
Research Journal of Applied Sciences, Engineering and Technology 7(4): 650-655, 2014

DOI:10.19026/rjaset.7.302

ISSN: 2040-7459; e-ISSN: 2040-7467

© 2014 Maxwell Scientific Publication Corp.

Submitted: January 12, 2013 Accepted: March 21, 2013 Published: January 27, 2014

Corresponding Author: Joshua Samuel Raj, Department of Computer Science and Engineering, Karunya University, India
This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/).

650

Research Article

Intelligent Reliable Schedule with Budget Constraints in Grid Computing

1
Joshua Samuel Raj and

 2
V. Vasudevan

1
Department of Computer Science and Engineering, Karunya University, India

2
Department of Information Technology, Kalasalingam Univeristy, Srivilliputhur, India

Abstract: This study proposes an intelligent reliable schedule with budget constraints in grid computing to reduce

the makespan in grid environment. A good schedule improves the usability of the grid environment, but often faces

the challenge of reliability and budget. In our paper we have addressed the reliability and budget constraints in grid

environment by augmenting intelligence to the schedule by means of intelligent exploitation of random pushing

and random job stealing. The objective of this paper is to schedule the tasks onto the reliable processor based on the

user requirement and also provide the opportunity to schedule the tasks onto the reliable processor which don’t

have high budgets. The experimental outcomes have supported the theoretical analysis by classifying the tasks and

scheduling those to the various resources which are again divided as levels of criteria based on rank values

enabling us to get a good and efficient schedule.

Keywords: Budget, grid scheduling, random job stealing, random pushing, reliability

INTRODUCTION

Grid Computing a pioneer technique in harnessing

the geographically dislocated computer power, has
changed the perception on the utility and availability of
the computer power, which has carved a new
technology that openly ventures and amalgamates an
infinite number of computing devices into any grid
environment, augmenting to the computing capability
and providing resolutions to the various tasks within the
operational grid environment basically by enabling,
sharing, selection and aggregation of geographically
distributed autonomous resources dynamically at
runtime, depending on their availability, capability,
performance and cost, thereby shifting the focus to
collaborative environments, federating services and
exchanging transactions in a mutual manner to share
resources and thereby achieve common goals to
enhance productivity and speed up progress in much the
same way that the Internet did in yesterdays economy,
paving the way for numerous research efforts in grid
scheduling mechanisms. Grid Computing is our greatest
hope for delivering computing as utility to homes and
offices.

Grid Computing is a type of distributed computing
to solve complex applications involving huge
computational requirements where the resources in the
remote places are accessed by connecting all the
resources together in a network. The resources of
computers owned by individuals or by organizations
from several countries are connected to form a single,

vast super computer. A Grid gathers together resources
and makes them accessible in a secure manner to users
and applications (Grimshaw, 2002). Grid computing is
needed when there is a necessity for huge computing of
data and the data is stored in different institutions.
Based on the needs, grid is classified into Private vs.
Public, Regional vs. Global, All-purpose vs. Particular
scientific problem. The large applications from the
users are divided into a set of subtasks and sent to the
several resources connected to the main server which is
freely available. There are four different classes of Grid
users such as end-users of applications, application
developers, system administrators and managers of
organizations. After the computations are over at the
particular resources, the results are sent back to the
main global server. As soon as all the other
computations are received by the global server, the
result is then provided to the user.

Grid scheduling plays the major role to schedule
the tasks onto the processor efficiently. There are three
phases in grid scheduling such as Resource discovery,
System selection and job execution. When executing
the job, the resources should be reliable so that the job
can execute successfully. The reliability of the grid
system is affected by several factors such as hardware
failure, software failure. Reliability of computational
hardware, software and data resources that comprise the
grid and provide the means to execute user applications
and reliability of grid networks for messaging and data
transport are important and should be met (Christopher,
2009). Ignoring Grid reliability characteristics can lead

Res. J. Appl. Sci. Eng. Technol., 7(4): 650-655, 2014

651

to reduced application performance, such as schedule
length and speedup, due to wasted operations (Dogan
and Ozguner, 2005). Xiao et al. (2000) says, reliability
of the grid system depends on the failure rate of the
processors and the links between them. These failure
rates can be derived from Grid resource’s profiling,
system log and statistical prediction techniques.
Srinivasan and Jha (1999) defined reliability of a
system with expect to a task set as the probability that
the system can run the task set without any failure.

The objective of the Tang et al. (2010) is to design

reliability-driven scheduling architecture to measure

system reliability, based on an optimal reliability

communication path search algorithm to find the

shortest path and then they introduce reliability priority

rank (Rank) to estimate the task's priority by

considering reliability overheads RASD. Two heuristic

algorithms are proposed in He et al. (2003) such as

Minimum cost Match scheduling and Progressive

Reliability Maximization Schedule.

Repars and Refine algorithm are proposed in Wei

et al. (2007) for Periodic tasks in a heterogeneous

system to improve reliability while meeting the time

constraints and to enhance the system reliability while

being able to tolerate the failures by introducing

primary backup scheme respectively. The Dynamic and

Reliability-Driven Scheduling Algorithm proposed in

Xiao and Hong (2005) study is to increase the

reliability by minimizing the system reliability cost.

The objective of RDGS algorithm proposed in Kovvur

et al. (2011) study is to maximize the total number of

tasks completing execution based on Communication to

Computing Ratio (CCR) which decides the appropriate

grid site for scheduling tasks.

Srikumar and Rajkumar (2005) aims to minimizes

either the cost or time depending upon the choices of

the user based on deadline in his study. Bag-of-Tasks

applications are used for scheduling which consists of

costs with requests. Stephie et al. (2013) considered

both deadline and budget are used as a main factor to

schedule the tasks on reliable processors.

Ponnambalam et al. (2000) aims to solve the job

shop problem and to minimize the makespan using

Tabu search technique.

In our study, we consider all rank level tasks. It

also gives opportunity to the tasks to schedule onto the

processor which has low rank level. This is

accomplished by random stealing and random job

pushing.

MATERIALS AND METHODS

Based on the Divide and Conquer concept, every

application is divided into small tasks so that tasks can

effiently utilize the processor. Finally the output of the

executed tasks are combined together and send back to

the user. The divided applications are send as a DAG.

The computation and commuications costs of every

task is calculated by the Global scheduler. If the user

gives a high budget, the tasks are scheduled on to the

reliable processors which have a low failure rate. The

failure rate is stored in a System log by the Grid

Information System (GIS).

The Reliabilty probablity of the tasks are calculated

to guarentee that each task is successfully executed on

the processor and the output succefully reaches its child

node. Reliability of the task calculation helps to

schedule the tasks on the reliable processor based on

the value. The global scheduler compares the criteria

given in the look up table as shown in Table 1 with the

value given by the user and it will choose the algorithm.

It will select the best reliable resources from list of

possible reliable resource for each task, exclusive for

very high level ranked tasks but never ignorant of the

low level ranked tasks. Intelligence is added by means

of random pushing and random job stealing.

After the execution of the algorithms, each task

will get a set of reliable resource list. For example

Task1 say T1, can execute on R2, R3, R6. Because after

execute the algorithms the task1 may get the same

reliable rank level value on the following resources:

T1 = {R2, R3, R6}

Resource manager will add additional tailer to the

each task which gives the information that what are all

the possible resources for a task to execute. So that the

task will look like:

T1 R2, R3, R6

Initially the task is allowed to execute on the first

resource from the set of reliable resource by pushing

the task to the respective queue. So that RM puts the T1

to R2 queue.

Each resource queue will maintain the threshold

value, after the arrival of more tasks to the same queue.

For Example:

T10 = {R2, R4, R5} and T20 = {R2, R7, R8}

T10 R2, R4, R5

T20 R2, R7, R8

At that time, the tasks are pushed randomly to the

any of the resource from the set of reliable resource list

of each task. This concept is called Random pushing.

So the T10 can push randomly to R4 or R5 instead of

R2.

While one resource is idle, it will start to search for

the tasks which have its resource name at its tailer and

on finding such task in the resource queue it will steal

the tasks from the resource queue and execute the task.

This is called work stealing.

Res. J. Appl. Sci. Eng. Technol., 7(4): 650-655, 2014

652

Table 1: Global scheduler lookup table

Budget Deadline Parameter concern Rank level Approach

High Near and hard Budget-based and deadline based Very high 1<i<2 EEFT and reliability of the
resources

Low Near and soft Deadline based High 2<i<3 EEFT and reliability of the
resourecs, random pushing

High Far and hard Budget based Medium 3<i<4 Reliablity of the resources
Low Far and soft - Low Random job stealing,

random pushing

If the resource R2 execute the tasks T1 and T20 is

scheduled onto the R2, but waits for the T1 to complete.

At that point of time R7 is idle, so it will grab the T20

from R2 queue.

At the start the Resource manager for its

convenience will sort the resource queue from highly

reliable to low reliable resources. Therefore the tasks

which have low reliable rank may occupy the last few

resource queues from the set of sorted resource queue

and theses tasks will execute in the low reliable

resource. Whenever a reliable resource is free it will

check the tasks with its resource name and if unable to

find such one it will steal the tasks from the lower order

queues. Each resource should be aware of their order.

So that low rank level tasks can also get the opportunity

to execute the tasks on good reliable resource.

The Random pushing and Random stealing is

defined as follows:

Random pushing: In Rob et al. (2001) study, random

pushing is used for Load balancing. This is

accomplished by pushing jobs from queue to resources,

when queue length exceeds threshold value. The job

allocation from a resource queue will be to random

resources, thus saving processor idle time.

Random job stealing: In Robert and Charles (1994)

study, random pushing is used for Load balancing. The

idle processor or resources attempt to steal the tasks

from other processor.

The HEFT algorithm selects the task with the

highest rank value at each step and assigns the selected

task to the processor, which minimizes its earliest finish

time by calculating EEFT. Here the Rank is based on

the deadline & budget. If the rank level is higher most

and Highest then EEFT algorithm is performed first and

then followed by calculating reliability of the tasks on

the processor. Work done is calculated by Execution

time of load of the task on the Resource as:

 (1)

Earliest Execution Finish Time (EEFT) of the task

on the resource is:

Rs

Workdone
) EEST(n,R) EEFT(n,R ii += (2)

where, EEST is the earliest execution start time of a
task on the resources and Rs is the processor clock
speed. The EEFT of the parent node should be greater
than than the EEST of the child node, So that the output
data can be flown from parent to child node. Assuming
that the resourecs are in different locations there will be
a delay in the communications among the procesors.
For each task, reliabilty of the task is calculated in
percentage by reliabilty of the task execution on the
resources successfully without resources failure rate
and delay between resources:

10011Re ×××= -delay)() -fR(Workdonel(n) i (3)

where, fRi denotes failure rate of the i

th
 resource R.

Both failure rate of the resources and delay among the
virtually connected resources is tracked from system
log.

Grid information system:

 for each fixed clock rate
 do
 if GIS receive signal
 Updates GIS with resource information
 {R1, R2…RN} details
 Else
 Update Delay rate or failure rate fpi

/disconnected
 end if
 end

Grid scheduler:

 for each fixed clock rate
 do
 Updates RM with freely available resource
 {Rf1, Rf2…RfN} details
 end

• Divide applications into subset of tasks:

DAG G = <V, E>

• Compare the user B-value with the available
resource B-value

• Sort the deadline

• Rank the tasks and choose the algorithm

• based on the criteria in the Lookup table:

 if Rank Level i<2 where i = 1

Res. J. Appl. Sci. Eng. Technol., 7(4): 650-655, 2014

653

 Get the sorted Deadline array D [i]
 Initialize Rel[] = 0;
 for each task in set do
 for each available resource in set do

 Calculate workdone using Eq 1
 Calculate EEFT (n, Ri) using the Eq 2

 Compute Rel[] = Rel (n) using Eq 3

 End

 end

 end if

if Rank level i<3 where i = 2

for each task in the set do

 quelen = call (Ts (Rel[]), B, V)

 if quelen>limit

 exec randompushing ()

 end
end if

 if Rank Level i<4 where i = 3

 for each available Resource R

 do

 Compute Rel[] = Rel (n) using Eq 3

 end

 end if

 Assign the Label to the tasks

Select the suitable resource and put the tasks in

Corresponding Resource Queue {Rq1, Rq2…RqN}

 else

 Assign the tasks on the any resource available

 end if

Assign the Label to the tasks

Select the suitable resource and put the tasks in

Corresponding Resource Queue {Rq1, Rq2…RqN}

else

Assign the tasks on the any resource available

 end if

Dispatcher: Dispatch the task from the Resource

Queue:

{Rq1, Rq2… RqN} to the respective resources

Algorithm 1: Intelligence augmented Reliable

scheduling algorithm.

Fig. 1: The result of varying reliability based on budget

Fig. 2: Average makespan

Res. J. Appl. Sci. Eng. Technol., 7(4): 650-655, 2014

654

RESULTS AND DISCUSSION

In Grid simulator Jobs are represented as Gridlets.

Each Gridlet consists of job length, the size of input and

output files and job owner id, along with that user have

to give deadline (D-factor) and budget (B-factor). If the

deadline is relaxed then the priority of the task is low,

the gridlets are placed in the final positions in the

resource queue. If the deadline is tight the priority is

higher and executed earlier so that the task doesnt miss

the deadline.

The model considered for grid environemnt in our

work is a simple model which ignores the possibility of

dependency between tasks, price dynamicity and

communication overheads. In our experiment the

resources are 2000, 2500, 6000, 9000 and 12000 GB

with the assumption that the storage resource and

computing resource is same. As the capacity of the

resources increases, the speed and budget of the

processor will be low. If the resource R1 has low

capacity it should have high speed, so it is capable to

execute faster and finish the execution before the

deadline. The Execution start time of the task depends

on the execution finish time of the previous task

executed on the resources scheduled by the Grid

scheduler. In dependency tasks, the execution start time

of the child tasks should be after the execution finish

time of the parent tasks. The execution start time of the

tasks is assumed based on these criteria.

After the scheduler executes the EEFT algorithm, it

will execute the Reliability of the task on the resources.

If the user gives high budget value, it is possible to

select the R1 based on the execution time, but the

scheduler also check the Reliability of the resources and

schedule the tasks to the freely available processors. In

a scenario the budgets are given to the applications by

the users as 0, 900, 1400, 1500 and 2500 in dollars as

shown in the Fig. 1. If the user wants to execute the

application freely, the scheduler will execute the

applications on the resources which have low budget

value. The reliability of the tasks is calculated in

percentage.

The Reliability Vs Budget of the application is

illustrated in the Fig. 1. The improvised makespan with

the help of reliability parameter and budget parameter is

compared with FCFS, EDF and SA and show in Fig. 2.

From the comparative graph we infer that the Intelligent

Reliable scheduling algorithm outperforms the other

algorithms because of reduced failure rate.

CONCLUSION

In this study, both deadline and budget are used as

main factors to schedule the tasks on reliable

processors. Based on the user requirement, the

algorithm is executed to achieve the reliability with a

quench to satisfy the user requirement. The concepts of

random pushing and job stealing are augmented as

sources of augmented intelligence to get a reliable

schedule within the constraints of budgets. This

approach saves the running time of the algorithm. In the

future, further user requirement is planned to be taken

into account for reliability and scalability

improvisation. Smart bacterial foraging optimization is

to be explored in future to exploit the depth in research

for more complicated experiments with additional

objectives. Thus the reliability based scheduling is done

using augmented intelligence.

REFERENCES

Christopher, D., 2009. Reliability in grid computing

system. Concurr. Comp-Pract. E., 21(8):

927-959.

Dogan, A. and F. Ozguner, 2005. Biobjective

scheduling algorithms for execution time reliability

trade-off in heterogeneous computing systems.

Comput. J., 48(3): 300-314.

He, Y., Z. Shao, B. Xiao, Q. Zhuge and S. Edwin, 2003.

Reliability driven task scheduling for

heterogeneous systems. Proceeding of the

International Conference on Parallel and

Distributed Computing and Systems, pp: 465-470.

Kovvur, R.M.R., S. Ramachandram, K.K. Vijaya and

A. Govardhana, 2011. A reliable distributed grid

scheduler for independent tasks. Int. J. Comput.

Sci. Issues, 8(2).

Ponnambalam, S.G., P. Aravindan and S.V. Rajesh,

2000. A Tabu search algorithm for job shop

scheduling. Int. J. Adv. Manuf. Technol., 16:

765-771.

Rob, V.N., K. Thilo and E.B. Henri, 2001. Efficient

Load Balancing for Wide-Area Divide-and-

Conquer Applications. Proceeding of the 8th ACM

SIGPLAN Symposium on Principles and Practice

of Parallel Programming (PPoPP, 01), pp: 34-43

Robert, D.B. and E.L. Charles, 1994. Scheduling

Multithreaded Computations by work stealing.

Proceeding of the 35th Annual Symposium on

Foundations of Computer Science (FOCS). Santa

Fe, New Mexico, pp: 356-368.

Srikumar, V. and B. Rajkumar, 2005. A Deadline and

Budget Constrained Scheduling Algorithm for

Science Applications on Data Grids. Springer-

Verlag, Berlin Heidelberg, pp: 60-72.

Srinivasan, S. and N.K. Jha, 1999. Safety and reliability

driven tasks allocation in distributed systems. IEEE

T. Parall. Distr., 10(3): 238-251.

Stephie, I.R., S.R. Joshua and V. Vasudevan, 2013. A

reliable schedule with budget constraints in grid

computing. Int. J. Comp. sci., 64(3).

Res. J. Appl. Sci. Eng. Technol., 7(4): 650-655, 2014

655

Tang, X., K. Li, R. Li and B. Veeravalli, 2010.

Reliability-aware scheduling strategy for

heterogeneous distributed computing systems.

J. Parallel Distr. Com., 70(9): 941-952.

Wei, L., Q. Xiao and B. Kiranmai, 2007. Reliability-

driven scheduling of periodic tasks in

heterogeneous real-time systems. Proceeding of the

21st International Conference on Advanced

Information Networking and Applications

Workshops, 1: 778-783.

Xiao, Q. and J. Hong, 2005. A dynamic and reliability-

driven scheduling algorithm for parallel real-time

jobs on heterogeneous clusters. J. Parallel Distr.

Com., 65(8): 885-900.

Xiao, Q., J. Hong., X. Changsheng and H. Zongfen,

2000. Reliability-driven scheduling for real-time

tasks with precedence constraints in heterogeneous

systems. Proceeding of the 12th International

Conference Parallel and Distributed Computing

and Systems.

