

Yan, M., Feng, G., Zhou, J., Sun, Y. and Liang, Y.-C. (2019) Intelligent resource

scheduling for 5G radio access network slicing. IEEE Transactions on Vehicular

Technology, 68(8), pp. 7691-7703. (doi: 10.1109/TVT.2019.2922668)

There may be differences between this version and the published version. You are

advised to consult the publisher’s version if you wish to cite from it.

http://eprints.gla.ac.uk/212845/

Deposited on: 24 April 2020

Enlighten – Research publications by members of the University of Glasgow

http://eprints.gla.ac.uk

http://dx.doi.org/10.1109/TVT.2019.2922668
http://eprints.gla.ac.uk/212845/
http://eprints.gla.ac.uk/

1

Intelligent Resource Scheduling for 5G Radio

Access Network Slicing
Mu Yan, Gang Feng, Senior Member, IEEE, JianHong Zhou, Member, IEEE, Yao Sun,

and Ying-Chang Liang, Fellow, IEEE

Abstract—It is widely acknowledged that network slicing can
tackle the diverse use cases and connectivity services of the forth-
coming next generation mobile networks (5G). Resource schedul-
ing is of vital importance for improving resource-multiplexing
gain among slices while meeting specific service requirements
for Radio Access Network (RAN) slicing. Unfortunately, due to
the performance isolation, diversified service requirements and
network dynamics (including user mobility and channel states,
etc.), resource scheduling in RAN slicing is very challenging.
In this paper, we propose an intelligent resource scheduling
strategy (iRSS) for 5G RAN slicing. The main idea of iRSS is
to exploit a collaborative learning framework which consists of
deep learning (DL) in conjunction with Reinforcement Learning
(RL). Specifically, DL is used to perform large time-scale resource
allocation, while RL is used to perform on-line resource schedul-
ing for tackling small time-scale network dynamics, including
inaccurate prediction and unexpected network states. Depending
on the amount of available historical traffic data, iRSS can
flexibly adjust the significance between the prediction and on-
line decision modules for assisting RAN in making resource
scheduling decisions. Numerical results show that the convergence
of iRSS satisfies on-line resource scheduling requirement and
can significantly improve resource utilization while guarantee-
ing performance isolation between slices, compared with other
benchmark algorithms.

Index Terms—RAN slicing, Resource Scheduling, Deep Learn-
ing, Reinforcement Learning.

I. INTRODUCTION

The forth-coming generation mobile network (5G) is expect-

ed to significantly improve the efficiency of mobile networks

to meet diverse use cases and service requirements. Current

one size fits all network architecture is no more efficient for the

multi-service oriented 5G. Virtualizing the 5G mobile network

to make it programmable in a flexible way is of paramount

importance for a cost-effective solution to address this issue. In

this regard, network slicing is an emerging and valid solution

to realize the service-oriented 5G vision. In network slicing,

physical infrastructure is sliced into multiple isolated logical

networks, with aim of supporting a wide range of verticals

and use cases with a diverse set of performance and service

M. Yan, G. Feng, J.H. Zhou, Y. Sun and Y.-C. Liang are with the National
Key Laboratory of Science and Technology on Communications, University
of Electronic Science and Technology of China, Chengdu 611731, China, and
also with the Center for Intelligent Networking and Communications (CINC),
University of Electronic Science and Technology of China, Chengdu 611731,
China. J.H. Zhou is also with School of Computer and Software Engineering,
Xihua University, Chengdu 610039, China. G. Feng is the corresponding
author (email: fenggang@uestc.edu.cn). This work was supported by the
National Science Foundation of China under Grant number 61631005, and the
Research and Development Program in Key Areas of Guangdong Province
under Grant number 2018B010114001.

requirements. Software-defined network (SDN) and network

function virtualization (NFV) are used to achieve creation of

slices [1], such that 5G networks gradually evolve to a flexible

and programmable network architecture [2].

While the virtualization of 5G core networks has been

widely studied, the realization of Radio Access Network

(RAN) slicing is at its infancy [3]. One key issue in RAN

slicing is resource scheduling which appropriately allocates

limited resources to individual users with diverse quality of

service (QoS) requirements according to the traffic variations

and network state dynamics. Compared with that in core

network slicing [4], resource scheduling in RAN slicing is

much more challenging due to the radio channel and user

mobility involved.

The main idea of resource scheduling in traditional RANs

enables a rigid way to exploit resources among users, so as

to achieve a high spectrum multiplexing gain with spectrum

sharing [5] [6] [7]. As RAN slicing provides a flexible and

controllable architecture, the main design objective of a re-

source scheduling strategy (RSS) for RAN slicing is to flexibly

and adaptively share RAN resources among slice owners (or

tenants), so that the RAN infrastructure can be efficiently

utilized. In the meantime, it is necessary to maintain a certain

degree of slice independence (i.e., performance isolation and

functional isolation), so that the tenants can maintain full

control of their slices to be tailored to meet their service

requirements. Without appropriate slice isolation, service in-

terruptions may happen, leading to poor performance in the

multi-service RAN slicing environment. Obviously, the RSS

for RAN slicing is much more complicated compared with that

in traditional RANs, and the existing RSSs for conventional

RANs cannot be applicable to RAN slicing. Therefore, it is

imperative to develop new RSSs dedicated to RAN slicing,

with aim to maximize resource utilization subject to slice

isolation requirements. Fortunately, under such a very complex

and dynamic network environment, recent emerging machine

learning tools that interact with surrounding environment can

provide an effective way to address this challenging problem.

In this paper, we propose an intelligent resource scheduling

strategy (iRSS) for RAN slicing, which is embedded in a

collaborative learning framework. Both deep learning (DL)

and reinforcement learning (RL) are incorporated and work

in a collaborative way, to deal with both large and small time-

scales network and traffic dynamics. In detail, long short-term

memory (LSTM) [8], is used to explore the regularity of data

traffic, and perform large time-scale resource allocation of

RAN slices. In addition, for coping with inaccurate prediction

2

and unexpected network states in small time-scale, distributed

architecture based asynchronous advantage actor-critic (A3C)

algorithm [9] is exploited for performing on-line resource

scheduling of RAN slices. It is known that the prediction

accuracy and granularity of DL mainly depend on the volume

of available effective data [8]. In comparison, on-line RL

does not heavily rely on available data volume, and can

quickly response to dynamic environment. Nevertheless, on-

line RL generally cannot provide satisfactory performance at

the begging of a learning process [10]. In this regard, we

propose to exploit both technologies for RAN slicing RSS

in a collaborative way. Specifically, the time is divided into

prediction windows (PWs), and DL is used in each PW to

predict traffic volume for the next PW. In the meantime,

inside each PW, RL is used for performing on-line resource

scheduling. The significance between the prediction by DL and

the real-time resource scheduling by RL can be dynamically

adjusted, resulting in a total programmable iRSS. In detail, if

the historical traffic data collected for training the deep neural

network is insufficient, the decision-making can depend more

on on-line RL solution through reducing the confidence level

of prediction. With the progress of leaning process, more data

can be collected and thus the significance of prediction can be

increased. Our contribution of this paper can be summarized

as follows.

• To the best knowledge of the authors, this is the first

work to exploit DL and RL in a collaborative way for

addressing RAN resource scheduling. The significance

between prediction and on-line decision modules can

be dynamically adjusted for assisting RAN in making

accurate decisions.

• We propose an A3C algorithm for the small timescale

resource scheduling. In A3C, the Actor provides resource

scheduling strategies for slices in advance through policy

network, and the Critic uses TD-error to update the value

network to make the decisions more appropriately. We

have demonstrated through simulations that the collabo-

ration of Actor and Critic in A3C can meet the real-time

scheduling requirement, and can significantly improve

the performance when compared with other benchmark

learning algorithms.

• We implement parallel computing for individual slices

in the A3C algorithm, such that the two target net-

works (i.e., the Actor and Critic) can be maintained

independently for different slices in parallel. By this

way, A3C can well capture the regularities of service

requests of individual slices, and thus can help them make

appropriate decisions in the RSS.

• We transfer the control and responsibility from the mo-

bile virtual network operator to individual slices. This

stimulates the slice abilities of self-learning and self-

control with reduced signaling interactions. Furthermore,

to address the network information exchange among

slices, we introduce the sharing account book in the

Critic process, guiding the decisions to be made along

the feasible way.

The rest of the paper is organized as follows. The network

model is presented in Section III. In Section IV, we formu-

late the problem of resource scheduling for RAN slicing as

optimization problems from perspectives of large and small

timescales respectively, and analyze the computational com-

plexity. Then in Section V, we present the periodic traffic

prediction by using LSTM method, and propose a distributed

architecture for on-line resource scheduling. In Section VI, we

model the problem of resource scheduling of small-timescale

as a continuous Markov Decision Process (MDP), which is

solved by using the parallel computing based asynchronous

advantage actor-critic (A3C) method. In Section VII, we

present the numerical results as well as discussions, and finally

conclude the paper in Section VIII.

II. RELATED WORK

In recent years, many researchers have investigated RAN

sharing in 5G networks. 3GPP Rel. 15 also specifies two RAN

sharing schemes, i.e., multi-operator core networks (MOCN)

and multi-operator RAN (MORAN) [11], and they have been

are widely referred in related research work [3] [12] [13].

Although separated core networks are implemented in

both MOCN and MORANs for each operator, MOCN fully

shares the spectrum resources among multiple operators while

MORAN allocates dedicated spectrum for each operator. Thus,

the resource allocation in traditional RAN indeed belongs

to MOCN scheme while RAN slicing belongs to MORAN

scheme. In the following, we review the major related work on

RAN RSS for traditional RAN and RAN slicing respectively,

followed by recent emerging machine learning based RSS.

A. RSSs for Traditional RAN

Generally, RSSs in traditional RAN simply pool the spec-

trum resources and share them by catering various services

with diverse requirements. As the RSSs do not consider to

pre-reserve resources for future service requests, the perfor-

mance isolation cannot be guaranteed. The major concern

of the existing strategies of [5] [6] focuses on the design

of efficient sharing of the radio resources among different

users while guaranteeing the requirements of services. Thus, a

high multiplexing gain can usually be obtained by exploiting

the full spectrum sharing in traditional RANs. Unfortunately,

in the dynamic multi-service environment of RAN slicing,

service interruption may happen without guaranteeing the

performance isolation if these RSSs are used. Therefore, it

is necessary to develop new RSS which can make resource

reservation for individual services, to guarantee a certain level

of performance isolation for RAN slicing.

B. RSSs for RAN Slicing

While the RSSs in traditional RAN have been widely

studied, RSS for RAN slicing has just become one of the

research focuses in 5G network research recently. The state-

of-the-art on RAN slicing aims at scheduling resources to

customized services for guaranteeing the isolation among

slices (e.g., functional isolation, performance isolation). In [13]

[14], full isolation is considered to accommodate the need

3

for slice customizability. By this way, the resource Docker

is cut into small compartments, resulting in a strict isolation

among slices. Obviously, the spectrum multiplexing efficiency

is low due to physical isolation of resources in this scheme.

As an improvement, the authors of [3] propose a flexible

multi-service mobile network architecture, aiming to find a

balancing between providing functional isolation among slices

and facilitating efficient sharing of RAN resources. However,

under a very complex and dynamic environment of RAN

slicing, it is necessary for the service-orientation RSS to adopt

an intelligent solution for providing an on-line solution with

a certain degree of generalization.

C. Machine Learning based RSSs

The recent rapid development of machine learning tech-

nologies provide a novel way for designing RSS for RAN-

s. At the edge of wireless networks, artificial intelligence

(AI) (e.g., machine learning) has been applied to provide

prediction and fast decision making in uncertain network

environments. Deep learning such as recurrent neural network

(RNN) can dig out the intrinsic correlation between data, so

as to make prediction or classification, which could be an

essential component of RSS. The authors of [15] exploit the

RNN for traffic forecasting, and thus achieve performance

improvement. On the other hand, reinforcement learning (RL)

learns to control a system so as to maximize a numerical

performance measure that expresses a long-term objective

based on a Markov Decision Process (MDP), by dynamically

interacting with the environment. AlphaGo and AlphaGo Zero,

i.e., [16] [17] have leveraged RL for addressing the Go game

which is modelled as an MDP problem, and have notable

achievements in the Go games of Machine vs Man. In [6], we

use the multi-agent RL to address the multi-RAT access, where

RL performs better in a time-varying network environment

when compared with other benchmark solutions. However, RL

algorithms such as conventional Q-learning and Monte Carlo

Tree Search (MCTS) may be inefficient when the action (or

decision) space is too large or the action space is continuous,

since the computational complexity of these RL algorithms

exponentially grows with the size of action space. In this

regard, the authors of [18] and [19] model the RSS problem as

MDPs, and respectively adopt discrete-action based Q-learning

and continuous-action based Actor-Critic (AC) to address this

problem. In addition, the AC algorithm has demonstrated a

strong potential in solving the continuous action space based

MDP problem. In general, by exploiting historical traffic data,

deep learning can provide prediction results, assisting RAN in

allocating resources to users in advance. By interacting with

the network environment, RL provides an effective approach

for RAN to adapt to network dynamics.

III. NETWORK MODEL

A. Network Topology

In this paper, we consider multiple network slices that are

deployed on a substrate mobile network enabled by Software

Defined Network (SDN) / Network Function Virtulization

(NFV). Fig. 1 shows an exemplary deployment scenario of

network slices, which consists of the RANs and core network

(CN), where the physical network infrastructure is logically

spilt into multiple virtual networks (slices) to support diverse

mobile services. Let RAN be composed by a set of N
base stations (BS) deployed in a geographic area, where the

spectrum resources are aggregated to form a resource pool.

We denote byM(M = {1, · · · ,m, · · · ,M}) the set of slices

sharing the RAN, and by Um,m ∈ M the subset of the

users belonging to slice m. A slice may cover multiple BSs,

and the corresponding transmission resources of the BSs are

allocated to individual slices. Let there be some distributed

data collector units (DCUs) integrated into nearby data centers

(DC), which are able to record the aggregated traffic informa-

tion of individual slices. Let there be a sharing account book

used to record and share some necessary information among

slices (e.g., states of network, slices, user behaviors), and each

slice has the authority to modify and maintain this account

book. This decentralization mechanism transfers the control

and responsibility from the mobile virtual network operator

(MVNO) to individual slices, with the aim of stimulating the

slice abilities of self-learning and self-control with reduced

signaling interactions.

Logic control link

Data

Center
Router

Data Flow Access point

DC2

Slice 2

Slice 1

DC5

DC4

DC1

BS1

BS2
BS3

BS4 BS5

BS6

VNF

VNF

VNF

VNF

VNF
Virtual Network

Function

Mobile Phone

 states of network, slices,

user behaviors……

Sharing account book

Decision

agent

Fig. 1: Network topology

B. Traffic Model

Two types of resource provisioning have been widely used

[20]: (1) RAN slices request spectrum resources based on

the amount of spectrum resources, and (2) resource provi-

sioning is based on transmission rate. Specifically, resource-

based provisioning defines the resource scheduling for a

slice in terms of a fraction of the total resources. Rate-

based provisioning defines resource scheduling in terms of

the aggregate throughput. Let MI ⊂M denote the subset of

the slices (or tenants) requiring resource-based provisioning,

and MII ⊂M denote the subset of the slices requiring rate-

based slices provisioning. Let the quality of service (QoS)

requirement set of slice m be Gm(t) which is represented by

a three-tuple {rm(t), hm(t), τm(t)},m ∈M at time t, where

rm, hm and τm represent the assigned amount of spectrum

resources, the threshold of resource requirement, and the

4

required transmission time interval (TTI) length, respectively.

Note that the length of TTI can be dynamically set according

to the specific requirement of slices of the mobile networks,

such as 5G new radio (NR) framing [21].

C. RAN Slicing Model

To realize network slicing, certain degree of resource iso-

lation between slices must be enforced, so that the offered

quality of service of a slice will not be influenced by the traffic

load variation of other slices [14]. In this work, we focus on the

performance isolation, and assume that the functional isolation

among slices is already guaranteed as that in Orion [3].

Definition 1. Let Pm be the performance metric (e.g., QoS

requirements, throughput, etc.) of slice m at a given time.

Assuming that the resource requirements of slices change

from {r1, · · · , rm, · · · , rM} to {r+1 , · · · , r,m · · · , r+M} from t
to t + 1. We define the strict performance isolation for slice

m as that there is no performance deterioration of slice m

because of any changes on the resources requirements of other

slices. This strict performance isolation is expressed by

P t
m(r1, · · · , rm, · · · , rM) ≤ P t+1

m (r+1 , · · · , rm, · · · , r+M).

Because of the possible unknown changes of other slices

requirements, it is necessary for RAN to make reservations for

the aggregated resources of slices in advance, so as to support

a certain degree of performance isolation across slices. On

this basis, we partition the total spectrum resources Θ(Θ = 1)
into the fraction of dedicated resources Θr

m,m ∈ M and the

fraction of shared resources Θs = Θ−∑m∈M Θr
m. We define

the performance isolation degree (PID) of a slice as the ratio of

the time duration in which the strict performance isolation can

be guaranteed over a given time period. It is obvious that PID

increases with the amount of dedicated resources. In addition,

when considering RAN slicing in a single-cell scenario, we

simply assign orthogonal resources to different users to avoid

co-channel interferences, and thus to guarantee the physical

isolation of inter-slice. We illustrate the relationship between

dedicated and shared resources in Fig. 2. Finally, for improving

the clarity, we summarize the notations and variables used in

this paper in Table I.

Resource pool

Shared Dedicated

Slice 1 Slice 2

Slice 3

Slice 4
Orthogonali ty

Candidate

resources

Isolation belt Othogonality

Slice 5

Slice 2

Slice 5

Fig. 2: Dedicated and shared resources in RAN slicing

TABLE I: Main Parameters and Variables

Symbol Description

Θ the fraction of all of the resources
Θr

m the fraction of reserved resources for slice m

ΘS the fraction of shared resources among slices
M = {1, · · · ,m, · · · ,M} set of slices

U set of users sharing the network
Um,m ∈ M subsets of users belonging to each slice

MI ⊂ M slices which require resource-based slices
provisioning

MII ⊂ M slices which require rate-based slices provi-
sioning

G(t),m ∈ M the requirement set of slice m at time slot t
T∆ Prediction Window (PW)

Dm(t) the function of the difference between before
and after resource reconfiguration

B(Dm(t)) Bonus incurred for that reconfiguration is
conducted for slice m.

rm(t), hm(t) assigned spectrum resources, threshold of re-
source requirement

τm the required transmission time interval (TTI)
length

IV. PROBLEM FORMULATION OF RSS

In the following, we formulate the problems of resource

scheduling of large and small time-scales respectively. Let

a prediction window (PW) have T∆ decision time intervals

(DTIs), and each DTI have one or several TTIs. Specifically,

we respectively perform resource allocation of large timescale

in the next PW, and the resource scheduling of small timescale

in every DTI. For periodic traffic prediction in large time-scale,

the shapes of traffic volume can be derived by minimizing the

mean-square-error (MSE) between the predicted value r̃m(t)
and the actual traffic volume rm(t), which is formulated as

follows.

Problem 1 Periodic Traffic Prediction for Slices

argmin
r̃m(t)

1

T∆

∑

t∈T∆

|rm(t)− r̃m(t)|2, (1)

s.t.
∑

m∈M
r̃m(t) = Θr ≤ Θ. (1.1)

We next formulate the on-line resource scheduling problem.

Our design objective is to minimize the overall resource con-

sumption of slices in RANs while guaranteeing the required

performance isolation degree. There are two possible cases

in the real-time resource scheduling: (1) The amount of the

required resources rm(t) exceeds the predicted value r̃m(t)
derived from Problem 1, i.e., rm(t) > r̃m(t). Thus slice m
may need to request more resources from the shared resource

pool. In addition, we assume that in order not to compromise

the QoS of the majority of ongoing traffic sessions, new arrival

flows need to wait until more resources are available. (2)

rm(t) ≤ r̃m(t) and in this case the pre-assigned resources

in slices remain unchanged (i.e., released) for a long-term

performance isolation.

Frequent resource requesting based on the instantaneous

resource demand may cause service interruption of other

slices and a certain reconfiguration overhead. The robustness
of resource configuration for maintaining a certain degree

of isolation and thus reducing the reconfiguration overhead

5

require a prospective on-line resource scheduling strategy. Let

Dm(t) = rm(t) − rm(t − τm) be the difference between the

amount of resources before and after resource reconfiguration

for slice m at every decision time interval τm, and Ωm(Dm =
0) be a counter used to record the length of isolation time.

Thus, we formulate the on-line resource scheduling of small

timescale as follows.

Problem 2 On-line Resource Scheduling

Min
M,t∆

∑

m∈M

∑

t∈T∆

rm(k), (2)

s.t.
∑

m∈M

rm(t) ≤ Θ, (2.2)

rm(t) > hm(t), ∀m ∈M, (2.1)

Ωm(Dm = 0) ≥ T th
m , (2.3)

where T th
m represents the threshold of the length of isolation

duration. Specifically, for slices belonging to set MII , hm(t)
varies with the signal-to-interference plus noise ratio (SINR)

which is translated from the required transmission rate Rth
m .

Therefore, for m ∈ MII , hm(t) = Rth
m/log (1 + pmg2m/N0),

where gm represents the channel gain, pm is the transmission

power which is fixed in this work, and N0 is the variance of

white Gaussian channel noise.

This RSS problem in RAN slicing is a variant of the Multi-

ple Choice dimension Knapsack Problem, which is known to

be equivalent to an NP-hard problem [22]. More importantly,

we target at a long-term optimal solution, and thus it is

infeasible to use static optimization technique to solve the

prediction and on-line resource scheduling problems. We thus

resort to machine learning technique to address the RSS

problem.

V. COLLABORATIVE LEARNING FRAMEWORK OF IRSS

Our proposed iRSS for RAN slicing is embedded in a

collaborative learning framework. Both DL and RL are incor-

porated in the framework and work in a collaborative way,

so as to tackle both large and small time-scales network

dynamics. Fig. 3 illustrates the collaboration of these two

algorithms, where we use the confidence level χ(χ ∈ (0, 1))
for intuitively describing the respective significance of DL

and RL. In other words, we can adjust χ according to

the contribution from the DL and RL respectively to the

decision-making process. The intuition is as follows. At the

beginning of the learning process, there is no sufficient data

in the DCU for training the LSTM, resulting in inaccurate

prediction results. Accordingly χ can be set smaller such that

the decisions is mainly dependent on RL for performing real-

time resource scheduling. With the progress of leaning process,

more data is collected by the DCU, and χ can thus be set

bigger as the prediction results by DL become more credible.

This dynamic adjustment process enables the network to well

leverage the advantages of both DL and RL for making better

scheduling strategies for individual slices. In extreme case, if

the performance given by DL is too poor, iRSS can make

decision according to the results of RL only(χ = 0).

x%Deep learning : LSTM Reinforcement learningχ 1-χ

Fig. 3: Collaboration of DL and RL in CoLF

A. Using LSTM Recurrent Neural Network for Periodic Traffic

Prediction

Prediction leverages the regularity of historical traffic data

to allocate resources for individual slices in advance. We aim

to find a value of r̃m(t) in (1) that can minimize the MSE

for predicting the traffic volume of the next PW by using the

traffic records collected in current and previous PWs.

Usually a huge amount of traffic data (e.g., data gener-

ated in one month) can be used for an accurate prediction.

However, due to the gradient explosion or gradient vanish
phenomenon in the process of back propagation through time

(BPTT), standard recurrent neural networks (RNNs) fail in

learning when the time lags are greater than 5-10 discrete

time steps [23]. Long Short-Term Memory (LSTM) is a variant

of RNN, capable of finding the embedded characteristics and

leveraging the long-time dependency in the sequence [2]. As

shown in Fig. 4, under the iRSS decision framework, we

employ LSTM algorithm to make traffic volume prediction for

performing the large time scale resource allocation in the next

PW. The LSTM architecture consists of a set of recurrently

connected subnets, known as memory blocks. These blocks

can be deemed as a differentiable version of the memory

chips in a digital computer. Each block contains one or more

self-connected memory cells and three multiplicative units-the

input, output and forgets gates-that provide continuous analogs

of write, read and reset operations for the cells.

Specifically, we leverage the traffic records collected by

DCU in dozens of previous DTIs and the current DTI for

prediction. In the design of prediction module, several LSTM

modules are connected in series, and the states (i.e., the value

of weight coefficients and the MSE results) are transferred

between adjacent LSTM modules. Note that the input of the

raw data is attached with three tags which are respectively the

time steps (i.e., the PW T∆), traffic volume per time step and

instances (i.e., the slices). Specifically, for slice m, within a

PW T∆, the raw data Dr = {dt−n, dt−n+1, · · · , dt} is input to

the first LSTM block, and the predicted results are obtained by

the manipulations for minimizing objective (1), and then used

for resource allocation for individual slices. We use Tensorflow

framework for performing LSTM.

Remark 1. It has been proved by Godfrey et al. [24] that

LSTM outperforms ARIMA and SVR on time-series forecasting

through a large number of experiments.

As mentioned in Section IV.A, we use the confidence

level χ(χ ∈ (0, 1)) for intuitively describing the respective

significance of the prediction results. In other words, we can

relax strict performance isolation according to the accuracy

of prediction (based on the amount of data) and the ser-

6

LSTM Block

Predicted Data

LSTM Block

DCU: Raw Data

LSTM Block

State Transfer State Transfer

Input

Output

#Time Steps

(Sequence length)

#
In

st
a
n

c
e
s:

S
li

c
es

Fig. 4: Prediction by LSTM under the iRSS decision

Framework

vice types. For instance, best-effort traffic requests without

stringent requirements can tolerate an imprecise prediction

results. Let the predicted traffic volume demand be Dp =
{dt+1, dt+2, · · · , dt+n}. The sample mean of the elements of

Dp is d̄ = 1
n

∑n
k=1 dt+k, and the sample standard deviation

is σ(d) = (1n
∑n

k=1(dt+k − d̄)2)
1
2 . We denote by χ the

confidence level which can be dynamically adjusted according

to the service types, and the confidence interval is given by

Pr{rm(t) ∈ d̄± z(1−χ)/2 ·
σ(d)√

n
} = χ, t ∈ [0, T∆]. (3)

In other words, the probability that the future traffic requests

(the predicted volume) lie within [d̄±z(1−χ)/2 · σ(d)√
n
] is χ. Due

to the penalties imposed by traffic service level agreements

(SLAs), we suppose to assign resources based on the upper

bound of the prediction interval as it provides the worst−case
of a forecasted traffic level. Let rUm be he upper bound of the

confidence interval for slice m ∈ M. Therefore, for the next

PW T∆, the predicted amount of spectrum resources allocated

to tenants are
∑

m∈M rUm(T∆) = Θr.

B. Distributed Architecture for On-line Resource Scheduling

of RAN Slicing

In conjunction with large timescale resource allocation

based on periodic traffic prediction, we employ an on-line (or

real-time) algorithm for small timescale resource scheduling

in iRSS framework. After carefully investigating the char-

acteristics of on-line resource scheduling problem for RAN

slicing and the system model, we propose a distributed on-

line resource scheduling architecture as shown in Fig. 5. This

architecture consists of five components: 1) a distributed store

of experience replay memory [9]; 2) parallel actors (i.e.,
slices) that generate new actions; 3) parallel learners (i.e.,

slices) that are trained by stored experience; 4) a distributed

neural network (NN) to approximate the Q-value and policy;

and 5) a distributed account book to store and exchange

information among slices. It is obvious that individual slices

have different requirements on resources scheduling, and thus

the resource allocation strategy for different slices cannot be

optimized in the same way. In other words, joint optimization

of resource allocation for all slices is infeasible. We thus resort

to the parallel computing for performing resource allocation

for individual slices, where the slices learn from the stored

experience and generate new actions in a parallel way. In

addition, the algorithm of A3C is employed in this distributed

architecture as an asynchronous updating on-line solution

to the RSS problem, which is a sub-filed of reinforcement

learning under a c-MDP model.

Experience Replay

Memory

CPU Cores

Agents Set

CPU cores

Agents Set

State Action Action

System

Environment

Experience Replay

Memory

Reward Reward

Q Network

Target

Q Network

TD-error

Asynchronous
Update parameter

Update

parameter

Q Network

Target

Q Network

TD-error

Store State and action Store State and action

State

Distributed

Fig. 5: Architecture of distributed on-line resource

scheduling of RAN slicing

VI. CONTINUOUS MARKOV DECISION PROCESS FOR

ON-LINE RESOURCE SCHEDULING

We model the decision process of on-line scheduling as a

continuous-time Markov decision process (c-MDP), and adopt

RL to resolve this problem. In conventional reinforcement

learning algorithms i.e., Q-learning algorithm, value iteration,

Monte Carlo Tree Search, etc., the decision agents update

their Q-value by using bootstrap method [25], which cannot

well estimate the Q-value of the subsequent state that is not

traversed. Therefore, these algorithms cannot be used when

the state or action space is infinite. Therefore, we exploit

the asynchronous advantage actor-critic (A3C) (Mnih et al.,
[10]) for providing an on-line solution to the c-MDP based

scheduling problem. A3C accelerates the convergence when

compared with traditional AC, by employing an asynchronous

update strategies in a distributed architecture. Moreover, A3C

has achieved the state-of-the-art results on many gaming tasks

including Atari 2600 [26].

A. c-MDP Model

The c-MDP is modeled as a five-tuple < S,A,F ,P, γ >,

where S denotes the state space, A denotes the action space,

and let F : S × A × S → R be a given cost function

used to measure the quality of the decision. We consider a

set of randomized stationary policies Pr = {πθ; θ ∈ R
n},

parameterized in terms of a vector θ = {θt, θt+1, · · · }. For

example, for each pair (s, a) ∈ S ×A, πθ(s, a) = Pr{s′|s, θ}
denotes the probability of taking action a at state s, under the

policy based on θ. Moreover, we assume that π is differentiable

with respect to its parameter, i.e., ∂πθ(s,a)
∂θ exists. γ ∈ [0, 1] is

the discount factor. Note that in this MDP model, the transition

probability from one state to another is determined once an

action is adopted, which can be expressed as

Pr{s′|s, a} =
{

1 if s′ = st+1

0 otherwise

.

7

The State in the model describes the network environment.

We define that at arbitrary time t, the sharing (or cognitive) s-

tate space is represented by a set of {UMI ,UMII , hMII , rM}.
In this work, the network will decide the proportion of

resources allocated to slices. Note that in this decentralized

network environment, actions between slices are unobservable,

such that each slice makes decisions independently. Therefore,

for a given slice m, the Action is defined as Am(s(t)) = am(t)
under the deterministic state s ∈ S , where am(t) is the fraction

of resources allocated to slice m at time t.
The Reward reflects our design objectives. As shown in

Problem 2, the objective is minimizing the resource consump-

tion (or improving the resource efficiency) while guaranteeing

a certain degree of performance isolation. The reward function

should be designed to guide the slices to make decisions

towards the direction of the optimization objective of Problem

2. The logarithm function is widely used as the elastic utility

function for allocating resources (or determining transmission

rate) in related studies [27] [28]. In our model, we make some

modifications to the logarithm function based on our design

objective. In more detail, we define the elasticity demand on

assigned resources related to rm(t) and hm(t) as an absolute

value of the logarithm function, i.e., e(rm(t), hm(t)) =
| ln (rm(t)− hm(t) + 1)|. The definition domain of e(·) is

within [hm(t) − 1, hm(t)) ∪ [hm(t),+∞). Therefore, when

rm(t) < hm(t), we transfer rm(t) into
rm(t)
hm(t) + hm(t) − 1

whose value range is within [hm(t) − 1, hm(t)] that satisfies

the definition domain of e(·).
In addition, by considering the constraints in Problem 2, we

formulate the reward function for slices as follows

cm(t) = e(rm(t), hm(t)) + B(Dm(t)), (4)

where B(·) is defined as bonus incurred by the reconfig-

uration conducted for slice m. Specifically, B(Dm(t)) =
w·1{Dm(t) 6=0}, where w > 0, and 1{℧} is the indicator function

that equals to 1 if condition ℧ is satisfied and 0 otherwise.

The value of w in the bonus function makes the length of

Ωm(Dm(t)) = 0) (in constraint (2.3)) controllable.

As described in Problem 2, meeting the slices’ requirements

with minimal resources is the primary objective. This is

equivalent to minimizing the value of cm(t). However, due to

the existence of bonus, hm(t) may be not the optimal solution.

The cost function has the following characteristics: (1) when

rm(t) ≥ hm(t), with the increase of rm(t), the cost will

gradually increase towards saturation since the partial derivate

∇rme(rm(t), hm(t)) gradually decreases to zero; (2) when

rm(t) ≤ hm(t), with the decrease of rm(t), the cost rapidly

increases towards infinity, indicating the degree of resource

shortage in the slice; (3) the gradient of the cost function on

the left side of hm(t) is steeper than that on the right side.

As we pursue the long-term system performance optimization,

resource scheduling strategies that cannot satisfy the QoS

requirement (i.e., rm(t) < hm(t)) at this decision time cannot

be just simply dropped. We preserve these strategies in case

that it can provide good performance for subsequent states,

and thus can improve the long-term system performance.

The objective of our MDP modeling is to find a policy

πθ(ℓ) which can optimize reward r(t) from time t to t+ T∆.

Assuming that the MDP starts from an initial state s0 ∈ S ,

and makes decisions according to πθ, resulting in a trajectory

ℓ ∼ {s0, a0, s1, a1, · · · , sT∆
, aT∆

}. Then, we formulate the

following objective function O(πθ) by considering the dis-

counted return:

Min O(πθ) = Eℓ∼πθ(ℓ)
[cm(ℓ)], (5)

where r(ℓ) =
∑T∆

k=0 γ
krt+k is the discounted cumulative

reward starting form time t and increasingly discounted at

subsequent steps by factor γ ∈ (0, 1].
Note that our MDP problem has continues state and action

space as the wireless channel state and the amount of assigned

resources are continuous variables, and thus it is infeasible

to compute and save all value functions for every particular

state-action pair. With respect to continuous or infinite state

and action problems, the objective of (2) can be rewritten as

O(πθ) = Eℓ∼πθ(ℓ)
[cm(ℓ)] =

∫

ℓ∼πθ(ℓ)

πθ(ℓ)cm(ℓ)dℓ. (6)

B. Actor and Critic in the c-MDP for the Slice RSS

The Actor works with a family of parameterized policies.

The gradient of the performance (5), with respect to the actor

parameters, is directly estimated by simulation, and the param-

eters are updated in the direction of improving the objective

(5). Specifically, the gradient of the feedback function with

respect to the vector of θ is expressed by ∇θO(πθ). The

reinforcement method updates θ by using the gradient

∇θO(πθ) = ∇θ log πθ(ℓ)c(ℓ). (7)

As we use 1-step update in this work, such that (7) is an

unbiased estimation of Eℓ∼πθ(ℓ)[c(ℓ)] [29].

We use the known Gaussian probability distribution to

derive a stochastic policy for selecting actions, which can be

presented as

πθ(a|s) ∼ N (µ(s), σ2), (8)

where µ(s) is the mean and σ is the standard deviation. µ(s)
is indeed the action that has the largest probability to be

chosen at state s, and σ indicates the extent of exploration

over all actions at state s. By exploiting Gaussian probability

distribution, exploration (searching for better strategies) and

exploitation (exploiting the previous best strategies) can be

well balanced in the action selection process.

We use the network state S as the feature vector Φ(st) =
(φ1, φ2, · · · , φf)

T with f elements which need to be normal-

ized for better performance of linear approximation. Moreover,

a linear feature-based function is used to approximate µ(st)
which is represented as

µθ(st) = θT · Φ(st), (9)

where θT = (θ1, θ2, · · · , θf) is updated by the policy gradient

method. Specifically, the policy gradient update formulation

for parameters θ is given by ∆θ = αa,t · ∇θOm(πθ), where

αa,t > 0 is an appropriately small step-size for the policy

update.

The Critic relies exclusively on the value function ap-

proximation and aims at learning an approximate solution to

8

the Bellman equation, which will then hopefully prescribe

a near-optimal policy [30]. We use function approximation

to estimate the value function and update the parameters by

using some samples. The approximation state-action value and

state value, denoted by Vϑ(st) ≈ V (st), can be parameterized

by the vector ϑT = (ϑ1, ϑ2, · · · , ϑf). We choose the linear

feature-based function to approximate Vϑ(s) since this solution

is effective for our scenario with a low complexity and fast

convergence. Thus,

Vϑ(st) = ϑT · Φ(st). (10)

Remark 2. Linear approximation function can be deemed as a

neural network with 1 neural cell and the activation function is

a linear equation. Since linear feature-based function performs

well in function approximation and has demonstrated high

efficiency in gradient decent, it has been successfully used in

some on-line game applications [26] [30], such as cart-pole,

acrobot and Atari, etc.

Next, we need to update the parameter vector ϑ in the critic

process. We introduce ̟t as the temporal difference (TD)

error between the approximated value and the real value at

a state when taking an action, i.e. ̟t = V π(st) − Vϑ(st),
where V π(st) = ct+1 + γVϑ(st+1). Note that the objec-

tive of this critic process is to minimize the TD-error ̟t.

Therefore, the objective function of the critic is designed as

επϑ = argminϑ
1
2 (̟t)

2, and the gradient of this quadratic error

with respect to ̟t can be derived as ∇ϑε
π
ϑ = |̟t| ·∇ϑVϑ(st).

We use the gradient descent method to update the approx-

imation towards the gradient, and thus the parameter vector

ϑ can be updated by ∆ϑ = αc,t · |w̄t · |∇ϑVϑ(st), where

αc,t is the learning rate for the value function. As Vϑ(st) is

approximated by the linear function, we have

∇ϑVϑ(st) = Φ(st), (11)

There are two methods to compute TD(λ): forward and

backward estimation methods respectively. Specifically, the

forward method combines the future steps for joint optimiza-

tion. However, as shown in Fig. 6, the states in the future two

or more steps may be observed in tens of TTIs in this scenario,

which is infeasible since we focus on online-solution. On the

other hand, eligibility trace can be used as a backward method

to evaluate TD(λ), which provides a better way of assigning

credit to state-action pairs which have been visited several

steps earlier [30]. It is known that TD(0) method considers

one-step backup, while the reward is the result of a series of

steps. The extensive use of the eligibility traces turns TD(0)

into the backward method of TD(λ), which can speed up the

learning process considerably. The eligibility trace vector for

all features at time t is denoted by zt and its update equation

is zt = ς · γ · zt−1 +Φ(st), where ς ∈ [0, 1) is the trace-decay

factor. ς · γ makes the recently used features more eligible for

receiving credit. With the use of eligibility traces, the update

interval becomes ∇ϑ = αc,t · |̟t| · zt.

C. Parallel Computing and Information Exchange of Network

Slices in an AC unit

The slices execute the A3C algorithm in multiple cores,

where the slices learn from the stored experience and generate

S(t-2) S(t-1) S(t) S(t+1) S(t+2)

Forward Perspective

Backward Perspective Observed in tens of TTIs

Fig. 6: Backward and forward perspective of TD(λ)

CPU Core

Agents Set

Slice

1

Slice

2
...

Slice

M

Parallel Computing

(𝕄 𝒇×M𝑇 ,ℕ 𝑓×M𝑇)

𝚽(𝒇×1)

Sharing account book𝒰ℳ𝐼 ,𝒰ℳ𝐼𝐼 ,ℎℳ𝐼𝐼 , 𝑟ℳ ,……

Fig. 7: Illustration of parallel computing and distributed

account book for network slices

new actions in a parallel way, as shown in Fig. 7. However,

with the increase of the number of slices, this parallel comput-

ing will consume a lot of computing resources. Therefore, we

implement the parallel computing for slices by vectorizing the

corresponding parameters in A3C framework, for effectively

improving the computational efficiency. In addition, in order

not to violate the different TTI requirements of individual

slices, the DTI is set as the minimum TTI of the slices,

i.e., t∆ = argminm∈Mτm(t). Specifically, let there be M
slices, and the dimension of the parameter vectors θ and ϑ
is f × 1. We form the parameter vectors of slices, such that

the dimension of the vectorized parameter vectors represented

by M and N is now f × M . Therefore, (9) and (10) can

be respectively rewritten as U1×M = (MT
f×M · Φf×1)

T and

V1×M = (NT
f×M · Φf×1)

T .

This parallel computing for multiple slices can be deemed as

a multi-agent system, where information exchange is the key

to designing a feasible policy. Indeed, necessary information

exchange among slices (agents) should be performed before

making decisions in such a multi-agent system. As shown in

(9) and (10), the value Vϑ(st) and policy µ(st) are linear with

the feature vector Φ(st) which is deemed as an environment

information carrier shared among slices. In addition, based

on the decentralization model as shown in Fig. 1, we let

Φ(st) be the distributed account book used to record the

information among slices, and each slice has the authority

to modify and maintain this account book. In the resource

scheduling for slices, a key problem is to guarantee that the

total amount of required resources does not exceed the overall

amount of system resources, represented by Constraint (2.2).

However, when the resources become scarce among slices,

the information in the account book cannot adequately solve

this problem. In this regard, we adopt an additional indicator

vector in Φ(st) to indicate if there are sufficient resources

to be shared among slices, and guide the strategies of slices

towards decreasing the required resources to make feasible

9

resource allocation decisions.

Definition 2. An Dirac impulse function in terms of the

remaining shared resources Θr is used as the indicator vector

δ(Θr) =

{

∞, if Θr = 0

0, otherwise
.

Thus, the feature vector Φ(st) can be rewritten as

(φ1, φ2, · · · , φf ,−δ(Θr))T .

Theorem 1. If ϑf+1 and θf+1 are initialized as a negative

constant ι < 0, −δ(Θr) in the feature vector can well guide

the strategies towards the direction that the resources will not

overflow.

Proof: When there are sufficient resources for sharing

among slices, −δ(Θr) = 0, and −δ(Θr) · ι = 0. In this case,

this element in the feature vector will not affect the value of

Vϑ(st) and the policy µ(st), and thus not make any sense on

the decision-making of A3C algorithm. However, if there are

no remaining shared resources in RAN, the element Θr = 0,

and −δ(Θr) = −∞, which makes the value of Vϑ(st) equal

to −∞, and thus the TD-error |̟t| = |V π(st) − Vϑ(st)| =
|V π(st) +∞| = +∞. Therefore, the strategies of excessive

use of the spectrum resources bring large TD-error. In this

situation, the next stage of strategies will be in the opposite

direction of trying to decrease the TD-error. In other words, the

new strategy adopted next time is in the direction of avoiding

consuming the entire spectrum resources and satisfying the

objective of (6) in the meantime.

D. Asynchronous Actor-Critic (A3C) Algorithm for iRSS

A3C algorithm relies on parallel actor-learners and accumu-

lative updates for improving training stability. Specifically, the

Actor-Critic algorithm is the combination of Actor-only and

Critic-only methods. However, as the variance of convergence

in AC algorithm could be very large, we introduce the advan-

tage function A(st) as the bias to greatly decrease the variance

[31]. For further improving performance, we let A(st) be the

TD-error ̟t. Then, (7) can be rewritten as

∇θO(πθ) = ∇θ log πθ(a|s)A(st). (12)

Obviously, as we intend to minimize the objective (2), we

update the value of θ by θ ← θ −∇θO(πθ).
As we conduct the asynchronous decision process by multi-

threads, we use θ+ and ϑ+ as the global parameters for the

target neural network, which are updated asynchronously by

the distributed actor-critic units in different threads. During the

update process, we set two timers Itarget and IasynUpdate in

the parameter updating process. In more detail, for every time

interval Itarget, θ and ϑ are updated by ∇θ and ∇ϑ with given

step-size in an AC unit. At the end of this round of learning

or for every time interval IasynUpdate, the central controller

performs asynchronous updates of θ+ and ϑ+ by using the

accumulated gradient ∇θ and ∇θ respectively. Next, θ+ and

ϑ+ are assigned to θ and ϑ for the next round of learning.

As linear approximation is used for the value Vϑ(st) and

policy µθ(st), A3C becomes an online solution with low

computational complexity. Note that the convergence condition

of A3C is satisfied when the learning rate αa,t and αc,t

respectively satisfy
∑∞

t=0 αa,t = ∞ and
∑∞

t=0 αc,t = ∞,

and meanwhile
∑∞

t=0 α
2
a,t = ∞ and

∑∞
t=0 α

2
c,t = ∞ [32].

Moreover, we empirically set the learning rate according to

physical system consideration to ensure that the global optimal

solution can be found by iterations. Specifically, if the learning

rate is set very small, the optimal solution will be eventually

found, but the convergence rate could slow. On the other hand,

if the learning rate is set very big, the convergence rate could

be fast, but the solution may be oscillated. In summary, we

elaborate the algorithm of iRSS in Algorithm 1.

Algorithm 1 Intelligent Resource Scheduling Strategy (iRSS)

for 5G RAN Slicing

1: //Given global shared parameters χ, Φ(s), θ+, ϑ+,

counter Tc, tc , and terminal time Tmax

2: Initialize thread step counter Tc, tc ← 0
3: Initialize global target network parameters θ+, ϑ+ ← 0
4: Get initial state s and the value of rUm
5: repeat

6: Initialize the critic and policy gradients: ∇θ,∇ϑ 0
7: Generate a policy trajectory by using πθ(ℓ), where ℓ =

{s0, a0, c0, s1, a1, c1, · · · }
8: Tc ← Tc + 1 and tc ← tc + 1
9: if Tc mod Itarget == 0 then

10: Synchronize the local target network parameters:

θ ← θ+, ϑ← ϑ+

11: end if

12: if tc mod IasynUpdate == 0 or s is the terminal state

then

13: Perform an asynchronous update of θ+ and ϑ+ by

using the accumulated gradients of ∇θ and ∇ϑ.

14: end if

15: until Tc > Tmax

E. Computational Complexity

The computational complexity of A3C is given by

O((Nu ·
1

Nu
) · Tc ·M · (

La
∑

i=0

u(i)
a · u(i+1)

a +

Lc
∑

j=0

u(j)
c · u(j+1)

c) =

O(Tc ·M · (
La
∑

i=0

u(i)
a · u(i+1)

a +

Lc
∑

j=0

u(j)
c · u(j+1)

c), (13)

where Nu is the number of CPU threads used to train the

AC algorithm, Tc is the training steps or termination steps,

u(i) (u(j)) is the number of units in the ith (jth) layer of the

neural network, and uc (ua) denotes the number of units of

the critic network (actor network).

We can see that the computational complexity is linear with

the length of Tc, the depth of the hidden layer and the number

of slices M . Moreover, we have simulated in Fig. 10 that

the training steps used in the policy gradient is less than 100

steps in most cases, such that the convergence rate is adequate

for meeting the timeliness requirement of on-line resource

scheduling.

10

VII. NUMERICAL RESULTS AND DISCUSSIONS

We evaluate the performance of our proposed iRSS by

extensive simulations. At the beginning of the learning process

of iRSS, DCU has not collected sufficient information of traffic

data, and thus we use the widely used Gaussian distribution

[33] [34] to simulate the traffic data. Note that we exploit the

collaboration of DL and RL for improving the accuracy of

decisions, thus if the simulated data cannot well fit the real

data, the RL can be relied on for modifying the decisions. The

number of slices M is set as 10 in the simulation experiments.

As mentioned in the parallel computing method, increasing the

number of slices will just increase the dimension of the param-

eter vectors M
T
f×M and N

T
f×M , which will not significantly

increase the complexity of the algorithm. The step-size αa,t in

the actor process and the step-size αc,t in the critic process are

set very small as constants to ensure the convergence of the

algorithm. Specifically, we set αa,t = 10−5, and αc,t = 10−3

respectively. Other parameters used are listed in TABLE II.

TABLE II: Used simulation parameters

Parameter Description Value

Number of Slices M 10

Step-size αa,t 10−4

Step-size αc,t 10−3

Discount factor γ 0.99
Trace-decay factor ς 0.2

The Number of Radio Blocks 200
Prediction window 3600s

We first examine the performance of the proposed iRSS

in the large timescale. In this simulation, we examine the

prediction accuracy of the LSTM in our iRSS without RL.

We conduct this simulation in the platform of Python by using

tensorflow. Fig. 8 (a) shows the mean square error (MSE) as

a function of the number of epochs. Fig. 8 (b) shows the error

between the targets and outputs of training data, validation data

and test data, respectively. In this simulation, we use 70%, 15%
and 15% of the dataset for training, validation, and testing,

respectively. From the simulation results, we can see that the

MSE can eventually converge to a minimum value with around

18 epochs. Note that the dozens of epochs are much smaller

than the length of PW. Therefore, the LSTM can converge at

the end of a PW and provide an optimum prediction results.

Moreover, at this MSE point, for most instances, the errors

between the targets and outputs are concentrated on both sides

of 0, showing that the LSTM algorithm in this work can be

leveraged to well predict the traffic volume.

Next, we investigate the relationship between the perfor-

mance isolation of the slices and the confidence level through

simulation with the same settings of the first experiment.

Fig. 9 shows that the PID monotonically increases with

the confidence level. This indicates that the amount of pre-

assigned resources for the slices is appropriately increased

with the confidence level, and hence the isolation degree of

slice is also improved. On the other hand, if we decrease

the confidence level, the isolation degree is decreased and the

service requirements are violated with the probability of 1−χ.

In this case, more resources will be released to the resource

pool as the shared resources.

(a) Mean squared error

(b) Prediction errors between the outputs and targets

Fig. 8: Performance of LSTM in traffic prediction

50% 90% 95% 99% 99.5%

Confidence Level

62%

64%

66%

68%

70%

72%

74%

76%

78%

80%

Is
o

la
ti

o
n

 D
e

g
re

e

Fig. 9: The relationship between isolation degree and the

confidence level

We then examine the convergence efficiency of iRSS in

small-timescale without using LSTM for prediction. Note

that the A3C algorithm is implemented in the iRSS for

performing the small time-scale resource scheduling. In order

to meet online requirement, we make an assumption that if

|Vt−Vt+1| ≤ ǫ(ǫ = 1e−3) within some policy gradient steps

(i.e., 100 steps as shown in Fig. 11), the A3C algorithm is

assumed converged. Objective (5) is minimizing the cumulated

reward, thus the smaller the value of the reward at each

decision time, the better the strategy. Fig. 10 shows the reward

vs. the number of learning steps in the A3C algorithm. We can

see that the reward of the algorithm converges to the optimal

decision rapidly with dozens of learning steps. Nevertheless, at

the beginning of the simulation, the reward becomes very high

11

due to an inexperienced or a failed exploration. In addition,

with the progress of the learning process, there exists certain

degree of jitter due to the length of step-size in the gradient

decent process. Therefore, when compared with the results of

large timescale prediction, on-line learning may have unstable

performance in the beginning. Fortunately, the computing

time of dozens of learning steps is totally acceptable for the

timeliness requirement of small timescale resource scheduling.

In other words, iRSS can provide a feasible on-line solution of

resource scheduling for slices within dozens of learning steps.

A failed and

inexperienced

exploration

Fig. 10: Convergence of the A3C algorithm

Next, we extend the simulation to different network settings.

As shown in Fig. 11, we compare the average network system

rewards under different number of network slices and resource

blocks respectively. In this simulation, the number of network

slices and RBs varies from 1 to 20 and 1 to 200 respectively,

to examine the system average cost. From this figure, we can

see that the system average cost increases monotonically with

the number of slices when the amount of RBs is fixed. This is

because that with the increase of the number of slices, more

resources are required to meet their requirements. Therefore,

the system resources will be consumed off quickly, resulting

in system cost increase. On the other hand, when the number

of slices is fixed, the system average cost decreases to 0 when

the amount of RBs increases. This implies that providing ad-

equate resources for users will significantly improve network

performance.

In the last experiment, we compare the performance our

proposed iRSS with that of the state-of-the-art machine learn-

ing schemes including the traditional (or tabular) Q-learning

and the classic AC algorithm, as well as a heuristic resource

scheduling algorithm (HRSA). The performance metrics we

use include the cumulated reward and resource utilization

(RU). We define the RU of slice m of a period as RU =
∑

t hm(t)/
∑

t rm(t). Note that Q-learning has poor perfor-

mance in solving decision problems with continuous action

space. For fair comparison, we discretize the action space

first, and then choose actions by sampling for implement-

ing Q-learning. Furthermore, due to the high computational

complexity of Q-learning, we limit the learning time of Q-

learning for a fairness comparison with the other two schemes.

In this regard, let Q-learning sample 200 decision points by

using Gaussian distribution, i.e., πQ
t (s) ∼ N(µQ

t , σ
2), where

the value of the mean point µQ
t equals to the amount of

Fig. 11: System average costs with different number of slices

and RBs

required resources in the last time, i.e., µQ
t = hm(t − 1).

Other parameters in the three algorithms are listed in TABLE

I and TABLE II. Note that in (5), minimizing the cumulated

reward or Q-value is our optimization objective in this work.

We design a heuristic resource scheduling algorithm (HRSA)

for performance comparison. In HRSA, each slice pre-reserves

a certain amount of resources for the performance isolation.

Within every DTI, HRSA configures resources to each slice

from the pre-reserved resources. In addition, we make an

assumption that the amount of resources pre-reserved for each

slice is equivalent to the requirements of slices of the last time.

Fig. 12 shows the cumulated cost of the three machine

learning based algorithms over DTIs. We can see that the

cumulated cost of iRSS is always significantly lower than

that of the AC and Q-learning algorithms. In Fig. 13, we

compare the resource utilization of the four algorithms when

the required isolation degree is fixed. We compare the resource

utilization (RU) of the four algorithms when the number of

DTIs increases from 0 to 200, while the other configurations

remain the same as in the previous experiment. We can see that

the RU of iRSS is also always apparently higher than that of

the Q-learning, classic AC and HRSA algorithms, respectively.

We can also observe that when the number of DTIs is smaller

than 40, the RU of Q-learning, AC, and HRSA fluctuates,

while that of iRSS fluctuates mildly. This is because that the

number of samples used for training is too small, resulting

in poor generalization performance of the Q-learning and AC

algorithms. Intuitively, HRSA lacks the ability of prediction

and pre-reserves resources for slices empirically, such that it

performs poorly on RU. Due to the asynchronous updating

schemes used, A3C can adapt to the variation of environment

much faster than the other two learning schemes. When the

number of DTIs exceeds 40, the RU of the four algorithms

gradually becomes stable, and the RU of iRSS is higher than

that of Q-learning, AC algorithms and HRSA by approxi-

mately 16.3% ∼ 19.8%, 8.3% ∼ 13.7%, 30.5% ∼ 34.7%,

respectively. Since the policy iteration in the “action” process

of A3C has much smaller search granularity and much lower

12

computational complexity when compared with the discrete

action space based Q-learning, iRSS is able to find better

strategies and achieve better performance in most cases. In

addition, as aforementioned, the A3C algorithm is executed in

a distributed architecture, and adopts asynchronous updating

schemes, endowing iRSS algorithm the higher convergence

efficiency and ability of generalization.

0 10 20 30 40 50 60 70

The number of DTIs

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

C
u

m
u

la
ti

v
e

 R
e

w
a

rd
 (

o
r

 Q
 v

a
lu

e
)

iRSS(5 threads)

Q-learning

classic AC

Fig. 12: Cumulative cost of the machine learning schemes

iRSS

Q-learning

classic AC

HRSA

Fig. 13: Comparison of resource utilization

VIII. CONCLUSION

In this paper, we have proposed an intelligent resource

scheduling strategy (iRSS) for 5G RAN slicing. Our pro-

posed iRSS for RAN slicing is embedded in a collaborative

learning framework. Both DL and RL are incorporated in

the framework and work in a collaborative way, so as to

tackle both large and small time-scales network dynamics. The

primary objective of iRSS is guaranteeing a certain degree of

performance isolation among slices, and meanwhile improving

the resources multiplexing gains. We have used the LSTM as

the DL algorithm in large timescale to predict traffic volume

for resource allocation and the parallel computing based A3C

algorithm in the small timescale for performing the resource

scheduling. Significant performance improvements in terms of

the cumulated reward and resource utilization are achieved by

iRSS when compared with other benchmark algorithms.

REFERENCES

[1] H. Zhang, N. Liu, X. Chu, K. Long, A. H. Aghvami, and V. C. Leung,
“Network Slicing Based 5G and Future Mobile Networks: Mobility, Re-
source Management, and Challenges,” IEEE Communications Magazine,
vol. 55, no. 8, 2017.

[2] R. Li, Z. Zhao, X. Zhou, G. Ding, Y. Chen, Z. Wang, and H. Zhang,
“Intelligent 5G: When Cellular Networks Meet Artificial Intelligence,”
IEEE Wireless Communications, vol. 24, no. 5, pp. 175–183, 2017.

[3] X. Foukas, M. K. Marina, and K. Kontovasilis, “Orion: RAN Slicing
for a Flexible and Cost-Effective Multi-Service Mobile Network Archi-
tecture,” Proceedings of the 23rd Annual International Conference on

Mobile Computing and Networking, pp. 127–140, 2017.
[4] P. Caballero, A. Banchs, G. De Veciana, and X. Costa-Perez, “Network

slicing games: Enabling customization in multi-tenant networks,” Pro-

ceedings - IEEE INFOCOM, 2017.
[5] A. R. Elsherif, W.-P. Chen, A. Ito, and Z. Ding, “Resource Allocation

and Inter-cell Interference Management for Dual-Access Small Cells,”
IEEE Journal on Selected Areas in Communications, vol. 8716, no. c,
p. 1, 2015.

[6] M. Yan, G. Feng, J. Zhou, and S. Qin, “Smart Multi-RAT Access
based on Multi-Agent Reinforcement Learning,” IEEE Transactions on

Vehicular Technology, vol. PP, no. 99, p. 1, 2018.
[7] B. Cao, L. Zhang, Y. Li, D. Feng, and W. Cao, “Intelligent offloading in

multi-access edge computing: A state-of-the-art review and framework,”
IEEE Communications Magazine, vol. 57, no. 3, pp. 56–62, 2019.

[8] F. a. Gers and F. Cummins, “1 Introduction 2 Standard LSTM,” Neural

Computation, vol. 12, no. 10, October 2000, pp. 2451 – 2471, 1999.
[9] A. Nair, P. Srinivasan, S. Blackwell, C. Alcicek, R. Fearon, A. De Maria,

V. Panneershelvam, M. Suleyman, C. Beattie, S. Petersen, S. Legg,
V. Mnih, K. Kavukcuoglu, and D. Silver, “Massively Parallel Methods
for Deep Reinforcement Learning,” Computer Science, 2015.

[10] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep rein-
forcement learning,” in International conference on machine learning,
2016, pp. 1928–1937.

[11] 3GPP TS 23.251 V15.0.0, “Network sharing; Architecture and function-
al description,” 2018.

[12] O. Sallent, J. Perez-Romero, R. Ferrus, and R. Agusti, “On radio access
network slicing from a radio resource management perspective,” IEEE

Wireless Communications, vol. 24, no. 5, pp. 166–174, 2017.
[13] R. Kokku, R. Mahindra, H. Zhang, and S. Rangarajan, “CellSlice:

Cellular wireless resource slicing for active RAN sharing,” 2013 5th

International Conference on Communication Systems and Networks,

COMSNETS 2013, 2013.
[14] M. Richart, J. Baliosian, J. Serrat, and J. L. Gorricho, “Resource Slicing

in Virtual Wireless Networks: A Survey,” IEEE Transactions on Network

and Service Management, vol. 13, no. 3, pp. 462–476, 2016.
[15] Z. Zhao, W. Chen, X. Wu, P. C. Chen, and J. Liu, “Lstm network: a

deep learning approach for short-term traffic forecast,” IET Intelligent

Transport Systems, vol. 11, no. 2, pp. 68–75, 2017.
[16] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. V.

Den, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot,
M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis, “Mastering
the Game of Go with Deep Neural Networks and Tree Search,” Nature,
vol. 529, no. 1, pp. 484—-489, 2016.

[17] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang,
A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap,
F. Hui, and L. Sifre, “Article Mastering the game of Go without human
knowledge,” Nature Publishing Group, vol. 550, no. 7676, pp. 354–359,
2017.

[18] Y. Wei, Z. Zhang, F. R. Yu, and Z. Han, “Power Allocation in
HetNets with Hybrid Energy Supply Using Actor-Critic Reinforcement
Learning,” GLOBECOM 2017 - 2017 IEEE Global Communications

Conference, pp. 1–5, 2017.
[19] D. Bega, M. Gramaglia, A. Banchs, V. Sciancalepore, K. Samdanis, and

X. Costa-Perez, “Optimising 5g infrastructure markets: The business
of network slicing,” in IEEE INFOCOM 2017-IEEE Conference on

Computer Communications. IEEE, 2017, pp. 1–9.
[20] R. Kokku, R. Mahindra, H. Zhang, and S. Rangarajan, “NVS: A

substrate for virtualizing wireless resources in cellular networks,”
IEEE/ACM Transactions on Networking, vol. 20, no. 5, pp. 1333–1346,
2012.

[21] K. I. Pedersen, G. Berardinelli, F. Frederiksen, P. Mogensen, and
A. Szufarska, “A flexible 5G frame structure design for frequency-
division duplex cases,” IEEE Communications Magazine, vol. 54, no. 3,
pp. 53–59, 2016.

[22] R. D. Armstrong, D. S. Kung, P. Sinha, and A. A. Zoltners, “A
computational study of a multiple-choice knapsack algorithm,” ACM

Transactions on Mathematical Software (TOMS), vol. 9, no. 2, pp. 184—
-198, 1983.

[23] F. Cummins, “Learning to Forget : Continual Prediction with 1 Intro-
duction,” no. October, 2000.

13

[24] L. B. Godfrey and M. S. Gashler, “Neural decomposition of time-
series data for effective generalization,” IEEE Transactions on Neural

Networks & Learning Systems, vol. PP, no. 99, pp. 1–13, 2017.
[25] C. J. C. H. Watkins and P. Dayan, “Q-learning,” Machine Learning,

vol. 8, no. 3-4, pp. 279–292, 1992.
[26] T. Chesebro and A. Kamko, “Learning Atari: An Exploration of the

A3C Reinforcement Learning Method,” 2016.
[27] M. E. Helou, S. Lahoud, M. Ibrahim, K. Khawam, b. B. Cousin,

D. Mezher, and B. Cousin, “A Hybrid Approach for Radio Access
Technology Selection in Heterogeneous Wireless Networks,” Wireless

Personal Communications, vol. 86, no. 2, pp. 789–834, 2016.
[28] B. Cao, S. Xia, J. Han, and Y. Li, “A distributed game methodology

for crowdsensing in uncertain wireless scenario,” IEEE Transactions on

Mobile Computing, 2019.
[29] J. He, J. Chen, X. He, J. Gao, L. Li, L. Deng, and M. Ostendorf,

“Reinforcement Learning Through Asynchronous Advantage Actor-
Critic on a GPU,” Iclr, no. 1999, pp. 1–17, 2017.

[30] I. Grondman, L. Busoniu, G. A. Lopes, and R. Babuška, “A survey
of actor-critic reinforcement learning: Standard and natural policy gra-
dients,” IEEE Transactions on Systems, Man and Cybernetics Part C:

Applications and Reviews, vol. 42, no. 6, pp. 1291–1307, 2012.
[31] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour, “Policy Gradient

Methods for Reinforcement Learning with Function Approximation,”
Advances in Neural Information Processing Systems 12, pp. 1057–1063,
1999.

[32] K. Doya, “Reinforcement learning in continuous time and space.” Neural

computation, vol. 12, no. 1, pp. 219–245, 2000.
[33] R. Li, Z. Zhao, J. Zheng, C. Mei, Y. Cai, and H. Zhang, “The Learning

and Prediction of Application-Level Traffic Data in Cellular Networks,”
IEEE Transactions on Wireless Communications, vol. 16, no. 6, pp.
3899–3912, 2017.

[34] V. Sciancalepore, K. Samdanis, X. Costa-Perez, D. Bega, M. Gramaglia,
and A. Banchs, “Mobile traffic forecasting for maximizing 5G network
slicing resource utilization,” IEEE INFOCOM 2017 - IEEE Conference

on Computer Communications, no. 671584, pp. 1–9, 2017.

Mu Yan received the B.S. degree in Electronic
Engineering from the Beijing Jiaotong University,
in 2014. He is now pursuing his Ph.D. degree in
National Key Lab of Science and Technology on
Communications, University of Electronic Science
and Technology of China (UESTC). His research
interests include AI-enabled wireless networking,
next generation cellular networks, etc.

Gang Feng (M’01, SM’06) received his BEng and
MEng degrees in Electronic Engineering from the
University of Electronic Science and Technology of
China (UESTC), in 1986 and 1989, respectively,
and the Ph.D. degrees in Information Engineering
from The Chinese University of Hong Kong in 1998.
He joined the School of Electric and Electronic
Engineering, Nanyang Technological University in
December 2000 as an assistant professor and became
an associate professor in October 2005. At present
he is a professor with the National Laboratory of

Communications, UESTC. Dr. Feng has extensive research experience and
has published widely in wireless networking research. A number of his papers
have been highly cited. He has received the IEEE ComSoc TAOS Best Paper
Award and ICC best paper award in 2019. His research interests include next
generation mobile networks, mobile cloud computing, AI-enabled wireless
networking, etc. Dr. Feng is a senor member of IEEE.

Jianhong Zhou received the M.Eng. degree in Elec-
tronics and Electrical Engineering from the Nanyang
Technological University (NTU), Singapore in 2008,
and the Ph.D. degree in Computer Software and
Theory from the University of Chinese Academy of
Sciences in 2016. He is currently a Lecturer with the
School of Computer and Software Engineering in
Xihua University, China and postdoctor in National
Key Lab of Science and Technology on Commu-
nications in University of Electronic Science and
Technology of China (UESTC), respectively. Her

research interests include next generation cellular networks, low latency ultra-
reliable communication, etc.

Yao Sun received the B.S. degree in Mathematical
Sciences from the University of Electronic Science
and Technology of China (UESTC). He is currently
working towards his Ph.D. degree at National Key
Laboratory of Science and Technology on Commu-
nications, UESTC. His research and study interests
include intelligent access control, handoff and re-
source management in mobile networks based on
machine learning and other data analytics.

Ying-Chang Liang (F’11) is currently a Profes-
sor with the University of Electronic Science and
Technology of China, China, where he leads the
Center for Intelligent Networking and Communi-
cations and serves as the Deputy Director of the
Artificial Intelligence Research Institute. He was a
Professor with The University of Sydney, Australia,
a Principal Scientist and Technical Advisor with the
Institute for Infocomm Research, Singapore, and a
Visiting Scholar with Stanford University, USA. His
research interests include wireless networking and

communications, cognitive radio, symbiotic radio, dynamic spectrum access,
the Internet-of-Things, artificial intelligence, and machine learning techniques.
Dr. Liang has been recognized by Thomson Reuters (now Clarivate Analytics)
as a Highly Cited Researcher since 2014. He received the Prestigious Engi-
neering Achievement Award from The Institution of Engineers, Singapore,
in 2007, the Outstanding Contribution Appreciation Award from the IEEE
Standards Association, in 2011, and the Recognition Award from the IEEE
Communications Society Technical Committee on Cognitive Networks, in
2018. He is the recipient of numerous paper awards, including the IEEE
Jack Neubauer Memorial Award, in 2014, and the IEEE Communications
Society APB Outstanding Paper Award, in 2012. He was elected a Fel-
low of the IEEE for contributions to cognitive radio communications. He
is the Founding Editor-in-Chief of the IEEE JOURNAL ON SELECTED
AREAS IN COMMUNICATIONS: COGNITIVE RADIO SERIES, and the
Key Founder and now the Editor-in-Chief of the IEEE TRANSACTIONS
ON COGNITIVE COMMUNICATIONS AND NETWORKING. He is also
serving as an Associate Editor-in-Chief for China Communications. He
served as a Guest/Associate Editor of the IEEE TRANSACTIONS ON
WIRELESS COMMUNICATIONS, the IEEE JOURNAL OF SELECTED
AREAS IN COMMUNICATIONS, the IEEE Signal Processing Magazine,
the IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, and the
IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING
OVER NETWORK. He was also an Associate Editor-in-Chief of the World
Scientific Journal on Random Matrices: Theory and Applications. He was a
Distinguished Lecturer of the IEEE Communications Society and the IEEE
Vehicular Technology Society. He was the Chair of the IEEE Communications
Society Technical Committee on Cognitive Networks, and served as the TPC
Chair and Executive Co-Chair of the IEEE Globecom’17.

