IRS is a uniform planar array consisting of a large number

of composite material elements, each of which can adjust

the reflecting coefficients (i.e., phase or amplitude) of the

incident electromagnetic wave and reflect it passively. Hence,

by smartly adjusting the reflecting coefficients with a prepro-

grammed controller, the IRS can change the attenuation and

scattering of the incident electromagnetic wave so that it can

propagate in the desired way before reaching the intended

receiver, which is called as programmable and controllable

wireless environment. This also inspires us to design the

communication systems by jointly considering the signal
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processing at the transceiver and the optimization of the elec-

tromagnetic wave propagation in the wireless environment.

Compared with the existing related techniques, i.e., tra-

ditional reflecting surfaces [7], amplify-and-forward (AF)

relay [8], active intelligent surface [9], and backscatter com-

munication [10]–[12], IRS has the following advantages.

Firstly, IRS can reconfigure the reflecting coefficients in real

time thanks to the recent breakthrough on micro-electrical-

mechanical systems (MEMS) and composite material [5], [6]

while the traditional reflecting surface only has fixed reflect-

ing coefficients. Secondly, IRS is a green and energy-efficient

technique which reflects the incident signal passively with-

out additional energy consumption while the AF relay and

the active intelligent surface require active radio frequency

(RF) components. Thirdly, although both the IRS and the

backscatter communication make use of passive communica-

tions, IRS can be equipped with a large number of reflecting

elements while backscatter devices are usually equipped with

a single/few antenna(s) due to the limitations of complex-

ity and cost [13]. Besides, IRS only attempts to assist the

transmission of the signals between the intended transmit-

ter and receiver pair with no intention for its own infor-

mation transmission while backscatter communication needs

to support the information transmission of the backscatter

device [14], [15].

Due to the significant advantages, IRS has been introduced

into various wireless communication systems. Specifi-

cally, [16]–[20] consider a downlink single user multiple-

input single-output (MISO) system assisted by the IRS.

In [16], both centralized and distributed algorithms were

developed to maximize the signal-to-noise ratio (SNR) of

the desired signals considering perfect channel state infor-

mation (CSI). Then, in [17], the effect of the reflecting

coefficients on the ergodic capacity was investigated by

considering statistical CSI. Moreover, since achieving con-

tinuous reflecting coefficients on the reflecting elements is

costly in practice due to the hardware limitation, the SNR

maximization problem and transmitter power minimization

problem were studied in [18]–[20] by considering discrete

reflecting coefficients on the reflecting elements. As for a

downlink multi-user MISO system [21]–[23], the spectrum-/

energy-efficiency problem under the individual signal-

to-interference-plus-noise ratio (SINR) constraints was

investigated in [21] and [22] considering continuous or dis-

crete reflecting coefficients on the reflecting elements.

In addition, the minimum-SINR maximization problem was

formulated in [23] by considering the two cases where the

channel matrix between the transmitter and the IRS is of rank-

one and of full-rank.

Furthermore, physical layer security is a fundamental issue

in wireless communications [24]. The basic wiretap chan-

nel introduced by Wyner [25] consists of one transmit-

ter, one legitimate receiver, and one eavesdropper. Then,

the basic wiretap channel has been extended to broadcast

channels [26], Gaussian channels [27], compound wiretap

channels [28], and so on. It is worth noting that, in order to

ensure secret communications, the transmission rate in the

wiretap channel should be lower than the secrecy capacity of

the channel. Thus, MIMO beamforming techniques were fur-

ther introduced to improve the secrecy capacity (improving

SNR of legitimate receivers and suppressing SNR of eaves-

droppers) [29]–[32]. Specifically, both power minimization

and secrecy rate maximization were studied in [30] in a single

user/eavesdropper MIMO systems considering both perfect

and imperfect CSI. Then, the minimum-secrecy-rate of a

single-cell multi-user MISO system was studied in [31] with

a minimum harvested energy constraint, and it was further

extended to a multi-cell network in [32].

However, consider the special case when the legitimate

receivers and the eavesdroppers are in the same direc-

tions to the transmitter. In this case, the channel responses

of the legitimate receivers will be highly correlated with

those of the eavesdroppers. The beamformers proposed

in [29]–[32] to maximize the SNR of legitimate receivers

will also maximize the SNR of eavesdroppers. Hence, it is

intractable to guarantee the secret communications with the

use of beamforming only at the transceivers. Hence, we want

to explore the use of the IRS to provide additional commu-

nication links so as to increase the SNR at the legitimate

receivers while suppressing the SNR at the eavesdroppers.

Hopefully, this will create an effect as if the confidential

data streams can bypass the eavesdroppers and reach the

legitimate receivers, as shown in Fig. 1, and thus the secrecy

rate will be improved.

Motivated by the above reasons, in this paper, we study a

programmable wireless environment for physical layer secu-

rity to achieve high-efficiency secret communication. Specif-

ically, we consider a downlinkMISO broadcast systemwhere

the base station (BS) transmits multiple independent confi-

dential data streams to each legitimate receivers and keeps

them secret from the eavesdroppers through the assistance of

the IRS. The contributions of the paper are summarized as

follows:

• To the best of our knowledge, this is the first work to

explore the use of the IRS to enhance the physical layer

secret communication. Particularly, we jointly optimize

the beamformers at the BS and the reflecting coefficients

at the IRS to maximize the minimum-secrecy-rate under

various practical constraints on the reflection coeffi-

cients. The constraints capture both the continuous and

discrete reflecting coefficients of the reflecting elements

on the IRS. However, the objective function is not jointly

concave with respect to both the beamformers and the

reflecting coefficients, and even worse, they are coupled

together. Hence, the formulated problem is non-convex,

which is hard to solve and may require high complexity

to obtain the optimal solutions.

• We solve the formulated problem efficiently in an iter-

ative manner by developing alternating optimization

based path-following algorithm [33], [34]. Specifically,

we use the path-following algorithm to handle the

non-concavity of the objective function and apply the
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alternating optimization to deal with the coupled opti-

mization variables. Besides, we prove that the proposed

algorithm is guaranteed to converge to a local (global)

optimum and the corresponding solution will converge

to a Karush-Kuhn-Tucker (KKT) point finally.

• To further reduce the computational complexity,

we develop two suboptimal algorithms to solve the

formulated problem for two cases. For the first case

with one legitimate receiver and one eavesdropper,

we develop an alternating optimization method to solve

the formulated problem in an iterative manner, but in

each iteration we provide the closed-form solutions,

which leads the algorithm to be low complexity. For

the second case with multiple legitimate receivers and

eavesdroppers, we develop a heuristic closed-form solu-

tion based on zero-forcing (ZF) beamforming, which

further reduces the computational complexity.

• Finally, the simulation results validate the advantages of

the introduced IRS and also show the effectiveness of

the proposed algorithms.

The rest of this paper is organized as follows: Section II

introduces the system model of the downlink MISO broad-

cast system with multiple eavesdroppers. Section III for-

mulates the minimum-secrecy-rate maximization problem.

Section IV develops an efficient algorithm to solve the for-

mulated problem and Section V provides two low-complexity

suboptimal algorithms to solve it in two cases, respectively.

Section VI shows the simulation results to evaluate the per-

formances of the proposed algorithms. Finally, Section VII

concludes the paper.

The notations used in this paper are listed as follows. The

scalar, vector, and matrix are lowercase, bold lowercase, and

bold uppercase, i.e., a, a, andA, respectively. (·)T , (·)H , Tr (·)
andℜ(·) denote transpose, conjugate transpose, trace, and real
dimension, respectively. CN

(

µ, σ 2
)

denotes the distribution

of a circularly symmetric complex Gaussian (CSCG) random

variable with meanµ and variance σ 2.Cx×y andRx×y denote
the space of x × y complex/real matrices. IK ∈ R

K×K is

the identify matrix, 1K = [1, · · · , 1]T ∈ R
K×1, and (a)+ =

max(0, a).

II. SYSTEM MODEL

As shown in Fig. 1, we consider a programmable downlink

MISO broadcast system which consists of one BS, one IRS,

K legitimate receivers, denoted as B1, · · · ,BK , and N active

eavesdroppers, denoted as E1, · · · ,EN . The BS and the IRS

are equipped with M antennas and L reflecting elements,

respectively, while the legitimate receivers and eavesdroppers

are all equipped with a single antenna each. The BS sends

K independent confidential data streams with one stream for

each of the K legitimate receivers over the same frequency

band, simultaneously. At the same time, the unauthorized

eavesdroppers are trying to eavesdrop any of the data streams,

independently.

Consider the special case when the legitimate receivers

and the eavesdroppers are in the same directions to the BS.

FIGURE 1. A programmable downlink MISO broadcast system with one
IRS and multiple eavesdroppers.

In this case, the channel responses of the legitimate receivers

will be highly correlated with those of the eavesdroppers.

As aforementioned, it is intractable to guarantee the secret

communications with the use of beamforming only at the

transceivers. Hence, we want to explore the use of the IRS to

provide additional communication links so as to increase the

SNR at the legitimate receivers while suppressing the SNR

at the eavesdroppers. Hopefully, this will create an effect as

if the confidential data streams can bypass the eavesdroppers

and reach the legitimate receivers, and thus the secrecy rate

will be improved. In this paper, we are interested in obtaining

the performance limit of such a system. Hence, similarly

to [16] and [21], we assume that the CSI of all the channels

are perfectly known at the BS.1 In practical systems where

such CSI cannot be obtained perfectly, the results derived in

this paper can be considered as the performance upper bound.

Note that the optimization (in terms of beamformers and

reflecting coefficients) of the system to be presented in the

subsequent sections is done at the BS and that the optimized

reflecting coefficients are transmitted to the IRS to reconfig-

ure the corresponding reflecting elements accordingly.

A. CHANNEL MODEL

The baseband equivalent channel responses from the BS to

the IRS, from the BS to Bk , from the BS to En, from the

IRS to Bk , and from the IRS to En are denoted by F ∈
C
L×M , hHd,k ∈ C

1×M , gHd,n ∈ C
1×M , hHr,k ∈ C

1×L , and
gHr,n ∈ C

1×L , respectively, with 1 ≤ k ≤ K and 1 ≤
n ≤ N . Specifically, without loss of generality, we adopt

a Rician fading channel model, which consists of LoS and

1In practice, the optimization processing only requires the CSIs of the
composite channels, i.e.,Hk andGn, defined in (15) and (16). Hence, we can
first turn off the IRS and enable the users to send orthogonal pilot sequences
to the BS for estimating the last rows ofHk andGn. Next, we can turn on each
reflecting element on the IRS successively in L time slots and keep the other
reflecting elements closed. Then, the users send orthogonal pilot sequences
to the BS in the each time slot. Finally, the first L rows in Hk and Gn can
be estimated by subtracting the last rows of Hk and Gn from the estimated
channel gains.
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non-LoS (NLoS) components, i.e.,

h =
√

κh

κh + 1
hLoS +

√

1

κh + 1
hNLoS, (1)

with h ∈ H =
{

F,hd,k ,hr,k , gd,n, gr,n
}

, where κh, h
LoS,

and hNLoS are the Rician factor, LoS components, and NLoS

components of channel h, respectively. The NLoS compo-

nents hNLoS are i.i.d. complex Gaussian distributed with

zero mean and unit variance. We define a vector aX (ϑ) =
[

1, ej
2πd
λ

sinϑ , · · · , ej 2πdλ (X−1) sinϑ
]T

, where d is the antenna

element separation, λ is the carrier wavelength, X is the

dimension of the vector and ϑ is the angle, which can be

interpreted as either angle of departure (AoD) or angle of

arrival (AoA) depending on the context. We set d/λ = 1/2

for simplicity. Hence, the LoS components in (1) can be

modeled as

hLoSd,k = aM (ϑd,k ) and h
LoS
r,k =aL(ϑr,k ), for 1 ≤ k ≤ K ,

(2)

gLoSd,n = aM (ϑ̃d,n) and g
LoS
r,n =aL(ϑ̃r,n), for 1 ≤ n ≤ N ,

(3)

FLoS = aL

(

ϑAoA
)

aHM

(

ϑAoD
)

, (4)

where ϑd,k , ϑr,k , ϑ̃d,n, ϑ̃r,n are the AoA or AoD of a signal

from the BS to Bk , from the IRS to Bk , from the BS to En,

and from the IRS to En, respectively. ϑ
AoD and ϑAoA are the

AoD from the BS and the AoA to the IRS, respectively.

B. REFLECTING COEFFICIENT MODEL

The reflecting coefficient channel of the IRS [16] is given by

2 = diag(θ) ∈ C
L×L with θ = [θ1, θ2, · · · , θL]T ∈ C

L×1

and θl ∈ 8 for 1 ≤ l ≤ L, where diag(·) denotes a diagonal
matrix whose diagonal elements are given by the correspond-

ing vector and 8 denotes the set of reflecting coefficients

of the IRS. In this paper, we consider the following three

different sets of reflecting coefficients, which lead to three

different constraints for the reflecting coefficients.

• Continuous Reflecting Coefficients: In this scenario,

we further consider two detailed setups with the opti-

mized or constant amplitude. Specifically, the reflecting

coefficient set for the optimized amplitude with contin-

uous phase-shift is denoted by

81 =
{

θl

∣

∣

∣
|θl |2 ≤ 1

}

, (5)

and the reflecting coefficient set for the constant ampli-

tude with continuous phase-shift is denoted by

82 =
{

θl

∣

∣

∣
θl = ejϕl , ϕl ∈ [0, 2π)

}

. (6)

• Discrete Reflecting Coefficients: In this scenario,

the reflecting coefficient set has constant amplitude and

discrete phase-shift, which is given by

83=
{

θl

∣

∣

∣
θl=ejϕl ,ϕl ∈

{

0, 2π
Q

, · · · , 2π (Q−1)
Q

}}

, (7)

whereQ is the number of reflecting coefficient values of

the reflecting elements on the IRS.

Note that, it is costly in practice to achieve continuous

reflecting coefficient on the reflecting elements due to the

hardware limitation. Hence, applying the discrete reflect-

ing coefficient on the reflecting elements, i.e., 83, is more

practical than applying the continuous reflecting coefficients,

i.e., 81 and 82. But, it is also important to investigate the

system performance with 81 and 82 since it serves as the

upper bound to that with 83.

C. SIGNAL MODEL

Let sk be the confidential message dedicated to Bk . It

is assumed that all messages transmitted are CSCG, i.e.,

sk ∼ CN (0, 1) for 1 ≤ k ≤ K . Then, the signal transmitted

from the BS can be expressed as

x =
∑K

k=1
wksk , (8)

where wk is the downlink beamforming vector for sk . The

received signals at Bk and eavesdropped by En can be

expressed as

yBk =
[

hHr,k2F+ hHd,k

]

K
∑

i=1
wixi + uBk , 1 ≤ k ≤ K , (9)

yEn =
[

gHr,n2F+ gHd,n

]

K
∑

i=1
wixi + uEn , 1 ≤ n ≤ N , (10)

respectively, where uBk and uEn are the received noises at Bk
and En, respectively. It is assumed that all noises are Gaus-

sian distributed with zero mean, i.e., uBk ∼ CN
(

0, σ 2
k

)

and

uEk ∼ CN
(

0, δ2n
)

, respectively.

According to (9), the achievable transmission rate of the

k-th confidential message received at Bk can be written as

RBk = ln



1+
∣

∣(hHr,k2F+ hHd,k )wk
∣

∣

2

∑K
i 6=k

∣

∣(hHr,k2F+ hHd,k )wi
∣

∣

2 + σ 2
k



 . (11)

According to (10), if En attempts to eavesdrop the k-th

confidential message, the achievable wiretapped rate of the

k-th message received at En can be written as

REk,n = ln






1+

∣

∣

∣
(gHr,n2F+gHd,n)wk

∣

∣

∣

2

∑K
i 6=k

∣

∣

∣
(gHr,n2F+gHd,n)wi

∣

∣

∣

2
+δ2n






. (12)

Since each eavesdropper can eavesdrop any of theK confi-

dential messages, the achievable secrecy rate (in nats/sec/Hz)

for transmitting sk to Bk and keeping it confidential from

all the N eavesdroppers should be the minimum-secrecy-rate

among Bk and En for 1 ≤ n ≤ N , which is given by [32]

Ck = min
∀n

{

RBk − REk,n
}

. (13)
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III. PROBLEM STATEMENT

A. PROBLEM FORMULATION

In this paper, we attempt to jointly optimize the beamforming

vector, i.e., W = [w1, · · · ,wk ] ∈ C
M×K , and reflecting

coefficients, i.e., θ , to maximize the minimum-secrecy-rate

among all the legitimate receivers. Mathematically, the opti-

mized problem can be generally formulated as

(P1) : max
W ,θ

min
∀k

Ck

s.t.
∑K

k=1
‖wk‖2 ≤ P, (14a)

θl ∈ 8, 1 ≤ l ≤ L, (14b)

where P denotes the maximum transmit power at the BS and

8 may be set as 81, 82, and 83, respectively.

B. PROBLEM TRANSFORMATION

(P1) is hard to solve due to the non-concave objective func-

tion. In order to find the solution of (P1) efficiently, we will

transform it into the following equivalent formulation.

To begin with, denoting Hk =
[

diag(hHr,k )F

hHd,k

]

∈

C
(L+1)×M , and Gn =

[

diag(gHr,n)F

gHd,n

]

∈ C
(L+1)×M , we have

∣

∣

∣
(hHr,k2F+ hHd,k )wk

∣

∣

∣

2
=
∣

∣

∣
vHHkwk

∣

∣

∣

2
, (15)

∣

∣

∣
(gHr,n2F+ gHd,n)wk

∣

∣

∣

2
=
∣

∣

∣
vHGnwk

∣

∣

∣

2
, (16)

where v = [v1, v2, · · · , vL+1]T = [θ; 1] ∈ C
1×(L+1).

Then, RBk in (11) and REk,n in (12) can be rewritten as

RBk = ln

(

1+
∣

∣vHHkwk
∣

∣

2

bk (W , v)

)

1= f Bk (W , v) , (17)

REk,n = ln

(

1+
∣

∣vHGnwk
∣

∣

2

qk,n (W , v)

)

1= f Ek,n (W , v) , (18)

where bk (W , v) =
∑K

i 6=k
∣

∣vHHkwi
∣

∣

2 + σ 2
k and qk,n(W , v) =

∑K
i 6=k

∣

∣vHGnwi
∣

∣

2 + δ2n . Thus, it is straightforward to know

that (P1) can be transformed into the following equivalent

form:

(P2) : max
W ,v

R(W , v)
1= min
∀k,∀n

{

f Bk (W , v)− f Ek,n (W , v)
}

s.t. vl ∈ 8, 1 ≤ l ≤ L, vL+1 = 1, (19a)

(14a).

However, the transformed problem (P2) is still hard to

solve sinceR(W , v) is not jointly concave with respect toW

and v, and even worse, they are coupled together. In the next

section, we will develop an iterative algorithm to solve (P2)

efficiently.

IV. MINIMUM-SECRECY-RATE MAXIMIZATION

In this section, we will propose two techniques to jointly

solve the above challenging problem. Firstly, we apply the

path-following algorithm to handle the non-concavity of the

objective function. Then, we apply the alternating optimiza-

tion technique to deal with the coupled optimization vari-

ables. Finally, we analyze the convergence of the proposed

algorithm.

A. PATH-FOLLOWING ALGORITHM DEVELOPMENT

In this part, we will develop path-following iterative

algorithm to solve (P2) with the non-concave objective func-

tion, i.e., R(W , v). In particular, the basic idea of the path-

following is to follow a solution path of a family of the

approximated problems of (P2). For example, R(W , v) is

approximated by a concave lower bound function, which is

obtained by applying linearly interpolating between the non-

concave term f Bk (W , v) and the non-convex term f Ek,n (W , v),

respectively. Specifically, the approximated problem has a

local (global) optimal value and can be increased in each iter-

ation, which finally leads to a local (global) optimal solution

of (P2) [33].

To begin with, let (W (t), v(t)) denote the solution of (P2)

in the t-th iteration. Then, in order to find the concave lower

bound function of R(W , v) to develop path-following algo-

rithm, we can fist find the lower bound function of f Bk (W , v)

and the upper bound function of f Ek,n(W , v) at (W (t), v(t)). The

details are given in the following lemma.

Lemma 1: The lower bound function of f Bk (W , v) and

the upper bound function of f Ek,n (W , v) at
(

W (t), v(t)
)

in the

(t + 1)-th iteration of path-following algorithm are given by

f Bk (W , v) ≥ f Bk (W
(t)

, v
(t)

)+2
ℜ
{

(w
(t)
k )

H
HH
k v

(t)
(

vHHkwk
)

}

bk (W
(t)

,v
(t)
)

−
∣

∣

∣
(v(t))

H
Hkw

(t)
k

∣

∣

∣

2

bk (W
(t)

,v
(t)
)(bk (W

(t)
,v
(t)
)+
∣

∣

∣
(v(t))

H
Hkw

(t)
k

∣

∣

∣

2
)

×
(

∣

∣vHHkwk
∣

∣

2+bk (W , v)
)

−
∣

∣

∣

(

v(t)
)H
Hkw

(t)
k

∣

∣

∣

2

bk (W
(t)

,v
(t)
)

1= f Bk (W , v;W (t)

, v
(t)

), (20)

f Ek,n(W , θ ) ≤ f Ek,n(W
(t)

, v
(t)
)+(1+

∣

∣

∣
(v(t))

H
Gnw

(t)
k

∣

∣

∣

2

qk,n(W
(t)

,v
(t)
)
)−1

×(
∣

∣vHGnwk
∣

∣

2

qk,n(W ,v)
−

∣

∣

∣
(v(t))

H
Gnw

(t)
k

∣

∣

∣

2

qk,n(W
(t)

,v
(t)
)
)

≤ f Ek,n(W
(t)

, v
(t)

)+ (1+

∣

∣

∣
(v(t))

H
Gnw

(t)
k

∣

∣

∣

2

qk,n(W
(t)

, v
(t)
)
)−1

×(
∣

∣vHGnwk
∣

∣

2

qk,n(W ,v;W (t)
,v
(t)
)
−

∣

∣

∣
(v(t))

H
Gnw

(t)
k

∣

∣

∣

2

qk,n(W
(t)

,v
(t)
)
)

1= f Ek,n(W , v;W (t)

, v
(t)

), (21)

where

qk,n(W , v;W (t)

, v
(t)

) = δ2n +
∑K

i 6=k
ℜ{(w(t)

i )HGHn v
(t)

× (2vHGnwi−(vH )
(t)
Gnw

(t)

i )}, (22)

Proof: Please refer to Appendix A.
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Then, from (20) and (21), we know the lower bound of

R(W , v) is given by

R(W , v) = min
∀k,∀n

{

f Bk (W , v)− f Ek,n (W , v)
}

≥ min
∀k,∀n

{

f Bk (W , v;W (t)

, v
(t)

)−f Ek,n(W , v;W (t)

, v
(t)

)
}

1= R
lb(W , v;W (t)

, v
(t)

). (23)

Note that, according to (20) and (21), the equality in (23)

holds whenW = W (t) and v = v(t).

Thus, a family of the approximated problems of (P2) is

given as follows:

(P2−t) : max
W ,v

R
lb(W , v;W (t)

, v
(t)

)

s.t. (14a) and (19a).

However, (P2 − t) is still a non-convex problem due to the

following reasons:

• First, W and v are coupled in the terms of vHHkwk
and vHGnwk , which makes the objective function

Rlb(W , v;W (t)
, v

(t)
) not jointly concave with respect to

(W , v).

• Second, it is straightforward to know that (19a) with

8 = 81 is a convex set but a non-convex set with

8 = 82 and 8 = 83.

In subsection IV-B, we will first develop alternating opti-

mization method to deal with the coupled optimization vari-

ables in (P2−t) with 8 = 81, and then we will extend it to

the scenarios with 8 = 82 and 8 = 83, respectively.

B. ALTERNATING OPTIMIZATION WITH CONTINUOUS

AND DISCRETE REFLECTING COEFFICIENTS

1) THE SOLUTION OF (P2) WITH 8 = 81

In this part, we develop the alternating optimization to solve

(P2− t) when 8 = 81 in constraint (19a), which leads con-

straint (19a) to be a convex set. Hence, the non-convexity of

(P2− t) only stems from the coupled optimization variables.

In fact, although the objective functionRlb(W , v;W (t)
, v

(t)
)

is non-concave due to the coupledW and v, f Bk (W, v;W (t)
, v

(t)
)

in (20) is biconcave in W and v, i.e., f Bk (W , v;W (t)
, v

(t)
)

is concave both in W with fixed v and in v with fixed

W . Similarly, for the domain qk,n(W , v;W (t)
, v

(t)
) ≥ 0,

the function

∣

∣vHGnwk
∣

∣

2

qk,n(W ,v;W (t)
,v
(t)
)
in (21) is a biconvex function

with respect to W and v, which leads to a biconvex func-

tion f Ek,n(W , v;W (t)
, v

(t)
) with respect to W and v. Hence,

Rlb(W , v;W (t)
, v

(t)
) is a biconcave function inW and v.

Therefore, we know (P2 − t) with 8 = 81 has convex

constraints and concave objective function inW with fixed v

and in v with fixed W . Hence, we can apply the alternating

optimizationmethod to solve (P2−t) in an alternatingmanner

efficiently. Specifically, the alternating algorithm decouples

(P2− t) into the following two subproblems for the optimiza-

tion ofW and v, respectively,

(P3−A) : max
W

R
lb(W , v;W (t)

, v
(t)

)

s.t. (14a),

and

(P3−B) : max
v

R
lb(W , v;W (t)

, v
(t)

)

s.t. (19a) with 8 = 81.

Note that (P3−A) is an optimization subproblem for solving

W with a given v and (P3−B) is an optimization subproblem

for solving v with a givenW .

As aforementioned, we know both (P3 − A) and

(P3 − B) are convex optimization problems, which can be

solved optimally and efficiently by using CVX [35]. Thus,

problem (P2) with8 = 81 can be solved efficiently by alter-

nately solving (P3−A) and (P3−B) in an iterative manner of

path-following algorithm. In particular, the algorithm steps of

the alternating optimization based path-following algorithm

are summarized in Algorithm 1.

Algorithm 1 Alternating Optimization Based Path-

Following Algorithm

1: InitializeW (0), v(0) and t = 0.

2: repeat

3: t ← t + 1,

4: Set v = v(t−1) and calculateW (t) by solving the convex

optimization problem (P3− A),

5: SetW = W (t) and calculate v(t) by solving the convex

optimization problem (P3− B),

6: until Ŵ =
(

R(W (t),v(t))−R(W (t−1),v(t−1))
)

R(W (t),v(t))
converges.

2) THE SOLUTIONS OF (P2) WITH 8 = 82

In this part, we extend the above alternating optimization to

solve (P2− t) when 8 = 82 in constraint (19a), which leads

constraint (19a) to be a non-convex set. To handle this non-

convex constraint, we propose the following two methods:

• In the first method, we introduce a positive constant

relaxation factor λ to reformulate (P2− t) with 8 = 82

as the following optimization problem,

(P4−t) : max
W ,v

R
lb(W , v;W (t)

, v
(t)

)+ λ

L+1
∑

l=1
|vl |2

s.t. (14a) and (19a) with 8 = 81.

Note that the added nonnegative quadratic term

λ
L+1
∑

l=1
|vl |2 attempts to force the inequality holds for vl ,

i.e., |v|l = 1.

However, the objective of (P4 − t) is to maxi-

mize the summation of concave and convex functions,

which belongs to a non-convex problem. To further

deal with this challenge, we use the first-order Taylor

series expansion to approximates the convex function

as an affine function [36]. Then, we iteratively solve

the approximated convex optimization problem until

the convergence is met. Specifically, the approximated
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problem is

(P4− A) : max
W ,v

R
lb(W , v;W (t)

, v
(t)

)

+ λ
∑L+1

l=1
ℜ
{

(v
(t)
l )

H
(2vl − v(t)l )

}

s.t. (14a), and (19a) with 8 = 81.

Finally, the only non-convex term in (P4 − A) stems

from the coupled W and v in the objective function

Rlb(W , v;W (t)
, v

(t)
), which can be solved efficiently

by applying the same alternating optimization method,

i.e., Algorithm 1.

However, this method has the main drawbacks that

we use the approximation in (P4− t) and there is no

beforehand choice for the relaxation factor λ to speed

up the convergence [32]. Hence, we further propose the

direct projection method in the next part.

• In the second method, we can apply the projection

method to project the solution of (P2) with 8 = 81

into 8 = 82 directly. Specifically, denote the solutions

of (P2) with8 = 81 and (P2) with8 = 82 as (W
†, v†)

and (W‡, v‡), respectively. Thus, the (W‡, v‡) can be

obtained by solving the following projection problem:

(P4− B) : v‡ = argmin
v

∥

∥

∥
v− v†

∥

∥

∥

2

s.t. (19a) with 8 = 82.

From [23], the optimal solution to (P4− B) is given by

v‡ = exp(j arg(v†)), (27)

and W ‡ = W †. Note that, to further improve the per-

formance of this method, we can rerun the following

adjusted Algorithm 1 to iteratively update the obtained

(W ‡, v‡):

– Initialize W0 = W ‡, v0 = v‡ and t = 0. Then,

perform the following steps iteratively until the

objective function converges.

– t ← t + 1, set v = v(t−1) and calculate W (t) by

solving the convex optimization problem (P3−A),

– SetW = W (t), project the solution of (P3−B) into

82 by (27), and denote it as ṽ,

– Update v(t) using the following rule:

v(t) =
{

ṽ, if R(W (t), ṽ) ≥ R(W (t), v(t−1)),

v(t−1), otherwise.

(28)

3) THE SOLUTION OF (P2) WITH 8 = 83

In this part, we develop algorithms to solve (P2) when

8 = 83 in constraint (19a), which leads the optimized prob-

lem belongs to a class of combinatorial optimization problem,

which is an NP-hard problem in general. Thus, it will cause

intractable complexity to obtain the optimal solution. Hence,

we will use the similar heuristic projection method in the

above to solve this problem efficiently.

To begin with, we denote the solution of 8 = 83 as

(W➜, v➜). Then, we can directly project v†, the solution of

(P2) with 8 = 81, into 83 to obtain (W➜, v➜), i.e.,

v
➜
l =







ejϕq̂ , where q̂=argmin
1≤q≤Q

∣

∣

∣
v
†
l −ejϕq

∣

∣

∣
, 1 ≤ l≤ L,

1, l = L + 1,

(29)

where v
➜
l and v

†
l are the l-th element of v➜ and v†, respectively.

W ➜ = W †. Note that the rest steps to update (W➜, v➜) are

similar as the second method in subsection IV-B.2, which is

omitted here for brevity.

C. CONVERGENCE ANALYSIS

In this part, we analyze the convergence of the proposed

alternating optimization based path-following algorithm,

i.e., Algorithm 1, which is given in the following theorem.

Theorem 1: The value of the objective function increases

in each iteration of Algorithm 1, i.e., R(W (t), v(t)) ≤
R(W (t+1), v(t+1)), which guarantees to converge to a local

(global) optimum.

Proof: To begin with, we have

R(W (t), v(t)) =
(a)

R
lb(W (t), v(t);W (t), v(t))

≤
{

max
W

R
lb(W , v(t);W (t), v(t))

}

=
(b)

R
lb(W (t+1), v(t);W (t), v(t))

≤
{

max
v

R
lb(W (t+1), v;W (t), v(t))

}

=
(c)

R
lb(W (t+1), v(t+1);W (t), v(t))

≤
(d)

R(W (t+1), v(t+1)), (30)

where (a) is because the equality in (23) holds when W =
W (t) and v = v(t), (b) and (c) are because W (t+1) and

v(t+1) are the optimal solutions of the convex optimization

problems of (P3 − A) and (P3 − B), respectively, and (d) is

because Rlb(W (t+1), v(t+1);W (t), v(t)) is the lower bound of

the functionR(W , v) in (23).

Furthermore, due to (14a) and (19a), we know W (t)

and v(t) are both bounded. According to Cauchy’s theo-

rem [32], we know the sequence of (W (t), v(t)) will converge

to (W∗, v∗) as t →∞, i.e.,

0 = lim
t→∞

{

R(W (t), v(t))−R(W∗, v∗)
}

≤ lim
t→∞

{

R(W (t+1), v(t+1))−R(W∗, v∗)
}

= 0. (31)

Hence, we have proved the R(W (t), v(t)) ≤ R(W (t+1),
v(t+1)), which can guarantee to converge to a local (global)

optimum.

Theorem 2: The corresponding solution (W∗, v∗) will

converge to a Karush-Kuhn-Tucker (KKT) point finally.

Proof: Please refer to Appendix B
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However, although the convergence of the proposed algo-

rithm is guaranteed, it requires solving the convex optimiza-

tion problems (P3− A) and (P3− B) whose complexity are

in the order of O((KN + 1)K 2M2) and O((KN + L + 1)

(L + 1)2) [37], respectively. Hence, we will develop the

methods to reduce the computational complexity in the next

subsection. Note that, since the solutions with 81 can be

projected into 82 and 83 directly, thus we only consider

8 = 81 when developing the low-complexity algorithms.

V. SUBOPTIMAL ALGORITHMS WITH LOW-COMPLEXITY

In this section, two suboptimal algorithms are developed to

further reduce the complexity. Firstly, we develop an alter-

nating optimization algorithm for the case with one legitimate

user and one eavesdropper, where the closed-form solutions

are provided in each iteration. Then, we develop an non-

iterative suboptimal algorithm based on ZF beamforming for

the case with multiple legitimate users and eavesdroppers.

A. ALTERNATING OPTIMIZATION FOR (P2)

WITH K = 1 AND N = 1

In this section, we develop a low-complexity algorithm to

solve (P2) for the case with K = 1 and N = 1. Although

there is no-interference in the objective function, the problem

is still non-convex and hard to solve due to the coupled W

and v. Thus, we also need to apply alternating optimization

to decouple W and v. Fortunately, we can obtain the closed-

form solutions in each iteration, which leads it to be a low-

complexity algorithm.

Specifically, (P2) with K = 1 and N = 1 can be solved by

alternately solving the following two subproblems:

(P5−A) : max
w1

ln

(

1+ |h̃H1 w1|
2
)

− ln
(

1+ |g̃H1 w1|
2
)

s.t. ‖w1‖2 ≤ P, (32)

which is an optimization problem of w1 for a given v with

h̃
H

1 = vHH1 and g̃
H
1 = vHG1, and

(P5−B) : max
v

ln

(

1+
∣

∣

∣
vH h̄1

∣

∣

∣

2
)

− ln

(

1+
∣

∣

∣
vH ḡ1

∣

∣

∣

2
)

s.t. |vl |2 ≤ 1, 1 ≤ l ≤ L + 1, (33)

which is an optimization problem of v for a given w1 with

h̄1 = H1w1 and ḡ1 = G1w1. Note that in constraint (33),

we have relaxed constraint (19a) due to vL+1. To make the

solution of v in the above problem (P5− B) to satisfy (19a),

we need to set v∗L+1 as 1 and v∗l = vl/ exp(j arg(vL+1)) for
1 ≤ l ≤ L after the convergence. Besides, constraints (33)

can be regarded as the per-antenna power constraints with the

maximum power of one [38].

In the following two parts, we provide the solutions to

(P5− A) and (P5− B), respectively.

1) THE OPTIMAL SOLUTION TO (P5− A)

This problem is the downlink MISO beamforming problem

for basic wiretap channel, which has been studied in [39].

In particular, the optimal solution to (P5− A) is given by

w∗1 =
√
P

(

I + Pg̃1g̃H1
)− 1

2
q

∥

∥

∥

∥

(

I + Pg̃1g̃H1
)− 1

2
q

∥

∥

∥

∥

, (34)

where q is the eigenvector of matrix Z corresponding to the

largest eigenvalue, and

Z = (I + Pg̃1g̃H1 )−
1
2 (I + Ph̃1h̃

H

1 )(I + Pg̃1g̃H1 )−
1
2 . (35)

2) THE SOLUTIONS TO (P5− B)

In this part, we develop the efficient algorithm to solve

(P5− B) in an iterative manner,2 and we provide the closed-

form solutions in each iteration. To do so, we first introduce

the following lemma.

Lemma 2: Let x be a positive real number, and define

f (y) = −xy+ ln y+ 1, then we have − ln x = maxy>0 f (y),

and the optimal corresponding solution in the right hand side

of this equation is y∗ = 1/x.

Proof: This proof is similar in [41], which is omitted

here for brevity.

According to lemma 2, (P5 − B) can be equivalently

rewritten as

(P6) : max
v,y

ln(1+
∣

∣

∣
vH h̄1

∣

∣

∣

2
)− y(1+

∣

∣

∣
vH ḡ1

∣

∣

∣

2
)+ ln y

s.t. y > 0 and (33). (36)

This reformulated problem is still non-convex, but it is convex

in v or y with the other variable is fixed. Then, we can

further apply alternating optimizing to optimize v and y in

an iterative manner. Specifically, the alternating optimization

subproblems are given as follows:

(P6−A) : max
y>0

−y(1+
∣

∣

∣
vH ḡ1

∣

∣

∣

2
)+ ln y,

which is a convex optimization problem of y for a given v,

and

(P6−B) : max
V�0

ln(1+ h̄H1 Vh̄1)− yḡH1 Vḡ1

s.t. Tr(eHl Vel) ≤ 1, 1 ≤ l ≤ L + 1, (37)

which is a convex optimization problem of V = vvH for a

given y, where el ∈ R
(L+1)×1 is a unit vector with the l-th

entry being one and other entries being zero. Note that since

the rank of the optimal V of (P6−B) must be one, which will

be proved in Appendix C, there is no need to add the rank-one

constraint for variable V .

In the following, we show the optimal solutions to

(P6−A) and (P6−B), respectively. Specifically, according to

2Note that although (P5−B) can be solved by transforming it into a convex
semidefinite programming (SDP) by applying semidefinite relaxation (SDR)
technique, but solving the SDP problems requires very high complexity,

which is in the order of O((N + 1)4.5) [40].
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Lemma 2, it is straightforward to know the optimal solution

to (P6− A) is given by

y∗ = (1+
∣

∣

∣
vH ḡ1

∣

∣

∣

2
)−1, (38)

Next, since (P6 − B) is a convex problem, it is straight-

forward to know that strong duality holds for (P6− B) [42].

Hence, we can obtain its optimal solution by solving its dual

problem. To begin with, the Lagrangian dual of problem

(P6− B) can be written as

(P6−C) : min
χ

L (χ) s.t. χl ≥ 0, 1 ≤ l ≤ L + 1, (39)

where χ = [χ1, · · · , χL+1]T ∈ R
(L+1)×1 is the dual variable

and

L (χ) = maxV�0 { ln(1+ h̄
H

1 Vh̄1)− yḡH1 Vḡ1
+
∑L+1

l=1
χl(1− eHl Vel) } . (40)

Then, the optimal solution to (P6 − B) can be obtained by

iteratively solving (40) with fixed χ and updating χ by sub-

gradient methods, e.g., the ellipsoid method. The details for

the subgradient methods have been studied in [43], which

are omitted here for brevity. Then, we have the following

theorem.

Theorem 3: If the optimalχ∗ is given, the optimal solution

for (P6− B) is given by V∗ = v∗(v∗)H with

v∗ =

√

(

1− 1
(ε∗)2

)+

ε∗

(

diag
(

χ∗
)

+ yḡ1ḡH1
)−1

h̄1, (41)

where ε∗=
∥

∥

∥

(

diag(χ∗)+yḡ1ḡH1
)−0.5

h̄

∥

∥

∥
.

Proof: Please refer to Appendix C.

The convergence for the above algorithm is also guaran-

teed, the proof is similar to the proof of theorem 1, which

is omitted here for brevity. Besides, the detailed steps of the

above algorithm are summarized in Algorithm 2.

Algorithm 2 Alternating Optimization Method

1: Initialize w
(0)
1 , v(0), y(0) and t = 0.

2: repeat

3: t ← t + 1,

4: Set v = v(t−1), then calculateW (t) by (34),

5: Set v = v(t−1) and w1 = w
(t)
1 , then calculate y(t) by

(38),

6: Initialize χ = χ (0) and i = 0, set w1 = w
(t)
1 and y =

y(t),

7: repeat

8: i ← i + 1, set χ = χ (i−1), then calculate v(t) by

(41),

9: Calculate χ (i) according to the ellipsoid

method [43],

10: until Convergence.

11: until Convergence.

B. HEURISTIC ALGORITHM FOR (P2)

WITH K ≥ 1 AND N ≥ 1

In this subsection, we provide the heuristic algorithm for (P2)

with K ≥ 1 and N ≥ 1. Specifically, when L → ∞,

we can assume the received signal from the BS to users can

be ignored due to the total powers of received signals are

dominated by the signals from the BS and through the IRS to

the users with asymptotically large L. In addition, according

to the Rician channel model introduced in (1) and (4), when

κF → ∞ and κhr,k → ∞ and κgr,n → ∞, the channel

responses from the BS to the IRS, from the IRS to Bk and

from the IRS to En are dominated by LoS components since

the NLoS components can be practically ignored. Besides,

we also assume all legitimate receivers are in the same direc-

tions to the IRS, i.e., ϑr,k = ϑr,i holds for 1 ≤ i, k ≤ K .

Hence, the total power of received signals at the legitimate

receivers can be given by

∣

∣

∣
aHL
(

ϑr,k
)

2aL(ϑ
AoA)

∣

∣

∣

2

∥

∥

∥

∥

∥

(

aHM (ϑAoD)
)

K
∑

k=1
wk

∥

∥

∥

∥

∥

2

, (42)

Then, it is straightforward to know the optimal θ∗ to maxi-

mize the total received signal power in (42) is given by

θ∗l =exp
(

j
(l−1)2πλ

d
(sinϑr,k−sinϑAoA)

)

, 1 ≤ l ≤ L.

(43)

Substituting (43) into (11) and (12), the throughput of k-th

confidential message at Bk and En can be written as

R̂Bk = ln






1+

∣

∣

∣
ĥ
H

k wk

∣

∣

∣

2

∑K
i 6=k

∣

∣

∣
ĥ
H

k wi

∣

∣

∣

2

+ σ 2
k






, (44)

R̂Ek,n = ln






1+

∣

∣

∣
ĝ
H
n wk

∣

∣

∣

2

∑K
i 6=k

∣

∣

∣
ĝ
H
n wi

∣

∣

∣

2
+ δ2n






, (45)

respectively, where ĥ
H

k = (hHr,k2F+ hHd,k ) and ĝ
H
n =

(gHr,n2F+ gHd,n). Next, we apply the ZF beamforming

scheme,3 which forces the information leakage to En to be

zero, i.e.,

Ĝ
H
W = 0, (46)

where Ĝ =
[

ĝ1, · · · , ĝN
]

∈ C
M×N . Thus, the ZF beam-

formerW can be expressed as

W = XUP, (47)

where X ∈ C
M×(M−N ) consists of (M − N ) singular

vectors of Ĝ corresponding to the zero singular values,

U = [u1, · · · ,uK ] ∈ C
(M−N )×K subject to ‖uk‖ = 1 for

1 ≤ k ≤ K . P = diag(p) ∈ R
K×K with p = [p1, · · · , pK ]T ∈

R
K×1 subject to

∑K
k=1 pk = P.

3Note thatM ≥ N is required in the studied system if ZF beamforming is
adopted.
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Therefore, problem (P2) can be changed as the following

the minimal-SINR maximization problem, i.e.,

(P7) : max
U,p

min
∀k

γk
1=

pk

∣

∣

∣
x̂
H
k uk

∣

∣

∣

2

∑K
i 6=k pi

∣

∣

∣
x̂
H
k ui

∣

∣

∣

2
+ 1

s.t.
∑K

k=1
pk = P and ‖uk‖ = 1.

where x̂
H
k = ĥ

H

k X/σk . From [44], we know the optimal

beamformer in problem (P2) has the following structure

u∗k =

(

∑K
i 6=k zix̂ix̂

H
i + IK

)−1
x̂k

∥

∥

∥

∥

(

∑K
i 6=k zix̂ix̂

H
i + IK

)−1
x̂k

∥

∥

∥

∥

, (49)

where the unique and positive zk
4 for 1 ≤ k ≤ K can be

obtained by solving the following equations [44]:

z∗k =
γ ∗

x̂
H
k

(

∑K
i 6=k x̂ix̂

H
i + IK

)−1
x̂k

, (50)

γ ∗ = P

∑K
k=1

(

x̂
H
k (
∑K

i 6=k x̂ix̂
H
i + IK )

−1
x̂k

)−1 , (51)

Note that γ ∗ is the optimal value of the objective function in

(P7), and we know γ ∗k = γ ∗ holds for all 1 ≤ k ≤ K [45].

Using this fact, we have the following equation:

p∗

γ ∗
= 4Yp∗ +41K , (52)

where 4 = diag([ 1

|x̂H1 u1|
2 , · · · , 1

|x̂HK uK |
2 ]) ∈ R

K×K , Y =

[Yik ] ∈ R
K×K with Yik = |x̂Hi uk |

2
if i 6= k and Yik = 0

if i = k . Then, we know the optimal power allocation p is

given as follows

p∗ = γ ∗
(

Ik − γ ∗4Y
)

41K . (53)

VI. SIMULATION RESULTS

In this section, we present simulation results to validate the

advantages of using the IRS to improve the secret communi-

cation of the downlink MISO broadcast system. It is assumed

that the noise variances σ 2
k at Bk and δ2n at En are the same and

normalized to one. Themaximum transmit powerP is defined

in dB with respect to the noise variance. For performance

comparison, we also show the performances of two subopti-

mal baseline schemes. In particular, for the ‘‘Rand’’ baseline,

we randomly select the reflecting coefficients of the IRS from

82 with equal probability and apply Algorithm 1 without

updating the reflecting coefficients anymore to obtain the

beamforming design; and for the ‘‘Without IRS’’ baseline,

we assume that the channels from the BS to the IRS, from the

IRS to Bk , and from the IRS to En are blocked, i.e., F = 0,

hHr,k = 0, and gHr,n = 0, respectively, with 1 ≤ k ≤ K and

4In fact, zk is the power allocation for the virtual dual uplink network [44],
which is strictly positive

1 ≤ n ≤ N , and then we apply Algorithm 1 to obtain the

beamforming design. This represents the worst-case scenario

to achieve secret communication in the absence of the IRS.

In addition, we assume that the legitimate receivers and the

eavesdroppers are in the same directions to the BS and the

IRS, i.e., ϑd,k = ϑd,i and ϑr,k = ϑr,i for 1 ≤ i, k ≤ K , and

ϑ̃d,n = ϑ̃d,i and ϑ̃r,n = ϑ̃r,i for 1 ≤ i, n ≤ N . We also

assume that ϑr,k , ϑ̃r,n, ϑAoA and ϑAoD are uniformly dis-

tributed between [0, 2π), while ϑd,k and ϑ̃d,n are uniformly

distributed between [−π/3, π/3].

FIGURE 2. Minimum secrecy rate versus the maximum transmit power of
the BS: M = L = 5, and κh = 1 with h ∈ H: (a) K = N = 2; (b) K = N = 1.

Figure 2(a) and Fig. 2(b) show the minimum secrecy rate

under different values of the maximum transmit power P of

the BS for K = N = 2 and K = N = 1, respectively.

Note that ‘‘Algorithm 1: 82(1)’’ and ‘‘Algorithm 1: 82(2)’’

denote Algorithm 1 with the first method based on Taylor

series expansion and second method based on projection for

8 = 82, respectively, the details of which are given in

subsection IV-B.2. From the two figures, we can first observe

that the minimum secrecy rates of all methods increase as

the maximum transmit power increases. Besides, we know

the performance gap between the system with the IRS and
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the system without the IRS increases with the transmit

power, which validates the advantages of the introduced IRS.

Secondly, in the scenario of 8 = 81, we observe that

Algorithm 1 and Algorithm 2 have the similar performances

and that both of them outperform the other baselines. This

is because both of them can guarantee to converge to a local

(global) optimum. Thirdly, we observe that the performance

of the ZF based heuristic algorithm is worse than that of

‘‘Rand’’ baseline with K = 2 and better than that with

K = 1. This is acceptable due to the complexity of the

‘‘Rand’’ baseline is still higher than the ZF based heuristic

algorithm. It also shows that the heuristic algorithm is more

effective when K is small.

FIGURE 3. Minimum secrecy rate versus the number of reflecting
elements on the IRS: M = 5, K = N = 2, P = 10 dB and κh = 1 with h ∈ H.

Figure 3 plots the minimum secrecy rate versus the num-

ber of reflecting elements (antennas) L of the IRS. From

this figure, we can observe that the minimum secrecy rates

of all methods assisted by the IRS increase as the num-

ber of reflecting elements on the IRS increases, while

the minimum secrecy rate of the system without the IRS

remains constant. This is reasonable since a larger num-

ber of reflecting elements of the IRS can achieve higher

array gain. This also validates the advantages of the intro-

duced IRS for the studied systems. In addition, the per-

formance gap between Algorithm 1 with 8 = 81 and

8 = 83 increases as Q decreases, especially for a large

L. This is because the system with a large L requires a

large Q to achieve more precise adjustment for the reflecting

coefficients on the IRS. This indicates that in order to better

achieve the array again brought by a larger L, we should use

a larger Q for the proposed scheme with 8 = 83.

Figure 4 shows the minimum secrecy rate versus the num-

ber of discrete reflecting coefficient valuesQ of the reflecting

coefficients on the IRS.We can observe that the performances

of the proposed algorithms with 8 = 81, 8 = 82 and 8 =
83 decrease successively due to the fact 83 ⊆ 82 ⊆ 81.

Furthermore, the performance of the proposed algorithmwith

8 = 83 increases as Q increases. This is because a larger Q

allows a much finer adjustment to the reflecting coefficients

FIGURE 4. Minimum secrecy rate versus the number of reflecting
coefficients of each reflecting elements of the IRS: M = L = 5, N = 2,
P = 10 dB and κh = 1 with h ∈ H.

on the IRS. Thus, the minimum secrecy rate can be improved.

Finally, we observe that the proposed algorithmwith8 = 83

and Q = 8 or 16 can achieve a similar performance to the

proposed algorithm with 8 = 82.

FIGURE 5. Minimum secrecy rate versus the number of legitimate users:
M = 10, L = 5, N = 2, P = 10 dB and κh = 3 with h ∈ H.

Figure 5 plots the minimum secrecy rate versus the number

of legitimate receivers K . First, we observe that the minimum

secrecy rate decrease as K increases, due to the fact that

the beamforming gain and array gain need to be shared with

more legitimate users. Moreover, its similar to Fig. 2, we can

observe that the performance of ‘‘Algorithm 1’’ is better than

that of ‘‘ZF based Heuristic Algorithm’’ and other baseline

schemes. In addition, we also know that the low-complexity

heuristic algorithm is more effective than the other sub-

optimal baseline schemes when K is small, especially

for K = 1 or 2.

Figure 6 investigates the convergence performances of

the proposed algorithms. For convenience, we first define

Ŵ as the normalized performance gap between the val-

ues of the objective function in the two successive itera-

tions of Algorithm 1 with 8 = 81, with 8 = 82(1),
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FIGURE 6. Convergence performance versus the number of iterations:
M = 5, L = 5, K = 1, N = 1, P = 5 dB and κh = 1 with h ∈ H.

and Algorithm 2. We can first observe that the objective

functions in all methods increases with every iteration, which

validates the convergence analysis studied in Section IV.

Moreover, the convergence performance of Algorithm 1 with

8 = 82(1) is worse than that with 8 = 81. This is because

Algorithm 1 with 8 = 82(1) has the main drawback that

there is no beforehand choice for the relaxation factor to speed

up the convergence [32]. Besides, it is worth noting that the

number of iterations to achieve convergence in Algorithm 2 is

smaller than that in Algorithm 1. This is because in the each

iteration of Algorithm 2, we optimize the original problem

without approximation and provide the global optimal solu-

tion for each subproblem.

VII. CONCLUSIONS

In this paper, we have investigated the joint beamforming and

reflecting coefficient designs for a programmable downlink

MISO broadcast system with multiple eavesdroppers. In par-

ticular, considering the scenario that the channel responses

of the legitimate receivers are highly correlated with those

of the eavesdroppers, it is intractable to guarantee the secret

communications with the use of beamforming only at the

transceivers. Hence, we have explored the use of the IRS

to create a programmable wireless environment by provid-

ing additional communication links to increase the SNR at

the legitimate receivers while suppressing the SNR at the

eavesdropper. Specifically, we have formulated a minimum-

secrecy-rate maximization problem under various practical

constraints on the reflecting coefficients, which captures the

scenarios of both continuous and discrete reflecting coeffi-

cients of the reflecting elements. Since the formulated prob-

lem is a non-convex problem, we have proposed an efficient

algorithm to solve it in an iterative manner and theoretically

analyzed its convergence. In addition, we have developed two

suboptimal algorithms with closed-form solutions to further

reduce the complexity. Finally, the simulation results have

validated the advantages of the IRS and the effectiveness of

the proposed algorithms.

APPENDIX

A. PROOF OF THEOREM 1

We first prove the lower bound function of f Bk (W , v), and

then prove the upper bound function of f Ek,n (W , v) in this part,

which is similar to the proof in [32].

To obtain the lower bound function of f Bk (W , v), we first

prove the convexity of function f (x, y) = − ln
(

1− |x|2/y
)

.

Since − ln (1− z) is an increasing and convex function with

respect to z and z = |x|2/y is a convex function with respect

to (x, y) in the domain
{

(x, y)
∣

∣0 ≤ y ≤ |x|2
}

, f (x, y) is thus

a convex function. According to the first-order Taylor series

expansion of f (x, y) at (x̃, ỹ), we have

f (x, y) ≥ f (x̃, ỹ)+∇x̃ f (x, ỹ) (x−x̃)+∇ỹf (x̃, y) (y−ỹ)

= f (x̃, ỹ)+2ℜ {x̃ (x−x̃)}
ỹ−|x̃|2

− |x̃|2

ỹ
(

ỹ−|x̃|2
) (y−ỹ) .

(54)

Then, setting b = y− |x|2 and b̃ = ỹ− |x̃|2, we have

ln(1+ |x|
2

b
) ≥ ln(1+ |x̃|

2

b̃
)+ 2
ℜ {x̃x}
b̃

− |x̃|2

b̃(b̃+ |x̃|2)
(b+ |x|2)− |x̃|

2

b̃
. (55)

Finally, letting x = vHHkwk , b = bk (W , v), x̃ =
(

v(t)
)H
Hkw

(t)
k and b̃ = bk (W

(t), v(t)), we can obtain (20).

To obtain the lower bound function of f Bk (W , v), since

function ln(1 + z) is concave function with respect to z,

we have

ln (1+ z) ≤ ln (1+ z̄)+ (z− z̄)/(1+ z̄). (56)

Then, we have

f Ek,n(W , θ ) ≤ f Ek,n(W
(t)

, v
(t)
)+(1+

∣

∣

∣
(v(t))

H
Gnw

(t)
k

∣

∣

∣

2

qk,n(W
(t)

,v
(t)
)
)−1

× (

∣

∣vHGnwk
∣

∣

2

qk,n(W ,v)
−

∣

∣

∣
(v(t))

H
Gnw

(t)
k

∣

∣

∣

2

qk,n(W
(t)

,v
(t)
)
). (57)

Then, since it is straightforward to know qk,n(W , v) ≥
qk,n(W , v;W (t)

, v
(t)
), we have

∣

∣vHGnwk
∣

∣

2

qk,n(W ,v)
≤

∣

∣vHGnwk
∣

∣

2

qk,n(W ,v;W t ,vt )
.

Finally, we have (21).

B. PROOF OF THEOREM 2

As aforementioned, the sequence of (W (t), v(t)) will con-

verges to (W∗, v∗) as t →∞. Next, we write the Lagrangian

function of (P2−t) as
L(W , v, η, χ) = R

lb(W (t), v(t);W (t), v(t))

+
∑L+1

l=1
ηl(1−vl)+χ (P−

∑K

k=1
‖wk‖2),

(58)

where η = [η1, ., ηL+1]∈C1×(L+1) and χ are the dual vari-

ables. Then, when t → ∞, the corresponding KKT condi-

tions are given as follows:

∇vnRlb(W∗, v∗;W∗, v∗)− η∗l = 0, ∀l, (59)
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∇wkRlb(W∗, v∗;W∗, v∗)− 2χ∗w∗k = 0, ∀k, (60)

η∗l (1− v∗l ) = 0, ∀l, (61)

χ∗(P−
∑K

k=1

∥

∥w∗k
∥

∥

2
) = 0. (62)

According to (23), and notice thatW∗ and v∗ are the optimal

solutions of the convex optimization problems of (P3−A) and
(P3 − B), respectively, we know the above KKT conditions

are all satisfied. Hence, the converged solution (W∗, v∗) is a
KKT point.

C. PROOF OF THEOREM 3

Firstly, (40) can be rewritten as follows:

max
V�0

ln(1+h̄H1Vh̄1)−Tr((diag(χ)+y(ḡ1ḡH1 ))V ). (63)

Let us define

Ṽ=(diag(χ)+y(ḡ1ḡH1 ))0.5V (diag(χ)+y(ḡ1ḡH1 ))0.5, (64)

then, (63) can be rewritten as

max
Ṽ�0 ln(1+ε2cH Ṽc)−Tr(Ṽ ), (65)

where

c = 1/ε(diag(χ)+y(ḡ1ḡH1 ))−0.5h̄1, (66)

ε =
∥

∥

∥
(diag(χ)+y(ḡ1ḡH1 ))−0.5h̄1

∥

∥

∥
. (67)

It is straightforward to know that the rank of the optimal Ṽ

must be one [46], which can be represented as Ṽ = wṽṽH

where ‖ṽ‖2 = 1. Then, from (65), the optimal ṽ∗ is c, and w
can be obtained by solve the following problem:

maxw≥0 ln(1+ε2w)− w. (68)

Obviously, the optimal w∗ is
(

1− 1
ε2

)+
. Thus, we have

proved this theorem.
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