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Abstract—In this paper, we study the resource slicing problem
in a dynamic multiplexing scenario of two distinct 5G services,
namely Ultra-Reliable Low Latency Communications (URLLC)
and enhanced Mobile BroadBand (eMBB). While eMBB services
focus on high data rates, URLLC is very strict in terms of latency
and reliability. In view of this, the resource slicing problem is
formulated as an optimization problem that aims at maximizing
the eMBB data rate subject to a URLLC reliability constraint,
while considering the variance of the eMBB data rate to reduce
the impact of immediately scheduled URLLC traffic on the eMBB
reliability. To solve the formulated problem, an optimization-
aided Deep Reinforcement Learning (DRL) based framework is
proposed, including: 1) eMBB resource allocation phase, and 2)
URLLC scheduling phase. In the first phase, the optimization
problem is decomposed into three subproblems and then each
subproblem is transformed into a convex form to obtain an
approximate resource allocation solution. In the second phase,
a DRL-based algorithm is proposed to intelligently distribute
the incoming URLLC traffic among eMBB users. Simulation
results show that our proposed approach can satisfy the stringent
URLLC reliability while keeping the eMBB reliability higher
than 90%.

Index Terms—5G NR, resource slicing, eMBB, URLLC, risk-
sensitive, deep reinforcement learning.

I. INTRODUCTION

T
HE services supported by the 5th Generation (5G) New

Radio (NR) fall under three categories, i.e., enhanced

Mobile Broad Band (eMBB), massive Machine-Type Commu-

nications (mMTC), and Ultra-Reliable Low-Latency Commu-

nications (URLLC). eMBB is designed to accommodate high

data rate applications such as 4K video and Virtual Reality
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(VR). Specifically, eMBB service can be considered as an

extension of LTE-Advanced broadband service which allows

higher data rate and coding over large transmission blocks for a

long time interval. Therefore, the objective of eMBB service is

to achieve high data rate while satisfying a moderate reliability

with packet error rate (PER) of 10−3 [1], [2]. On the contrary,

mMTC aims at serving a large number of Internet of Things

(IoT) devices sending data sporadically with a low and fixed

uplink transmission rate. A large number of mMTC devices

may connect to a Base Station (BS) making it infeasible to

allocate a priori resource to each device. Generally, mMTC

devices, such as sensing, metering, and monitoring, focus on

energy-efficiency [3].

Meanwhile, URLLC services target mission critical com-

munications such as autonomous vehicles, tactile internet, or

remote surgery. In general, URLLC transmissions are sporadic

with a short packet size and with relatively low data rate.

The main requirements of URLLC transmission are ultra-high

reliability with a PER around 10−5 and low latency. Due to its

low latency requirement, URLLC transmissions are localized

in time with short Transmission Time Intervals (sTTI). In 4G

systems, the control signaling takes a large portion of the

transmission latency, i.e., 0.3−0.4 ms. Thus, designing a short

packet transmission system with latency of 0.5 ms may cause

wasting of more than 60% of resources for control overheads.

To this end, many changes on the physical layer design have

been introduced in 5G NR systems in order to support URLLC

services [2], [3].

A. Physical layer enablers for URLLC in 5G NR

We discuss the 5G NR to support both defined services,

i.e., eMMB, and URLLC. Generally, 5G NR supports multiple

waveform configurations (numerology) and thus radio frame

gets different shapes. The sub-carrier spacing of the low band

outdoor macro networks is 15 kHz while it is 30 kHz in

outdoor small cell networks. However, the higher frequency

bands come with higher sub-carrier spacing, i.e., the sub-

carrier spaces of 60 kHz and 120 kHz are chosen for the

5 GHz unlicensed bands and the 28 GHz mmWave bands,

respectively. [4]. In time domain, the length of a radio frame

and a sub-frame are always, regardless of numerology, 10 ms

and 1 ms, respectively. The difference is the number of time

slots within a sub-frame and the number of symbols within
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a time slot1. Hence, a Resource Block2 (RB) has different

structures depending on the numerology.

To support low latency transmission of URLLC, one option

is to reduce the symbol period by controlling the sub-carrier

spacing, i.e., the symbol length can be reduced to half by

doubling the sub-carrier spacing. This is relevant in mmWave

bands (above 6 GHz) as the cell radius is smaller due to

the path loss inducing smaller channel delay spread compared

to the conventional cellular systems. However, this approach

cannot be applied to bands lower than 6 GHz due to the

large delay spread. Another option is to reduce the number

of symbols in the packet TTI, i.e., using mini-slot (short

TTI) level of 2-3 symbols and slot level (e.g. 7 symbols)

transmissions. In summary, we can achieve a TTI smaller than

1 ms by adjusting the number of symbols and the symbol

period. Going further, to bring in more efficiency and reduce

latency, a concept called Code Block Groups (CBGs) based

transmission is proposed in 5G NR which divides the large

transport block into smaller Code Blocks (CBs). Furthermore,

the smaller CBs are further grouped into CBGs. Here, users

decode CBGs and send feedback (ACK/NACK) for each

individual group.

We exploit the aforementioned facts to design an efficient

mechanism to tackle the coexistence problem of eMBB and

URLLC services. In particular, we leverage the frame structure

flexibility of 5G NR to design a resource allocation framework

to satisfy the specific requirements of each service.

B. Motivation

The coexistence of these heterogeneous services with dis-

tinct requirements mandates an efficient resource slicing

framework that can satisfy the requirements of each service.

Specifically, the incoming URLLC packets during the schedul-

ing period of eMBB transmissions cannot be delayed due to

its strict latency requirement. To this end, two approaches

have been adopted in the third Generation Partnership Project

(3GPP) standard [2], [4]:

• Preemptive (Puncturing) scheduling: URLLC traffic

will be scheduled in short TTIs on top of the ongoing

eMBB transmissions. In other words, the Next Generation

NodeB (gNB) stops eMBB transmission during short

TTIs of URLLC transmission to ensure URLLC latency.

This protocol is efficient in terms of reducing the URLLC

latency, however, it may impact eMBB transmission re-

liability. Therefore, a coexistence mechanism is required

to reduce the performance degradation of the ongoing

eMBB transmissions.

• Orthogonal scheduling: A number of frequency chan-

nels are reserved in advance for URLLC traffic in

this approach. There are two reservation mechanisms:

semi-static reservation and dynamic reservation. In the

semi-static scheme, the gNB intermittently broadcasts

1The number of symbols is fixed for all numerology and it only changes slot
configuration type, i.e., for the slot configuration “0”, the number of symbols
for a time slot is always 14 while it is 7 for slot configuration “1”.

2A RB is defines as a group of OFDM sub-carriers for a time slot duration
which is the smallest frequency-time unit that can be assigned to a user.

the frame structure configurations such as frequency

numerology. However, in the dynamic reservation, the

frame structure information is updated frequently using

the control channel of a scheduled user. The downside

of this approach is that resources reserved for URLLC

will be wasted in case of there is no URLLC transmis-

sion. Furthermore, the dynamic scheme needs additional

control overhead compared to the semi-static scheme.

In this work, we consider the preemptive (puncturing)

scheduling approach to handle the dynamic multiplexing3 of

eMBB/URLLC traffic. Under this scenario, the immediate

scheduling of URLLC traffic by halting the ongoing eMBB

transmission will impact both the throughput and reliability

of eMBB transmissions. Therefore, it is imperative to study

the coexistence problem of eMBB and URLLC services in 5G

NR, where an optimization-based resource allocation problem

should not just aim at maximizing the average data rate of

eMBB users, but also should consider both eMBB and URLLC

reliability.

C. Challenges and Contributions

The coexistence of URLLC and eMBB services on the

same radio resource leads to a challenging scheduling problem

which is not straightforward to tackle due to the underlying

trade-off among latency, reliability and spectral efficiency. In

this work, we overcome this problem considering the punctur-

ing scheduling approach. In particular, we develop an efficient

mechanism to ensure eMBB data rate and reliability while

guaranteeing URLLC stringent requirements. In doing so, we

not only focus on the eMBB throughput maximization problem

with the URLLC constraints, like the existing works, but

also incorporate the risk4 associated with eMBB transmissions

while serving random URLLC requests during the ongoing

transmission period in the optimization problem. Specifically,

we exploit the variance of eMBB data rate to characterize the

associated risk and reliability of eMBB transmissions due to

the coexistence problem.

Furthermore, most of the existing works in eMBB-URLLC

coexistence problem adopt standalone optimization which has

its own limitations. First, these techniques are inefficient to

well-capture the dynamic characterstics of URLLC traffic and

wireless channel conditions. Secondly, due to the complexity

of formulated optimization problem, a naive relaxation ap-

proach to get the optimal solution may violate the URLLC

reliability constraints at the worst case scenario, making these

techniques detrimental to network performance.

In practice, URLLC traffic is random and sporadic; thus, it

is necessary to dynamically and intelligently allocate resources

to the URLLC traffic by interacting with the environment.

In this regard, DRL approaches can solve non-deterministic

problems and make decisions in real-time; thus, making it

an appropriate choice to work along with the optimization

3URLLC traffic is overlapped on eMBB traffic at every mini-slot, which is
referred to dynamic multiplexing in 3GPP [3], [4].

4In this work, risk is defined as a measure to quantify the impact of
puncturing process on eMBB users data rate when serving the random URLLC
traffic.
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problem in addressing resource allocation issues and deci-

sion making under uncertainty. However, applying DRL in

URLLC is not straightforward because the general constraints

of quality-of-service (QoS) requirements, such as in the op-

timization problems, are not present in DRL. Therefore, we

have carefully designed reward function based on the traffic

scheduling policies that take into account the requirements of

eMBB and URLLC services.

Similarly, DRL may suffer from slow convergence, making

it limited to be adopted as a sole solution for handling the

aforementioned issues. Thus, in this work, we propose a

novel holistic approach combining optimization theory based

methods with DRL technique to improve the performance

of resource allocation in a dynamic multiplexing scenario

of eMBB-URLLC traffic. Specifically, our main contributions

are:

• We formulate the resource slicing problem as an

optimization problem that maximizes the average

data rate of eMBB users, minimizes the variance of

eMBB users’ data rate, while satisfying the URLLC

constraints. Here, minimizing the variance of eMBB rate

reduces the risk on eMBB transmissions, thereby enhanc-

ing its reliability. Furthermore, to ensure a high URLLC

reliability, the corresponding reliability constraint is cast

as a chance constraint which effectively captures the risk-

tail distribution of the outage probability.

• We propose a two-phase-framework, including eMBB

resource allocation and URLLC scheduling phases,

that copes with the dynamic URLLC traffic and

channel variations. In particular, RBs and transmission

power are allocated to eMBB users at the eMBB reource

allocation phase. Due to the dynamic nature of both

URLLC traffic, and channel variations and in order to

ensure the reliability requirement of URLLC service, we

propose a DRL-based algorithm to schedule the URLLC

transmissions over the ongoing eMBB transmissions in

the URLLC scheduling phase.

• In the eMBB resource allocation phase, we first

reformulate the optimization problem using the ex-

ponential utility function capturing both mean and

variance of the eMBB data rate. Then, a Decom-

position and Relaxation based Resource Allocation

(DRRA) algorithm is proposed. The proposed DRRA

algorithm decomposes the optimization problem into

three subproblems: 1) eMBB RBs allocation, 2) eMBB

power allocation, and 3) URLLC scheduling. Then each

problem is solved individually based on its structure in

order to achieve a practical solution with low computation

complexity. Specifically, the RBs allocation and power

allocation problems are relaxed into convex optimization

problems. However, the URLLC resource allocation prob-

lem is combinatorial in nature for which it is difficult

to achieve a closed-form solution. Hence, we replace

the integer variable in the URLLC scheduling problem,

i.e., the number of punctured short TTIs (mini-slots),

by a continuous weighting variable for each RB. Later,

we calculate the number of punctured mini-slots from

each RB by modeling it as a binomial distribution with

parameters puncturing weight and number of mini-slots

in each time slot.

• In the URLLC scheduling phase, a DRL based algo-

rithm is proposed to cope with URLLC reliability

violations, caused due to the relaxation techniques

applied in the eMBB resource allocation phase, and

to smartly distribute the URLLC traffic on the eMBB

users by tackling the dynamics of URLLC traffic and

channel variations. To handle the slow convergence is-

sue of the DRL, we propose a policy gradient based actor-

critic learning (PGACL) algorithm that can learn policies

by combining the policy learning and value learning with

a good convergence rate. Moreover, at the initial start,

we leverage the URLLC scheduling results obtained by

the DRRA algorithm in the eMBB resource allocation

phase to train the PGACL algorithm and improve its

convergence time. Hence, combining the advantages of

the DRRA and PGACL algorithms (DRRA-PGACL) pro-

vides a reliable and efficient resource allocation approach.

• The computation complexity of the proposed algo-

rithm is studied in terms of convergence time and

accuracy. Furthermore, extensive simulations are per-

formed to validate our proposed algorithms. Simulation

results show that the proposed algorithms can satisfy the

stringent URLLC reliability while keeping the eMBB

reliability higher than 90%.

D. Organization

Section II summarizes the related works in the following

subsections: A. URLL requirements and design, B. Coexis-

tence of eMBB URLLC services, and C. DRL in wireless

networks. We present the system model and problem formu-

lation in Section III. Specifically, we introduce the impact

on the data rate of eMBB users, the URLLC data rate,

chance constraints of URLLC requirements, and the final

problem formulation. In Section IV, we present the proposed

eMBB resource allocation algorithm. A DRL based resource

slicing framework is presented in Section V. We evaluate the

performance of the proposed algorithms in Section VI. Section

VII concludes the paper.

II. RELATED WORKS

A. URLLC requirements and design

Research works focusing on URLLC are gaining attention

in both academia and industry. For example, the work in [3]

highlighted the key requirements of URLLC and its physical

layer issues. The authors presented enabling technologies for

URLLC in 5G NR such as packet structure, frame struc-

ture, and scheduling schemes discussed in 3GPP Release 15

standardization. In [5], the authors discussed communication-

theoretic principles for the design of URLLC including the

medium access control (MAC) protocols, massive MIMO,

interface-diversity, and multi-connectivity. The authors of [6]

discussed the limitations of 5G URLLC and provided key

research directions for the next generation of URLLC, named

eXtreme URLLC (xURLLC). The authors proposed three
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concepts for the xURLLC: 1) Predicting channels, traffic, and

other key performance indicators by leveraging the machine

learning technology; 2) Fusing both radio frequency and non-

radio frequency modalities for predicting rare events; and

3) Joint communication and control co-design. The study

conducted in [7] discussed the resource allocation for URLLC

problem considering the achievable rate in the short block-

length regime. The resource allocation problem is to optimize

the bandwidth allocation, power control, and antenna config-

uring considering both latency and reliability constraints. The

work in [8] studied the power minimization subject to latency

and reliability constraints considering a Manhattan mobility

model in Vehicle-to-Vehicle (V2V) networks. The reliability

measure is defined in terms of maximal queue length among

all vehicle pairs and the extreme value theory is applied to

locally characterize the maximal queue length. In [9], the

authors studied the joint optimization of radio resources, power

control, and modulation schemes of the V2V communications

while guarantying the latency and reliability requirements of

vehicular users and maximizing the rate of cellular users. They

used Lagrange dual decomposition and binary search methods

to find the optimal solution of the joint optimization problem.

B. Coexistence of eMBB URLLC services

The authors in [10] explored eMBB and URLLC services

in cloud radio access networks. A multi-cast transmission is

considered for eMBB slices while URLLC slices are relied

on uni-cast transmission. They proposed a generic revenue

framework for radio access network slicing and formulated the

revenue maximization problem as a mixed-integer nonlinear

programming. Semi-definite relaxation is leveraged to solve

the optimization problem. In [11], the authors studied the

impact of URLLC traffic on eMBB transmissions modeling

the loss of eMBB data rate associated with URLLC traffic

as a linear, convex, or threshold model. The work in [12]

studied the problem of concurrent support of visual and haptic

perceptions over wireless cellular networks. The visual traffic

is linked to eMBB slices while the haptic traffic is linked to

URLLC slices leading to eMBB-URLLC multi-modal trans-

missions. The authors in [13] proposed the PSUM algorithm

and transportation model to solve resource scheduling problem

for eMBB and URLLC users over time slots and mini-slots,

respectively.

Moreover, the study in [14] discussed the performance

trade-offs between orthogonal and non-orthogonal multiple ac-

cess for multiplexing of eMBB and URLLC users in the uplink

of a multi-cell cloud radio access networks architecture. The

analysis includes orthogonal and non-orthogonal multiple ac-

cess with different decoding architectures, such as successive

interference cancellation and puncturing. The results show that

the orthogonal multiple access approach reduces the eMBB-

URLLC mutual interference; however, URLLC users suffer

from the errors caused by packet drops due to the insufficient

number of transmission opportunities. Moreover, the results

show significant gains accrued by the successive interference

cancellation scheme of URLLC traffic at the edge for non-

orthogonal multiple access. Furthermore, the work shows the

potential benefits of puncturing in improving the efficiency of

fronthaul usage by discarding received mini-slots (short TTIs)

affected by URLLC interference. The work in [2] proposed

a communication-theoretic model for eMBB, mMTC, and

URLLC services considering traffic dynamics that are inherent

to each individual service. The authors analyzed the perfor-

mance of both orthogonal and non-orthogonal slicing. The

study demonstrated that the non-orthogonal slicing scheme

can ensure performance level for all services by leveraging

their heterogeneous requirements. The authors in [15] used a

heuristic algorithm and one-sided matching game to solve the

coexistence problem of eMBB and URLLC traffics. In [16],

the authors tried to maximize the data rate of eMBB users

while maintaining the reliability requirement of URLLC via

solving a multi-armed bandit problem. In our previous work

[17], we proposed a risk-sensitive formulation based on the

Conditional Value at Risk (CVaR) as a risk measure for eMBB

reliability and a chance constraint to encode the reliability

constraint of URLLC.

C. DRL in wireless networks

Recently, many works have used the DRL to solve the

resource allocation problem and decision making in wireless

networks [18]. The study in [19] proposed an actor-critic

RL model for joint communication mode selection, Resource

Block (RB) allocation, and power allocation in device-to-

device-enabled V2V based internet of vehicle communication

networks. Their objective was to satisfy URLLC require-

ments of V2V links while maximizing the rate of vehicle-to-

infrastructure links. In [20], the authors presented a heteroge-

neous radio frequency/visible light communication industrial

network architecture. They formulated a joint uplink and

downlink resource management decision-making problem as

a Markov decision process. The work in [21] presented a

deep RL model to provide URLLC in the downlink of an

orthogonal frequency division multiple access network. The

problem is formulated as a power minimization problem with

rate, latency, and reliability constraints. The rate of each user is

calculated and mapped to the RB and power allocation vectors

in order to solve the problem using deep RL algorithm. The

latency and reliability of each user are used as a feedback

to the deep RL algorithm. In [22] and [23], the authors

proposed a DRL based algorithms to solve the coexistence

problem of eMBB and URLLC. A deep deterministic policy

gradient based method is used in [22] while the deep Q-

learning algorithm is leveraged in [23].

Unlike related works, we not only focus on the eMBB

throughput maximization problem with the URLLC con-

straints, but also incorporate the risk associated with eMBB

transmissions while serving random URLLC request during

the ongoing transmission period in the optimization problem.

In particular, we exploit the variance of eMBB data rate

to characterize the associated risk and reliability of eMBB

transmissions due to the coexistence problem. Furthermore,

we propose a holistic approach combining optimization theory

based methods with DRL technique to improve the per-

formance of resource allocation in a dynamic multiplexing
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Figure 1: System model.

scenario of eMBB-URLLC traffic. Therefore, this work is,

to the best of our knowledge, the first to analyze the mean-

variance aspects of eMBB-URLLC coexistence problem by

combining optimization theory based methods with the DRL.

III. SYSTEM MODEL AND PROBLEM FORMULATION

Table I: Summary of Notations

Notation Definition

K,N ,B Set of eMBB users, URLLC users, and RBs, respectively.

xkb(t) RBs allocation variable for k ∈ K, and b ∈ B.

pkb(t) Power allocation variable for k ∈ K, and b ∈ B.

zkb(t) Puncturing variable for k ∈ K, and b ∈ B.

re
k
(t) Data rate of eMBB user k at time slot t.

run(t) Data rate of URLLC user n at time slot t.

he

kb
(t) eMBB channel gain, for k ∈ K, and b ∈ B.

hu

nb
(t) URLLC channel gain, for n ∈ N , and b ∈ B.

pu
nb

(t) URLLC transmission power, for n ∈ N , and b ∈ B.

L(t) Total number of URLLC packets at a time slot t.

cu
nb

(t) Length of CB in symbol, for n ∈ N , and b ∈ B.

Du

nb
(t) Channel dispersion at time slot t.

Pmax Maximum transmission power.

M Number of mini-slots in an eMBB time slot.

µ Parameter controls the desired-risk sensitivity of g̃k .

Θmax Maximum allowed outage probability of URLLC traffic.

ζ URLLC packet size.

fb Bandwidth of RB b.

σ2 Noise power.

α, β Weighting parameters.

A,S Set of action space and state space, respectively.

R(a, s) Reward function, for a(t) ∈ A, and s(t) ∈ S.

φ(t) Time-varying weights for URLLC reliability.

π Puncturing policy.

Qπ(a, s) Cumulative discounted reward at a given π.

J(π) Network objective reward value.

V (a, s) Value function of the agent k.

ρa, ρc Actor and critic learning rate, respectively.

We consider two types of downlink requests, i.e., URLLC

slice and eMBB slice requests. As shown in Fig. 1, there are

different types of users connected to a gNB such as self-driving

cars, smartphones, industrial automation, etc. We consider a

gNB serving a set K of K eMBB users and a set N of

N URLLC users. Let B denote the total number of RBs,

where a RB b ∈ B = {1, 2, . . . , B} occupies 12 sub-carrier

in frequency. The summary of notations used in this work is

presented in Table 1.

Typically, eMBB transmissions are allowed to span multi-

ple time resources in order to increase spectrum efficiency.

However, URLLC transmissions are localized in time domain

and can span multiple frequency channels due to its latency

requirements. Moreover, the arriving URLLC traffic during

the eMBB transmission cannot be delayed until completing

eMBB transmissions due to its hard latency constraints. Thus,

we schedule URLLC traffic and transmit it immediately by

puncturing the ongoing eMBB transmissions. In reality, punc-

turing (preemption) is done by the gNB scheduler5. In this

work, we consider that URLLC users are scheduled with

short TTI (mini-slot), while eMBB users are scheduled with

long TTI size (slot of 1 ms duration) [3]. Fig.2 shows the

ongoing eMBB transmission with a long TTI duration, where

the incoming URLLC packet preempts a part of the eMBB

transmissions. As shown in Fig. 2, the transport block of

eMBB user 2 consists of seven code-blocks, where each code-

block is mapped sequentially to the scheduled time-frequency

resources. When the URLLC service is initiated in the second

and sixth cod-blocks of the transport block of eMBB user

2, the symbols in these code-blocks are replaced by the

symbols of URLLC packets which degrades the quality of the

eMBB service. This problem is a serious concern to eMBB

service, thus a proper mechanism to protect the ongoing eMBB

transmissions should be introduced.

A. eMBB data rate based on Shannon capacity model

Puncturing eMBB transmissions by URLLC traffic impacts

the data rate of eMBB users. Let zkb(t) be the number of

punctured mini-slots from the RB b of eMBB user k at time

slot t. Accordingly, the data rate of an eMBB user k over a

RB b at time slot t can be approximated as

rekb(t) = fb

(

1−
zkb(t)

M

)

log2

(

1 +
pkb(t)hkb(t)

σ2

)

, (1)

where fb is the bandwidth of the RB b, M is the number of

mini-slots in an eMBB time slot, hkb(t) is the time-varying

Rayleigh fading channel gain of the transmission, and pkb(t)
is the downlink transmission power of the gNB on the RB b
to user k at slot t. Therefore, the data rate of the eMBB user

k over all allocated RBs can be given as

rek(t) =
∑

b∈B

xkb(t)r
e
kb(t), (2)

where xkb(t) is the eMBB user scheduling indicator at time

slot t defined as follows:

xkb(t) =

{

1, if the RB b is allocated to user k at time t,

0, otherwise.
(3)

B. URLLC data rate based on finite block-length coding

In URLLC, packets are typically very short, and thus, the

achievable rate and the transmission error probability cannot

be accurately captured by Shannon’s capacity. Instead, the

5For multiplexing between eMBB and URLLC traffics, 3GPP release 15
proposes the preemption indication (PI) [4].
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Figure 2: Multiplexing of eMBB/URLLC traffics.

achievable rate in URLLC falls in the finite block-length

channel coding regime, which is derived in [24]. Let run(t) be

the achievable rate of URLLC user n at time slot t and cunb(t)
be the length of the CB in symbols (i.e., number of symbols in

a mini-slot). We consider that the Frequency Division Duplex

(FDD) is applied inside the URLLC resources. Thus, the

URLLC data rate can be given by [24]:

run(t) =
∑

k∈K

∑

b∈B

fbx
b
k(t)zkb(t)

M ×N
log

(

1 +
punb(t)h

u
nb(t)

σ2

)

−

√

Du
nb(t)

cunb(t)
Q−1(ϑ),

(4)

where Q−1(·) is the inverse of the Gaussian Q-function, ϑ > 0
is the transmission error probability, and Du

nb(t) represents the

characteristic of the channel called the channel dispersion, i.e.,

Du
nb(t) determines the stochastic variability of the channel of

user n at time sot t relative to a deterministic channel with

the same capacity, given by

Du
nb(t) = 1−

1
(

1 +
pu
n
(t)hu

n
(t)

σ2

)2 . (5)

C. Problem formulation

We allocate RBs and transmission power to eMBB users at

the beginning of each eMBB time slot. Then, we schedule the

incoming URLLC traffic on the ongoing eMBB transmissions

by puncturing some resources from eMBB users. Generally,

puncturing eMBB users with low data rate (users located at

bad channel conditions like at the cell edge) causes high degra-

dation on eMBB reliability6 which should be considered when

designing a reliable resource allocation framework. Thus, the

proposed resource allocation strategy aims at: 1) maximizing

6In this work, eMBB reliability is defined based on the minimum data rate
satisfaction of eMBB users, i.e., the percentage of eMBB users that get the
minimum required data rate out of the total number of eMBB users.

the average eMBB data rate, 2) reducing the impact on eMBB

reliability, and 3) satisfying the URLLC constraints. Due to

the uncertainty in wireless channels, we propose a risk-averse

formulation by considering the variance of eMBB data rate,

in addition to the average eMBB data rate, so as to satisfy

the minimum data rate of each eMBB user and enhance

its reliability. In this regard, moving from the conventional

average based formulation to the risk-averse formulation will

reduce the impact on the eMBB reliability that comes from

the variations in the wireless channel quality and URLLC

scheduling. Analogous to risk-averse formulations in modern

portfolio theory (MPT) [25], in a dynamic multiplexing sce-

nario of eMBB-URLLC traffics, the gNB needs to construct

an appropriate puncturing preferences (similar to investment

strategy) on eMBB users when serving the incoming URLLC

traffic. Therefore, we define a function that captures both the

average sum of eMBB data rate and its variance as

F(x,p, z) =
K
∑

k=1

Eh

[

1

T

T
∑

t=0

rek(t)

]

− βVarh

[

rek(t)
]

, (6)

where E refers to the expectation, Var refers to the variance,

and β is the variance weight. The variance part captures

the dynamic characteristics of wireless channels to define the

reliability of eMBB, as it efficiently characterizes the risk of

investments in MPT.

On the other hand, the URLLC reliability can be achieved

by ensuring that its outage probability is less than a threshold

Θmax, where Θmax is a small positive value (Θmax << 1). Let

Lm(t) be a random variable denoting the number of arrived

URLLC packets at a minislot m ∈ M = {1, 2, ...,M} of the

time slot t, and L(t) =
∑

m∈M Lm(t) is the total number of

arrived URLLC packets in the time slot t. Then, the URLLC

reliability constraint can be defined as

Pr

[

∑

n∈N

run(t) ≤ ζL(t)

]

≤ Θmax, (7)

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at  http://dx.doi.org/10.1109/TWC.2021.3060514

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.Authorized licensed use limited to: Oulu University. Downloaded on March 04,2021 at 06:15:31 UTC from IEEE Xplore.  Restrictions apply. 



1536-1276 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TWC.2021.3060514, IEEE

Transactions on Wireless Communications

7

where ζ is the URLLC packet size.

Accordingly, the joint eMBB/URLLC resource allocation

problem can be formulated as follows:

maximize
x, p, z

K
∑

k=1

Eh

[

1

T

T
∑

t=0

rek(t)

]

− βVarh

[

rek(t)
]

(8a)

subject to Pr

[ N
∑

n=1

run(t) ≤ ζL(t)

]

≤ Θmax, (8b)

K
∑

k=1

B
∑

b=1

pkb(t) ≤ Pmax, (8c)

K
∑

k=1

xkb(t) ≤ 1, ∀ b ∈ B, (8d)

pkb(t) ≥ 0, ∀k ∈ K, b ∈ B, (8e)

xkb(t) ∈ {0, 1}, ∀k ∈ K, b ∈ B, (8f)

zkb(t) ∈ {0, 1, . . . ,M}, ∀k ∈ K, b ∈ B, (8g)

where Pmax is the maximum transmission power of the

gNB. The optimization problem (8) seeks the optimum RBs

allocation matrix to eMBB users x∗, the optimum power

allocation vector to eMBB users p∗, and the optimum number

of punctured mini-slots of all RBs matrix z∗. The objective

function is formulated based on Markowitz mean-variance

model [25] to maximize the average eMBB data rate for a

given level of risk. The probability constraint (8b) ensures the

URLLC reliability. Furthermore, constraints (8c), (8d), (8e),

and (8f) represent the RBs and power allocation constraints.

Finally, constraint (8g) ensures that the number of punctured

mini-slots form a RB b can take any integer number less than

M . In this paper, we consider that the gNB transmits with

maximum allowed power to URLLC users in order to enhance

the URLLC transmission reliability.

The optimization problem (8) is a mixed-integer nonlinear

programming (MINLP) and NP-hard problem. To find a global

optimum solution, we need to search the space of feasible

URLLC placement mini-slots with all possible combinations

of eMBB user RBs allocation and power allocation. This may

require exponential-complexity to solve. To avoid this diffi-

culty, we propose a two-phase approach based on optimization

methods and learning in the next two sections.

IV. EMBB RESOURCE ALLOCATION: OPTIMIZATION

METHODS BASED APPROACH

In this section, we first simplify the objective function in (8)

to a smoothing form and eliminate the complexity caused by

the variance, i.e., the variance involves the term (Eh[r
e
k(t)])

2
,

by using an equivalent risk-averse utility function. We consider

the exponential function that can capture both the mean and

variance as defined in [26]:

G(x, p, z) =
1

µ
logEh

[

exp

(

µ
K
∑

k=1

rek(t)

)

]

, (9)

where the parameter µ controls the desired risk-sensitivity.

The utility function (9) becomes a strongly concave when in-

creasing the values of µ negatively reflecting more risk-averse

tendencies. Furthermore, the utility function (9) becomes a

risk-neutral at µ→ 0. The Taylor expansion of the exponential

utility function around µ = 0 is given as

G(x, p, z) = Eh

[

K
∑

k=1

rek(t)

]

+
µ

2
Var

[

K
∑

k=1

rek(t)

]

+O(µ2).

(10)

Equation (10) shows that the utility function in (9) ef-

fectively captures both mean and variance terms of eMBB

users’ data rate. Accordingly, we can obtain an equivalent

formulation of (8) as follows:

P: maximize
x, p, z

1

µ
logEh

[

exp

(

µ
K
∑

k=1

rek(t)

)

]

(11a)

subject to Pr

[ N
∑

n=1

run(t) ≤ ζL(t)

]

≤ Θmax, (11b)

K
∑

k=1

B
∑

b=1

pkb(t) ≤ Pmax, (11c)

K
∑

k=1

xkb(t) ≤ 1, ∀ b ∈ B, (11d)

pkb(t) ≥ 0, ∀k ∈ K, b ∈ B, (11e)

xkb(t) ∈ {0, 1}, ∀k ∈ K, b ∈ B, (11f)

zkb(t) ∈ {0, 1, . . . ,M}, ∀k ∈ K, b ∈ B.
(11g)

Note that P is still a mixed-integer problem which is a non-

convex problem. To solve P, we propose a decomposition and

relaxation based resource allocation (DRRA) algorithm. In this

algorithm, we first decompose P into three sub-problems: P1:

eMBB RBs allocation, P2: eMBB power allocation, and P3:

URLLC scheduling. Then, we relax x and z to continuous

variables in P̃1 and P̃3, respectively. Moreover, the probability

constraint (11b) is relaxed to a linear constraint using the

Markov’s inequality. Next, we iteratively solve P̃1, P2, and

P̃3 till convergence. Finally, we perform a binary conversion

techniques to meet constraint (11f) as shown in Algorithm 1.

A. eMBB RBs allocation problem

For any fixed feasible URLLC placement z and p, the

problem P can be represented as follows:

P1: maximize
x

1

µ
logEh

[

exp

(

µ
K
∑

k=1

rek(t)

)

]

(12a)

subject to
K
∑

k=1

xkb(t) ≤ 1, ∀ b ∈ B, (12b)

xkb ∈ {0, 1}, ∀k ∈ K and b ∈ B. (12c)

The optimization problem (12) is an integer nonlinear pro-

gramming (MINLP) which can be relaxed to a problem whose

solution is within a constant approximation from the optimal.

The fractional solution is then rounded to get a solution to
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the original integer problem. Accordingly, the optimization

problem (9) can be approximated as follows:

P̃1 : maximize
x̃

1

µ
logEh

[

exp

(

µ
K
∑

k=1

rek(t)

)

]

(13a)

subject to
K
∑

k=1

x̃kb(t) ≤ 1, ∀ b ∈ B, (13b)

0 ≤ x̃kb(t) ≤ 1, ∀k ∈ K, b ∈ B. (13c)

Lemma 1. For a given p and z, (13) is a convex optimization

problem.

Proof. We prove the convexity of (13) in two steps. First, we

prove that the objective function G(·) is concave with respect

to x̃. Then, we prove the convexity of the feasible region.

Here, we can notice that rek(x̃) is a linear function in x̃ for

0 ≤ x̃ ≤ 1. Moreover, using the scalar composition property

in convexity, we have logarithmic of a convex function to be

a concave. Next, the constraints (13b) and (13b) are linear

constraints. Therefore, (13) is a convex optimization problem.

�

Later, we use the threshold rounding technique described

in [27] to enforce the relaxed x to be a binary variable. Let

η ∈ [0, 1] be a rounding threshold. Then, we set x∗kb as

x∗kb =

{

1, if x̃∗kb ≥ η,

0, otherwise.
(14)

The binary solution obtained from (14) may violate RB

allocation constraint. To overcome this issue, we modify

problem (13) as follows:

maximize
x̃

1

µ
logEh

[

exp

(

µ

K
∑

k=1

rek(t)

)

]

+ α∆ (15a)

subject to
K
∑

k=1

x̃kb(t) ≤ 1 + ∆, ∀ b ∈ B, (15b)

0 ≤ x̃kb(t) ≤ 1, ∀k ∈ K, b ∈ B, (15c)

where ∆ is the maximum violation of RB allocation constraint

given as

∆ = max{0,
∑

k∈K

xkb − 1}, ∀b ∈ B, (16)

and α is the weight of ∆ which take a negative value. The

problem (15) aims at maximizing G(x̃) while minimizing

the rounding error ∆. Thus, the feasible solution of (12) is

obtained at ∆ = 0.

B. eMBB power allocation problem

For any given x̃ and z, the power allocation problem can

be given as

P2: maximize
p

1

µ
logEh

[

exp

(

µ
K
∑

k=1

rek(t)

)

]

(17a)

subject to
K
∑

k=1

B
∑

b=1

pkb(t) ≤ Pmax, (17b)

pkb(t) ≥ 0, ∀k ∈ K, b ∈ B. (17c)

Lemma 2. For a given x̃ and z, (17) is a convex optimization

problem.

Proof. We first prove the convexity of rek(t) with respect to

pk by calculating the second derivative as

∂2rek(t)

∂p2k(t)
=

−xkbfb(1− zkb/M)(hekb/σ
2)2

(

1 +
pkbh

e

kb

σ2

)2 , (18)

which is always negative for any value of pkb. Thus, combining

rek(t) with exp and log functions results in a concave function.

Moreover, constraints (17b) and (17c) are linear constraints.

Therefore, (17) is a convex optimization problem. �

C. URLLC scheduling problem

For a given x̃ and p the URLLC scheduling problem can

be given as

P3: maximize
z

1

µ
logEh

[

exp

(

µ
K
∑

k=1

rek(t)

)

]

(19a)

subject to Pr

( N
∑

n=1

run(t) ≤ ζL(t)

)

≤ Θ∗, (19b)

zkb(t) ∈ {0, 1, . . . ,M}, ∀k ∈ K, b ∈ B.
(19c)

The optimization problem (19) is a combinatorial optimiza-

tion problem which is an NP-hard problem for which it is

difficult to obtain a closed-form solution. To simplify (19),

we replace the integer variable zkb by a continuous weighting

variable wkb ∈ [0, 1], where wkb is the puncturing weight

of the RB b by URLLC traffic, i.e., more resources will

be punctured from the RBs with higher weighting values.

Therefore, we can approximate the eMBB data rate as

r̃ekb(t) = fb

(

1− wkb(t)
)

log2

(

1 +
pkb(t)hkb(t)

σ2

)

. (20)

Then, using the definition of zkb(t), i.e., the number of

punctured mini-slots from the RB b of eMBB user k at time

slot t, the URLLC data rate in (4) is modified as

r̃unb(t) =
fbwkb(t)

N
log

(

1 +
punb(t)h

u
nb(t)

σ2

)

−

√

Du
nb(t)

cunb(t)
Q−1(ϑ). (21)

We use the Markov’s Inequality to represent the chance

constraint (19b) as a linear constraint:

Pr

[

∑

n∈N

run(t) ≤ ζL(t)

]

≤
ζE[L]
∑

n∈N

run(t)
. (22)

Accordingly, the URLLC resource allocation problem can

be reformulated as follows:

P̃3: maximize
w

1

µ
logEh

[

exp

(

µ
K
∑

k=1

r̃ek(t)

)

]

(23a)

subject to
∑

n∈N

r̃un(w) ≥
ζE[L]

Θ∗
, (23b)

0 ≤ wkb ≤ 1, ∀k ∈ K, b ∈ B. (23c)
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Algorithm 1 : DRRA Algorithm for the eMBB/URLLC

coexistence Problem

1: Initialization: Set i = 0, ǫ > 0, and find initial feasible

solutions (x̃(0),p(0),w(0));
2: Decompose P into P1, P2, and P3;

3: Relax and transform, respectively, the integer variables in

P1 and P3 to their continuous form P̃1 and P̃3;

4: repeat

5: Compute x̃(i+1) from P̃1 at given pi, and zi;

6: Compute p(i+1) from P2 at given x̃(i+1), and zi;

7: Compute w(i+1) from P̃3 at given x̃(i+1), and p(i+1),

and set z(i+1) =
⌊

M ×w(i+1)
⌋

;

8: i = i+ 1;

9: until ‖ G(i)−G(i+1)

G(i) ‖ ≤ ǫ;

10: Generate a binary solution x∗ from x̃(i+1) by using the

rounding equation in (14) and solving (15);

11: Then, set
(

x∗,p∗ = p(i+1), z∗ = z(i+1)
)

as the desired

solution.

Lemma 3. For a given x̃ and p, (23) is a convex optimization

problem.

Proof. It is clear that rek(t), ∀k ∈ K is a linear with respect

to wk and combining it with exp and log functions gives

a concave function, for all 0 ≤ wkb ≤ 1. Furthermore,

constraints (23b), and (23c) are linear constraints with respect

to w. Maximizing a concave objective function with linear

constraints is a convex optimization problem. This proves the

convexity of (23). �

We obtain an equivalent relation of the number of punctured

mini-slots zkb with parameters M and wkb, i.e., z(i+1) =
⌊

M ×w(i+1)
⌋

, which ensures constraint (19c).

Next, we analyze the quality of rounding technique by mea-

suring the integrality gap which measures the ratio between

the value of G(x̃∗,p∗, z∗)+α∆ achieved by feasible rounded

solution and the value of G(x̃∗,p∗, z∗) achieved by the relaxed

solution. According to the definition and proof of integrality

gap in [27], we have the following definition and remark:

Definition 1. Given G(x̃∗,p∗, z∗) and its rounded problem

G(x̃∗,p∗, z∗) + α∆, the integrality gap is defined by:

̺ = max
x̃

G(x̃∗,p∗, z∗) + α∆

G(x̃∗,p∗, z∗)
, (24)

where the solution of G(x̃∗,p∗, z∗) is obtained through relax-

ation of x, while the solution G(x̃∗,p∗, z∗)+α∆ is obtained

after rounding the relaxed variable. We consider that the best

rounding is achieved when ̺ (̺ ≤ 1) is closer to 1.

Remark 1. Given G(x̃∗,p∗, z∗) whose instances form a

convex set, for every relaxation, the oblivious rounding scheme

defined as G(x∗,p∗, z∗) is individually tight [27].

Algorithm 1 starts by initializing i = 0, setting ǫ to

a small positive number, and finding initial feasible points

(x̃(0),p(0), z(0)). Then, the algorithm starts an iterative pro-

cess. At each iteration i+1, the solution is updated by solving

P̃1, P2, and P̃3 until achieving ‖ G(i)−G(i+1)

Gi ‖≤ ǫ. Next,

Algorithm 1 generates a binary solution for x̃(i+1) using the

rounding technique in (14) and solving (15), where the best

rounding is achieved when ̺→ 1.

The value of ǫ is selected to guarantee an ǫ-optimal solution

such that ‖ G(i)−G(i+1)

Gi ‖≤ ǫ is satisfied. An ǫ-optimal solution

is defined as (x∗,p∗, z∗) ∈ {x,p, z|x ∈ X ,p ∈ P, z ∈
Z,G(x,p, z)− G(x̄, p̄, z̄)}, where G(x̄, p̄, z̄) is globally op-

timal [28]. According to the convergence analysis in Appendix

A, the algorithm converges sub-linearly in the order of 1/ǫ.

V. INTELLIGENT URLLC SCHEDULING: DEEP

REINFORCEMENT LEARNING BASED APPROACH

In the previous section, we have proposed a DRRA algo-

rithm to solve the eMBB resource allocation problem and

find an approximate solution for the URLLC scheduling

problem. The URLLC scheduling obtained by the DRRA

algorithm may violate the URLLC reliability constraint at the

worst case conditions due to the relaxation applied to the

probability constraint. In practice, URLLC traffic is random

and sporadic; thus, it is necessary to dynamically and intelli-

gently allocate resources to the URLLC traffic by interacting

with the environment. Therefore, we propose a DRL-based

algorithm to tackle the dynamic URLLC traffic and channel

variations. In this algorithm, the URLLC reliability constraint

is dynamically verified and the system parameters are adjusted

as per URLLC requirements. Going further, we leverage the

URLLC scheduling results obtained by the DRRA algorithm

to learn the proposed DRL-based algorithm at the initial

start to improve its convergence time. Hence, combining the

advantages of the optimization-based algorithm (DRRA) and

the DRL-based algorithm compound in a reliable and efficient

resource allocation mechanism.

Generally, a reinforcement learning model is defined by its

action space A, state space S , and reward R(t). The algorithm

takes an action a(t) ∈ A at each state s(t) ∈ S and receives

the reward R(t).

1) State space: We consider the state space with the

tuples defining the state of each eMBB user, i.e., the allo-

cated RBs, transmission power, and channel variations, and

URLLC traffic states, i.e., number of arrived URLLC packets

and channel variations, at each decision epoch (time slot).

Therefore, the state at time slot t can be defined as s(t) =
{x(t),p(t),he(t), L(t),hu(t)}. In order to reduce the state

space dimensions, we define r̂ek(t) as the data rate of eMBB

user k without puncturing:

r̂ek(t) =
∑

b∈B

xkb(t)fb log2

(

1 +
pkb(t)hkb(t)

σ2

)

, (25)

which depends on the allocated RBs, allocated power, and

channel state. Therefore, the state space at time slot t can be

reduced to s(t) = {r̂e(t),hu(t), L(t)}.

2) Action space: The action space is defined as the number

of punctured mini-slots of each RB, a(t) = {zkb(t), ∀k ∈
K, b ∈ B}, which is a B ×M puncturing matrix.
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3) Reward: Considering the requirements of eMBB and

URLLC services, we formulate the reward function as follows:

R(a(t), s(t)) = g(t) + φ(t)E

[ N
∑

n=1

run(t)− ζL(t)

]

, (26)

where φ(t) is a time-varying weight that ensures the URLLC

reliability over time slots as the network states change dynam-

ically. We define φ(t) as follows:

φ(t+ 1) = max {φ(t) + Θ(t)−Θmax, 0} , (27)

where Θ(t) is the estimated outage probability at time slot

t defined in (7) which can be obtained using an empirical

measurement of the number of time slots (in the last T slots)

where
∑

n∈N run(t) ≤ ζL(t) over T .

The agent aims to choose a policy π(a, s) = {πm
b , ∀b ∈

B,m ∈ M}, where πm
b is the probability of puncturing m

mini-slots from the RB b given the network state s(t). Specif-

ically, the agent observes the network state s(t) and makes a

decision on the punctured resources from each RB based on

its learned policy strategy. After that, the agent calculates the

immediate reward R(t) from (26) based on the selected actions

and provides the new network state information to the agent

for the current obtained reward. Finally, the agent learns a new

policy in the next decision epoch according to the feedback.

Let Qπ(s,a) denote the cumulative discounted reward with

a given policy π, defined as

Qπ(s,a) = E

[

∞
∑

t=0

γ(t)R
(

s(t),a(t)
)

|s0 = s, π

]

. (28)

The function Qπ(s,a) can be calculated using the Bellman

equation [29]:

Qπ(s,a) = E
[

R
(

s(t),a(t)
)

+Qπ
(

s(t+ 1),a(t+ 1)
)]

.
(29)

Let J(π) be the network objective reward value, which is

defined as [29]:

J(π) = E

[

Qπ(s,a)
]

=

∫

S

∫

A

π(s,a)Qπ(s,a)dads. (30)

The objective is to find the policy that maximizes J(π).
We observe in (30) that it is possible to optimize the policy π
using different techniques such as the Q-learning, and policy

gradient techniques. However, applying the Q-learning method

may fail to find the optimal policy in real-time as the learning

rate of the Q-function is slow [30], [31]. The policy gradient

can provide a good policy with a faster convergence rate than

Q-learning. Therefore, we propose a policy gradient based

actor-critic learning (PGACL) algorithm to learn policies by

combining the policy learning and value learning with a good

convergence rate. The PGACL learning has the ability to

optimize the policy with a fast convergence rate and a low

computational cost by leveraging the gradient method.

A. PGACL algorithm for URLLC scheduling

The PGACL consists of two main parts, namely the actor

and the critic. The actor part controls the policy based on the

network state, while the critic part evaluates the selected policy

by the reward function as shown in Fig. 3.

Figure 3: The actor-critic based learning for URLLC

scheduling problem.

1) The actor part: The actor updates the policies based on

the policy gradient method. The policy is initially built based

on a parameter vector θ as πθ(s,a) = Pr(a|s,θ). Here, the

gradient of the objective function in (30) with respect to θ is

as follows:

∇θJ(πθ) =

∫

S

∫

A

∇πθk
Qπθ (s,a)dads. (31)

The parameterized policy πθ(s, a) is defined by the Gibbs

distribution as follows [29]:

πθ(s,a) =
exp(θΦ(s,a))

∑

a′∈A exp(θΦ(s,a′))
, (32)

where Φ(s, a) is the feature vector.

Finally, the vector θ is updated using the gradient function

in (31) as follows:

θ(t+ 1) = θ(t) + ρa∇θJ(πθ), (33)

where ρa is the learning rate of the actor.

2) The critic part: The objective of the critic part is to

evaluate the policy that the learning algorithm searches. The

function estimator is used to approximate the value function

as Bellman equation fails to compute the Qπ(s,a) function

for the infinite states [30]. Specifically, the linear function

estimator is applied to evaluate the value function. Hence, the

approximated value function is given as

V (s,a) = vTϕ(s,a) =
∑

i∈S

viϕi(s,a), (34)

where ϕ = [ϕ1(s,a), . . . , ϕS(s,a)]
T denotes the basis func-

tion vector, v(s,a) = (v1, . . . , vS)
T is a weight parameter

vector. To compute the error between the estimated and real

values, the critic uses the Temporal-Difference (TD) method,

defined as

δ(t) = R(t+1)+γV
(

s(t+1),a(t+1)
)

−V
(

s(t),a(t)
)

. (35)
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Figure 4: Block diagram of the proposed DRRA-PGACL framework.

The weights parameter vector v(s,a) is updated by the

gradient descent method using the linear function estimator

in (34) as follows:

v(s(t+ 1),a(t+ 1)) = v(s(t),a(t)) + ρcδk(t)∇vV (s,a)

= v(s(t),a(t)) + ρcδ(t)ϕ(s,a),
(36)

where ρc is the critic learning rate. Finally, the critic updates

the value function in (34) based on value of v(s,a) in (36).

The block diagram of the proposed DRRA-PGACL frame-

work is shown in Fig. 4. First, the gNB allocates resources

to eMBB users based on the optimal results obtained by the

DRRA algorithm and forwards it, in addition to the current

network state, to the PGACL algorithm. The experience pool

of the proposed PGACL algorithm is initialized according to

the current optimal solution obtained by the DRRA algorithm.

Moreover, the URLLC reliability weight φ is initialized ran-

domly. Then, the PGACL algorithm selects an action accord-

ing to the current policy. During the first T̂ learning steps,

the PGACL algorithm replaces the selected action by z∗(t)
obtained by the DRRA algorithm. Next, the PGACL algorithm

executes the selected action, observes the immediate reward

R(t) and next state s(t + 1), and stores the experience tuple

{s(t),a(t), R(t), s(t+1)} in the experience pool. The network

is trained by sampling random tuples from the experience pool.

Finally, the value of φ(t) is updated according to (27). In

the next section, we have detailed simulations to show the

convergence time and performance of the proposed algorithms.

VI. PERFORMANCE EVALUATION

In this section, we validate the efficacy of our proposed al-

gorithms via comprehensive experimental analysis. We assess

the performance of proposed solution approach for different

parameter settings. To that end, we compare our results with

the following state-of-the-art schedulers: 1) MAT [15]: one-

sided matching game is used to take-over the eMBB users re-

sources for supporting URLLC traffic, 2) LMCS [32]: URLLC

traffic is scheduled by dropping eMBB users with lowest

Table II: Simulation Parameters

Parameter Value

Cell radius 300 m

TTI length 1 ms

Time-frame length 10 ms

Number of sTTIs in each TTI 7

Number of sub-carriers per RB 12

Number of OFDM symbols in
each time slot

14

Number of OFDM symbols in
each mini-slot

2

Sub-carrier-spacing 15 kHz

Total system bandwidth 20 MHz

URLLC packet size 32

URLLC traffic model Poisson process with rate λu

eMBB traffic model Full-buffered

Actor learning rate 10−5

Critic learning rate 10−3

Mini-batch size 32

modulation coding scheme (MCS), 3) Sum-Rate: puncturing

strategy is adopted to maximize the average sum-rate of eMBB

users, and 4) Sum-Log: wireless resources are allocated so

as to maximize the sum-log of eMBB users data rate, i.e.,

proportional fair allocation.

A. Simulation Environment

We consider a wireless network, where one gNB is deployed

at the center of the coverage area with a radius of 200 m. A

number of eMBB and URLLC users are distributed randomly

within the coverage area. The duration of a time slot is set to 1
ms and each time slot is further divided into 7 equally spaced

mini-slots. Each RB is composed of 12 subcarriers with 14
OFDM symbols and each subcarrier has a subcarrier-spacing

of 15 kHz. Thus, the bandwidth of each RB is 180 kHz and

each mini-slot consists of 2 OFDM symbols. Moreover, the

total system bandwidth is set to 20 MHz. We consider the

arrival of URLLC packets in each mini-slot follows Poisson

process with rate λu and the size of each packet is 32 bytes.
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Figure 5: The Jain’s fairness among
eMBB users.

Figure 6: Average per user eMBB data
rate.

Figure 7: CCDF and PDF of the sum
eMBB data rate.

The complete list of simulation parameters is given in Table

II.

B. Performance analysis of the DRRA algorithm

We first study the performance of the proposed DRRA

algorithm, in the eMBB resource allocation phase, for different

parameter configurations and compare it with the Sum-Rate

baseline, where the objective is to maximize the sum-rate of

all eMBB users. Specifically, we study the fairness among

eMBB users in Fig. 5 for the proposed DRRA algorithm under

different settings and compare it to the Sum-Rate approach.

The fairness among eMBB users is calculated based on the

Jain’s Fairness index. As shown in Fig. 5, increasing the value

of µ negatively leads to more risk-averse and hence reduces

the variance of eMBB users’ data rate. We can see from Fig.

5 that µ = −10 ensures fairness by around 90%. However, the

fairness index is breaking down when we set the value of µ to

−0.1 as the algorithm nears to the risk-neutral case where the

algorithm maximizes the average sum data rate giving results

closer to that of the Sum-Rate approach. Furthermore, the Sum-

Rate approach gives the worst fairness as its objective is to

maximize the average sum data rate only without considering

its variance, i.e., it allocates more resource to users at good

channel states. In Fig. 6, we study the average per user data

rate for different values of µ. The Sum-Rate approach provides

the highest data rate as its objective is to maximize the average

data rate without considering the QoS requirements of each

eMBB user resulting in unreliable transmission. However, the

proposed DRRA algorithm with lower values of µ gives lower

average data rate as the algorithm gives higher priority to the

variance and hence allocates more resources to the users at bad

channel states ensuring more reliable transmission. Moreover,

setting µ to high values gives results comparable to the Sum-

Rate approach.

In Fig. 7, we plot the complementary cumulative distribution

function (CCDF) and the probability density function (PDF)

of the eMBB data rate calculated over time for different values

of µ. Setting µ to higher negative values degrades the eMBB

sum data rate while reducing its variance which leads to more

stable and reliable eMBB transmissions over time. As shown

in Fig. 7, the average eMBB sum data rate is around 50 Mbps

and it varies from 40 Mbps to 60 Mbps when µ = −5.0.

However, setting µ = −10.0 gives data rate between 45 Mbps

to 52 Mbps resulting in a stable eMBB transmission.

Figure 8: Convergence of the reward value over time slots.

C. Convergence analysis of the PGACL algorithm

We study the convergence of the proposed optimization-

aided PGACL algorithm, i.e., pre-trained using the results

obtained by the DRRA algorithm, and compare it with the

Random-Start PGACL approach, where the PGACL algorithm

is initialized with random data. Specifically, Fig. 8 shows

the convergence of the reward function over time. As shown

in Fig. 8, the algorithm incurs a worse performance at the

beginning when initializing it with a random data and improves

over time. On the other hand, the proposed optimization-

aided PGACL algorithm leverages the results of the DRRA

algorithm for training during the first time slots enabling

fast convergence and hence achieving better response to the

dynamic environment.

D. URLLC reliability analysis

First, we discuss the convergence of the URLLC outage

probability during the learning process in Fig. 9. It is clear

that the outage probability converges to a value lower than

Θ∗ as the algorithm checks the reliability constraint at each

time slot and then updates the value of φ(t) to ensure the

URLLC reliability constraint. Moreover, the updating values

of φ(t) over time slots based on the proposed updating rule

in (27) is included in Fig. 9. Next, we discuss the worst case

of the URLLC reliability obtained by the DRL-based PGACL

algorithm and compare it with that of the optimization-based

DRRA algorithm in Fig. 10. We plot the CCDF of the URLLC

reliability to emphasize its tail distribution. It is shown that the
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Figure 9: The convergence of the outage probability.

Figure 10: CCDF of the URLLC outage probability.

DRL-based PGACL algorithm minimizes the tail-risk of the

URLLC outage probability and ensures its values less than

Θ∗ while the optimization based DRRA algorithm fails to

capture the worst case violating the URLLC reliability. The

DRL-based PGACL algorithm learns the URLLC traffic and

channel variations and adjusts the URLLC weight dynamically

based on (27), which leads to more reliable transmissions.

However, the optimization-based DRRA algorithm fails to en-

sure stringent outage probability due to the applied relaxation

methods to get a convex form. As shown in Fig. 10, the outage

probability obtained by the DRRA algorithm may violate the

reliability constraint with a violation probability around 0.18
when setting Θ∗ = 0.04 while the PGACL algorithm can

ensure stringent reliability.

E. Impact of URLLC traffic on eMBB reliability

We study the impact of URLLC traffic on the eMBB

reliability and compare the results obtained by the proposed

risk-averse based approach with the MAT, LMCS, Sum-Log,

and, Sum-Rate baselines. The eMBB reliability is calculated

as the number of eMBB users with data rate higher than a

target rate Rmin divided by the total number of eMBB users7.

7We quantify the reliability of eMBB users as the proportion of satisfied
eMBB users for the given channel conditions and incoming URLLC traffic.
Thus, this measurement translates well to capture the eMBB reliability defined
by the variance part in the formulated problem (6).

Fig. 11 shows that the proposed algorithm guarantees higher

reliability as compared to the others baselines. In the Sum-

Rate approach, the algorithm tries to maximize the sum data

rate of eMBB users by puncturing eMBB users with low data

rate. However, protecting eMBB users having higher data rate

eventually degrades the reliability of eMBB transmissions. In

the LMCS approach, URLLC traffic is scheduled on the eMBB

users with low MCS. A lower code rate is used in poor channel

conditions implementing low-order modulation schemes such

as BPSK and QPSK, which are more robust and can tolerate

higher levels of interference. Thus, we can notice from Fig.

11 that LMCS gives results close to Sum-Rate. However, in

the MAT approach, a one-sided matching game is applied to

schedule URLLC traffic on eMBB users given the objective

to maximize the average eMBB data rate while protecting

the QoS requirements of eMBB users. Thus, we can notice

that MAT gives better eMBB reliability compared to LMCS

scheduler. Furthermore, the Sum-Log approach distributes

URLLC traffic equally among all eMBB users resulting in

moderated reliability. However, the proposed risk-averse al-

gorithm considers the variance of eMBB users and allows to

protect users at bad channel states by puncturing those at better

states, which further enhances eMBB reliability. We can also

see that eMBB reliability decreases when increasing Rmin.

As shown in Fig. 11, the proposed approach keeps the

eMBB reliability higher than 90% at Rmin = 1.5 Mbps while

the Sum-Rate fails to maintain an acceptable reliability, which

breaks down to lower than 75%. Moreover, the proposed

approach provides reliability higher than 80% when increasing

Rmin to 2.5 Mbps while the reliability obtained by the Sum-

Rate breaks down to lower than 60%. Furthermore, it is

observed that an increase in the URLLC traffic decreases the

eMBB reliability as we need to puncture more resources from

eMBB users.

F. Impact of URLLC traffic on eMBB data rate

Finally, we discuss the impact of URLLC traffic on the

average eMBB data rate. In doing so, we plot the average

eMBB data rate for different URLLC traffic loads and compare

the results obtained by the proposed algorithm with other

baselines. Fig. 12 shows that increasing URLLC traffic de-

grades the eMBB data rate. This is because the gNB prioritizes

URLLC traffic over eMBB traffic and allocates more resources

to satisfy URLLC reliability requirements. Moreover, the Sum-

Rate approach provides higher average data rate compared

to the other approaches as its objective is to maximize the

linear summation of eMBB data rate only without considering

the eMBB reliability. Moreover, the LMCS assigns higher

puncturing weight to the eMBB users with lower MCS, and

thus resulting in higher average data rate compared to the

proposed approach. However, markedly different from these

state-of-the-art approaches, the proposed algorithm considers

both the average eMBB rate and its variance, and hence

achieves a balance between data rate and reliability, as shown

in Fig. 11 and Fig. 12.

As shown in Fig. 12, the Sum-Rate approach provides

an average sum eMBB data rate of 64 Mbps when the
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Figure 11: eMBB reliability for different L and Rmin.

Figure 12: Average eMBB data rate for different values of L.

average URLLC load is 10 (packets/time slot) and decreases

to 55 Mbps when increasing the average URLLC load to 90
packets/time slot. However, the average sum data rate obtained

by the proposed approach varies from 55 Mbps to 40 Mbps

when increasing the average URLLC load from 10 to 90
packets/time slot.

VII. CONCLUSION

In this paper, we have studied the coexistence problem

of eMBB and URLLC services in 5G networks. We have

formulated a risk-sensitive based formulation to improve the

reliability of both eMBB and URLLC services. In particular,

we have proposed an optimization-aided DRL-based approach

that combines the advantages of optimization and learning

methods for solving the resource allocation problem. Specif-

ically, resources are allocated to eMBB users at the eMBB

resource allocation phase. Moreover, the eMBB resource allo-

cation phase is leveraged to schedule the URLLC traffic at the

initial stage and its results are used to learn the DRL-based

algorithm to enhance its convergence. In the URLLC schedul-

ing phase, we have proposed a DRL-based learning algorithm

in the actor-critic architecture to distribute the URLLC traffic

across the ongoing eMBB transmission. Through extensive

simulations, we have verified that the proposed algorithms can

satisfy the stringent requirements of URLLC while protecting

the eMBB reliability.

APPENDIX A

CONVERGENCE ANALYSIS

The proof is based on [33] which shows the global conver-

gence condition and the asymptotic convergence rate by using

the assumption of the Kurdyka-Lojasiewicz property.

The general block multi-convex function is in form of

min
x∈X

G(x1, . . . ,xs) := g(x1, . . . ,xs) +
s

∑

k=1

hk(xk) (37)

where variable x is decomposed into s blocks x1, ...,xs,

g is assumed to be a differentiable and block multi-convex

function, hk is the convex function for each block, and a set

X is a block multi-convex set. In specific, the function g is a

convex function and the set X is a convex set of each block

xk while other blocks are fixed. Note that the joint constraint

among blocks can be modeled in X , and individual constraints

for each block can be modeled as the indicator function hk
for each block xk. The convergence analysis requires the

following assumptions

Assumption 1. G is continuous in dom(G) and

inf
x∈dom(G)

G(x) > −∞.

Assumption 2. A function ψ(x) satisfies the Kurdyka-

Lojasiewicz (KL) property at point x̄ ∈ dom(∂ψ) if there exists

θ ∈ [0; 1) such that

|ψ(x− ψ(x̄))|

dist(0, ∂ψ(x))
(38)

is bounded around x̄, where dom(∂ψ) = {x : ∂ψ(x) 6= 0}
and dist(0, ∂ψ(x)) = min{‖ y ‖: y ∈ ∂ψ(x)}.

Assumption 3. The initial point x0 is sufficiently close to the

critical point x̄, and the value of the function G(xn) for each

iteration n is always greater than the value function at x̄ (i.e.,

G(xn) > F (x̄), ∀n ≥ 0).

Therefore, with regard to the Assumptions 1-3, the sequence

xn converges globally to the closest critical point x̄ (or

stationary point) [Theorem 2.8 in [33]] by proving the bounded

of
∑∞

n=N ||xn − xn+1||. According to Theorem 2.9 in [33],

the asymptotic convergence rate depends on the parameter θ.

When θ = 2/3, we obtain the sub-linear convergence rate

O( 1
n
).
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