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 This paper set out to supplement new studies with a brief and 

comprehensible review of the advanced development in the area of the 

navigation system, starting from a single robot, multi-robot, and swarm 

robots from a particular perspective by taking insights from these biological 

systems. The inspiration is taken from nature by observing the human and the 

social animal that is believed to be very beneficial for this purpose. The 

intelligent navigation system is developed based on an individual 

characteristic or a social animal biological structure. The discussion of this 

paper will focus on how simple agent’s structure utilizes flexible and 

potential outcomes in order to navigate in a productive and unorganized 

surrounding. The combination of the navigation system and biologically 

inspired approach has attracted considerable attention, which makes it an 

important research area in the intelligent robotic system. Overall, this paper 

explores the implementation, which is resulted from the simulation 

performed by the embodiment of robots operating in real environments. 

Keyword: 

Navigation 

Intelligent 

Problems 

Methods 

Algorithms 

Copyright © 2017 Institute of Advanced Engineering and Science.  

All rights reserved. 

Corresponding Author: 

Siti Nurmaini,  

Robotic and Control Research Lab., Faculty of Computer Science, 

Universitas Sriwijaya, 

Jl. Raya Palembang-Prabumulih, KM. 32 Indralaya Ogan Ilir, Palembang, Indonesia. 

Email: sitinurmaini@gmail.com 

 

 

1. INTRODUCTION 

One of the most significant and vital issues in the study of mobile robot revolves around the 

navigation system due to the need of clearly pinpointing it in the design phase. It is important to note that 

several issues have been solved which include perception, cognition, action, human-robot interaction, and 

control system [1]-[5]. In most cases, the problems can be easily overcome when a mobile robot is restricted 

to a finite domain, for example, a house, factory, and office. A number of capabilities which include control 

ability, obstacle avoiding, trajectory planning, and safe distance to the goal are needed by a mobile robot in 

order to produce excellent navigation. Each navigation system must address the aforementioned common 

designs to ensure that all tasks can be accomplished. The conventional control systems have proposed a 

number of approaches to solve the existing challenges, which involve using a rigid model but with several 

constraints [6]-[9]. However, the mobile robot interactions among sensor, actuator, and its environment are 

known to be problematic to express in mathematical models [10]-[14]. Therefore, it is believed to restrict the 

relevance of such control system design in this application [15],[16]. In addition, the conventional control 

approaches tend to disintegrate mobile robot behaviors into a sense model-plan-act type [17]. Subsequently, 

it is discovered to produce complex equations for both environmental mapping and hard computation. Apart 

from that, the model is only appropriate for a certain type of environmental situation. Therefore, uncertainty 

and imprecision of the surrounding may cause the mobile robot to be stacked at a local minimum or stopped 

at one point. Moreover, the complexity of mobile robot behavior becomes greater when a number of tasks are 

added to the control system for the purpose of achieving the target [18]-[20]. 
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The navigation system is constructed based on learning techniques that provide the competence to 

reason under environmental uncertainty as well as to observe from different exposure, which is very 

necessary to ensure that the robot can be controlled and able to produce a good performance. However, the 

design will be difficult to build as a result of several factors such as inherent uncertainties in the unorganized 

surrounding, incomplete perceptual information, and imprecise actuators. In light of this, the navigation 

system design should be able to do the followings: (i) react effectively to unpredictable situations 

immediately after they happen, (ii) consider multiple concurrent requirements in the process, and (iii) reach 

the target based on a specification object. Most of the established works mainly considered navigation tasks 

only for single robot. Meanwhile, a great growing interest has been observed in cooperative approaches, 

which makes communication as one of the vital focus [21]-[23]. In some environmental situations, the 

navigation functions are extremely difficult to be overcome using a single robot. The large area for sensing 

tends to be the reason that causes the environmental condition to pose a post-disaster relief and target 

searching in military applications. Hence, a single robot must be designed with powerful structures and 

hardware equipment to ensure all the functions are in order [24]. In this case, a more expensive design cost, 

computational resources, and larger memory are highly required to overcome this issue. However, it is 

important to note that if the robot fails, the whole system may be affected.  

Currently, the simplest form of a group of robots based on a network developed by many 

researchers [25]-[28]. The robotics system is made to function based on a cooperative approach in order to 

communicate with each other for the purpose of conducting tasks that are difficult to be performed on their 

own. Generally, this particular joint system is known as swarms robots which are made to function based on 

their biological counterparts and with system solution that is highly dependent on three characteristics, 

namely self-organization, self-adaptiveness, and emergence [29]-[31]. The characteristics are based on the 

fact that the swarm’s organization originates “from within the system not imposed from outside or it comes 

from local interactions between individual robot in a decentralized way” [29],[30]. In some cases, they are 

required to move between two places whereby the collective navigation has made it possible to function 

[22],[29]-[33]. The swarm formation must be controlled due to the facts that all robots work in a particular 

group with one target. The swarm formation control is performed without a designated leader; hence, the 

control and communication system are highly desirable. On top of that, the swarm robots are simple 

hardware, which explains the limited computational cost. All requirements are very vital parameters in the 

design of the robot. However, it needs to be known that this is very difficult to compute in reality and may 

not be relevance to all possible surroundings. Therefore, these challenges must be overcome by developing 

simple and robust algorithms for the purpose of controlling and coordinating these very large groups of 

robots. The overall structure of this paper takes the form of five sections described as follows: Section 2 

offers a brief overview of the mobile robot navigation issue. Section 3 is concerned with the concise methods 

used by the navigation system. Section 4 presents a review on single robot compare to swarm robots 

navigation algorithm. Finally, Section 5 provides a concise summary of the entire findings of this study. 

 

 

2. MOBILE ROBOT NAVIGATION PROBLEMS 

The type of robot in the study of navigation can be divided into three systems, namely single robot 

system, multi-robots system, and swarm robots system. Generally, the differences between multi-robot and 

swarm robots rely on the form and task of a particular system. Multi-robot is designated as a small number of 

robots, which have different shapes and functions that are able to work together to achieve the same goal. On 

the other hand, swarm robots are described as a substantial amount of simple robots that have similar shape 

and function. Most of the time, they work together using a local communication and coordination in order to 

accomplish the tasks. In this case, a navigation system built in all mobile robots has allowed them to exploit 

the sensing, processing, and actuating capabilities in making a control decision. In this system, it is required 

for the mobile robot to find a route with less risk of colliding in order to travel from a starting point to 

another until the target destination is reached, which remains static in the case of single robot navigation. 

However, the obstacles in multi-robot and swarm robots are implemented to be static and dynamic in order to 

account for the case of the robots moving together in an unfamiliar surrounding to find the target. This 

further suggests that the robot can be a dynamic obstacle. Therefore, the implementation of all single robot, 

multi-robots, and swarm robots should be capable of moving in a real-time trajectory with many difficulties 

arising from the surrounding to arrive at the specific target. However, several considerations related to 

several issues concerning the implementation, uncertainties, imprecision, and incomplete information in real-

world unorganized surrounding. 

In the navigation process, the perception and cognition are the crucial tasks in acquiring knowledge 

about the environment as well as how to execute the control commands performed through several sensors 

and actuators. The navigational system of a mobile robot can be divided into four types based on the 
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interaction between the perception in the sensors process and control process in the actuators described as 

follows: map-based navigation, behavior-based navigation, learning based navigation, and communication-

based navigation. All the navigational tasks, behaviors, and types of the robot used in the navigation system 

presented in Figure 1 are further described in this section. 

 

 

 
 

Figure 1. Navigation system based on perception-actuation 

 

 

2.1. Mapping-based Navigation 

The navigation system with environmental mapping is possible to be described as a combination of 

three paramount competencies as follows: mapping, localization, and path planning [34]-[38]. Environmental 

mapping is built in the mobile robot using a memorizing approach to allow it to fully move and explore the 

environment.  In addition, the localization process is used for determining the present spot of the robot within 

the environmental mapping. The mean of deciding a particular movement to reach the goal using the map and 

localization process is known as a path planning process. All competencies tend to provide the robot with the 

capability to figure out its current location within its reference structure, which then leads to the planning of a 

path to reach a certain goal locations. On top of that, the navigation models based on this approach must 

compromise between maps and estimated position of the robot. It is very crucial for the process to ensure that 

the robot is able to control its approximate location given any situation and surrounding. However, there are 

some drawbacks to such approach, which include the fact that the approach relies only on the local sensing 

and environment. Hence, it is very necessary for it to also be equipped with powerful sensors or 

combinations. Finally, the algorithm must ensure that the uncertainties for all sensors element are able to 

produce imprecision and unpredictability when operating [15],[39]. 

 

2.2. Behavior-based Navigation 

There is a total of four competencies in behavior-based navigation: obstacle avoidance, wall 

following, corridor following, and target seeking. Behavior induced by numerous simultaneous goals is 

possible to be smoothly blended into a dynamic sequence of control action. Moreover, the navigation system 

design is expected to express acceptable behavioral traits that were set as the possible control action. Apart 

from that, it can cause possible conflict in the movement of the mobile robot, particularly when it works in an 

actual unorganized environment. Behavior-based navigation can be developed by combining two processes 

such as environmental mapping and robot behaviors. Specifically, the map represents environmental 

situation, while the robot move is utilized by its behavior. In another situation, the system should be applied 

in two conditions if only one of the two processes is used, which highly depends on the implementation and 

interaction with other concurrent robot behaviors. However, two major problems are bound to occur when 

this particular approach is employed: (i) the combination of two simple behaviors in forming a complex one, 

and (ii) the integration of more than two behaviors. 

 

2.3. Learning-based Navigation 

The conventional methods make it necessary for the robot to be designed in a powerful manner with 

the inclusion of several sensors, actuators, and controller without having to consider the troubles that may be 
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caused by the surrounding. Hence, several methods can be adopted by the navigation system in overcoming 

these challenges and issues. Previously published studies have proposed artificial intelligent methods to solve 

navigation problem, which is related to the process conducted based on learning ability. However, several 

key concerns must be taken into account in order to include artificial intelligent in mobile robot navigation, 

which is incomplete problems, imprecision, inaccurate, and uncertainty condition when they interact with 

possible surroundings. This particular system is only compatible with single robot behaviors and multi robot 

behaviors. However, a certain situation such as complex environment makes it very difficult for a robot to 

manage all tasks, thus producing more errors in a control process. Moreover, if some components in the 

system and the function of the robot failed to perform well; hence, it shows that the fault tolerance 

characteristic is not supported in large-scale environment. Therefore, considerably more research of 

intelligence navigation on mobile robot will need to be done in discovering new methods that can help to 

overcome the existing challenges. 

 

2.4. Communication-based Navigation 

A robotic system based communication is a new platform in the area of intelligence navigation on 

the mobile robot. In the case of navigation, the process is associated with the arrangement of huge amount of 

plain physical robots, which is conducted through local communication modification and sensing. In the 

world of robotic system, they are particularly known as swarm robots. Their operation requires a number of 

methods with some characteristic, which include simple autonomous platform, decentralized control, and 

several works on some sense of biological inspiration, and the importance of cooperation and coordination 

[30],[33],[40]-[42]. More specifically, swarm robots are unique because they communicate with each other 

instead of relying on the use of maps [43], map-building strategies [36], and external infrastructure [44]. 

However, the problems regarding the conflicting constraints of swarm robots are very hard to overcome, 

particularly concerning the situation whereby a dynamic surrounding requires an optimal path to be routed in 

actual-time and when a new restriction occurs. Apart from that, this problem arises due to the need of swarm 

robots to maneuver towards their target location while also trying to comply and adjust to their paths in 

considering for any possible incidence with other robots and static obstacles. Moreover, the presence of many 

robots and real-time constraints has caused the robots to compute their motions independently and in a 

decentralized manner. In this case, those animals that possess behavioral program are found to be flexible 

enough to adapt to the encountered environmental changes such as insect colonies [45],[46], flocks of birds 

[45],[47], school of fish [45],[48], and groups of amoeba [49]. The algorithm that is built based on the simple 

behavioral rule is for two purposes:  (i) ability to minimize the need for complexity in the information-

processing system, and (ii) ability to allow the production of behavior to optimize energetic expenditures.  

The entire nature of the system is caused by individual interaction with one another. Natural 

selection tends to favor optimization principles that utilize simple rules as well as inherent flexibility without 

the need to explicitly select certain features. Therefore, the navigation output will be robust, thus making it 

possible to deal with erroneous circumstances, which include sensors and actuators noise as well as the 

ability of fault tolerance characteristic. However, the optimization that is based on the nature of animal social 

approach possess a few disadvantages such as: (i) inability to control the robots motion, (ii) only able to be 

optimal locally, (iii) produce sloppy global movements when more than one robot maneuver in a complex 

environment, and (iv) the possibility of the robots to be a trap in a local minimum [50]-[52]. Therefore, there 

is an urgent need to address the existing challenges that are important to the design requirement which 

include actual-time, unorganized, and dynamic surrounding as well as the problems of imprecision, 

incomplete, and uncertainty in a single robot and swarm robots navigation system. On top of that, failed 

communication and imperfect algorithm are treated as particular concerns during the development of the 

navigation system. Finally, the performance of the entire robotic navigation systems can either be improved 

or at least not degraded if all the parameters have been analyzed. 

 

 

3. METHODS OF NAVIGATION SYSTEM 

In this section, the navigation systems are reviewed in depth for the purpose of providing a number 

of vital information to the study of single robot being transformed to swarm robots. The comparative analysis 

of the three methods, namely conventional artificial intelligent, soft computing, and swarm intelligence 

which are related to mobile robot navigation system is presented in Figure 2. In addition, all the definitions 

and process related to this research will be further described in this section, including a comprehensive 

discussion of the findings of this study.  
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3.1. Conventional Artificial Intelligence 

The most primitive navigation strategy was developed to produce robots that are able to accomplish 

several tasks assigned to them [53]-[55]. However, the adaptive technique must be combined with particular 

strategy. Moreover, the navigation only seems to work on local environment; therefore, the robot will have 

difficulties to recognize and control its motion if the surrounding is always changing which will consequently 

affect the accomplishment of the mission.  In addition, a huge amount of conventional artificial intelligence 

(AI) approaches are necessary to overcome the existing limitation which include artificial potential field 

methods [56], virtual target approach [57], landmark learning [58], tangent graph [59], path velocity 

decomposition method [60], accessibility graph [61], space–time concept [62], incremental planning [63], 

relative velocity approach [64], reactive control scheme [17], curvature-velocity method [65], dynamic 

window approach [9], and Simultaneous Localization and Mapping (SLAM).  

Unfortunately, the mentioned conventional AI approaches seem to undergo the following 

disadvantages: (i) local controller [66], (ii) high computational resources that are caused by a large number of 

state [67],[68], (iii) absence of optimization module [69], (iv) regular dead-lock situation due to local 

minimum [70], (v) absence of passage between closely spaced obstacles which results in oscillations [56]. 

Therefore, it is highly recommended for the control strategy to be developed in order to produce an 

acceptable solution to mobile robot navigation problems. 

 

 

 
 

Figure 2. Intelligent robotics navigation system algorithms 

 

 

3.2. Soft Computing 

The purpose of Soft Computing (SC) methods is to achieve a robust and low-cost solution. Hence, 

this method has proposed a methodology that utilizes a number of knowledge in reference to the remarkable 

ability of the human mind to reason and learn [71]. On top of that, it also provides an alternative solution to 

clarify some of the aforementioned navigation problems. This particular method is different from the 

conventional AI methods because it does not produce imprecision, uncertainty, partial truth, and 

approximation. This technique has been extensively utilized in the design of mobile robot application and has 

resulted in good performance [72]-[75]. The ability to deal with unorganized and unfamiliar environments 

has made this a suitable technique to address robotic control issues as well as navigation problem. These 

techniques are believed to bring effective methods and improve the intelligence in mobile robot navigation. A 

few type of the soft computing techniques include fuzzy logic system, neural network, and genetic algorithm. 

The fuzzy logic system is an excellent solution for mobile robot navigation due to the systems’ 

inherent imprecision, especially type-1 fuzzy logic system (T1FLS). However, T1FLS is incapable of fully 

handling the uncertainties [76] as a result of the restricted modeling of T1FLS membership functions (Mfs) in 

minimizing the effect of uncertainty. Meanwhile, the uncertainty value will disapear when MFs can at least 

be given partially [77]. In this case, the error will still occur and a small error is still significant because it has 

the ability to negatively affect the navigation performance [78]. Recently, a new kind of fuzzy logic known 

type-2 fuzzy logic system (T2FLS) has been established as the improved version of T1FLS and proven to be 
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successful in mobile robot navigation [79]-[81]. In particular, T2FLS are extremely beneficial in a situation 

whereby it is difficult to conclude the actual measurement [77]. Moreover, T2FLS are computationally 

intensive and hard to be built for actual-time application, especially for mobile robot navigation [82],[83]. 

Meanwhile, interval type-2 fuzzy logic system (IT2FLS) is proposed to simplify the computation. IT2FLS 

possess the possibility to solve the restrictions of T1FLS as well as to produce a new generation of the fuzzy 

system with improved performance of the navigation system [84],[85]. However, IT2FLS is still 

computationally in high demand compared to T1FLS [86]. 

Another case of navigation research reveals a surrounding that is imprecise, vast, dynamical, and 

unstructured. Hence, it is very important for a mobile robot to be able to understand a particular surrounding 

in order to reach the target without collisions [10].  Moreover, data processing, recognition, learning, 

reasoning, interpreting, decision-making, and action capacities must be endowed with perception. In order to 

build an adaptable navigation system in a mobile robot, neural networks (NNs) possess the ability to observe 

the situations and emulate the remarkable perception and pattern recognition for each environment. For the 

past few years, previously published studies have reported an issue in reference to NNs as well as its 

application in order to better assist the mobile robot to produce an advanced development of their operational 

capabilities in an unfamiliar surrounding [87]-[89]. The process of faulty or noisy data by the NNs is more 

valuable compared to the classical AI techniques because NNs are known to be highly tolerant to noises [90]. 

On top of that, numerous studies have successfully applied the NNs technique for the purpose of developing 

the model related to mobile robot navigation. However, the major disadvantage of conventional NNs 

technique refers to the repeated presentation of training data required in  actual-time, which often results in  a 

very long learning time. 

Reasoning, decision making, and learning have been proposed as part of the SC techniques; 

however, all results must be optimized in order to achieve an excellent performance in navigation system, 

especially in the effort of figuring out the optimal value of the target position. In complex optimization 

problem, Genetic Algorithm (GA) has been determined as one of the most strong algorithms. On top of that, 

GA is presented as an emerging optimization method and its fundamental properties have made GA as an  

attractive choice for finding a solution to the problem related to mobile robot navigation [91]-[93]. Apart 

from that, GA can also solve the following issues caused by the traditional search techniques which include 

the gradient-based methods: (1) high computational cost, (2) large memory spaces, and (3) time to consume 

[94]. However, the implementation of GA algorithm in mobile robot navigation finds it difficult to generate a 

global optimum solution as well as produce slow convergence [93]. 

All intelligent soft computing techniques possess different characteristics which include the ability 

to learn and explain the process of making the appropriate decision for a particular type of problem and not 

generalize it for others. In regard to this, neural networks possess a number of learning ability and excellent 

capability of recognizing patterns. However, neural networks are not competence in clarifying how decisions 

can be made [95]. On top of that, fuzzy logic systems are very good at determining their own decisions and 

addressing the reasons for inaccurate information and uncertainty [96]. However, they have difficulties to 

immediately obtain the rules that are set for the purpose of producing the best decisions. Evolutionary 

Algorithm (EA) generates an excellent performance in the optimization process which has been used in a 

great variety of applications with a high success rate. The algorithm imitates the manner evolution acts, 

which then allows the performance of controllers to be improved or be adapteds to different systems. 

However, GA is associated with random numbers that are probabilistic, locally optimum, and with slow 

convergence [97]. Several characteristics of soft computing technique in  mobile robot application are 

described in Table 1. However, there are a number of restrictions related to soft computing techniques which 

makes it hard for navigation tasks to be performed in large-scale environment. Finally, they are unable to 

guarantee the robustness and fault tolerance characteristic because they are related to centralized control 

architecture and does not support self-organization. 

 

 

Table 1. Soft computing performance in intelligent navigation 
Algorithm Process Behavior Adaptability Computational Word problems 

Type-1 Fuzzy 
Logic 

reasoning and 
decision- making 

perception to 
action 

low low rate uncertainty 
and imprecision environment 

Type-2 Fuzzy 

Logic 

reasoning and 

decision- making 

perception to 

action 

medium high rate uncertainty 

and imprecision environment 
Interval Type-2 

Fuzzy Logic 

reasoning and 

decision- making 

perception to 

action 

medium medium rate uncertainty and imprecision 

environment 

Neural Networks learning and 
adapting 

human capabilities 
to learn and adapt 

high high rate The dynamic environment 
under varying conditions 

Evolutionary 

Algorithm 

searching and 

optimizing 

human capabilities 

to learn and adapt 

high medium rate the dynamic environment 

under varying conditions 
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3.3. Swarm Intelligence 

Soft Computing method contradicts the method of Swarm Intelligence (SI) because its algorithms 

are developed based on the knowledge of individuals as human beings, whereas the algorithms of SI are 

established based on the behaviors of social creatures such as insects and the animal that live in groups. 

Hence, the behavior of social insect becomes the main concept of Swarm Intelligence (SI) which can be 

further categorized into autonomy, distributed functioning, and self-organizing for the purpose of 

constructing numerous artificial systems [30]. The implementation of SI method in navigation system 

especially in multi-robot and swarm robots are the result of distributed functioning, a communication for 

autonomy, as well as the cooperation and coordination of self- organizing with all the group of robots. 

Therefore, the proposed methods will have to consider the aforementioned requirements. Multi-robotic and 

Swarm robotics system seem to share the similar properties of SI, in which the cooperative behaviors of 

robots activities interacting locally with their environment is analyzed. Moreover, it produces an excellent 

performance in the navigation system, particularly for the complex system in a predefined environment. The 

different types of SI methods include particle swarm optimization (PSO) [104], ant colony optimization 

(ACO) [105],[106], bee colony optimization (BCO) [107], and firefly algorithm (FA) [108]. Similar to other 

methods, each of the methods under the SI approach tends to pose a number of strengths and limitations. 

However, there is no best optimization technique that can be used to solve the problems. It is important to 

note that the set of parameters and suitable methods are responsible for defining the quality of the swarm 

robots navigation solution. 

PSO algorithm is a population-based optimization method that was suggested by Kennedy and 

Eberhart in 1995. The insight of this method is extracted from the social behavior of a flock of bird and a 

school of fishes. In most cases, PSO is adopted in numerous optimization areas due to its exclusive searching 

mechanism, simple concept, computational efficiency, and easy implementation [98]. Hence, its simplicity 

has led to various robotics navigation problems, which are solved by utilizing PSO algorithm in order to 

produce good performance [24],[99]-[102]. The information is gathered from sensors on a real-time robot 

during the navigation process. This navigation process is comprised of three stages. First, the navigation issue 

is turned into an optimization problem. Next, the proper objective function is constructed in reference to the 

goal and obstacles. Finally, the key advantage of PSO refers to fast convergence in various complex 

optimizations and search challenges [103],[102]. Meanwhile, population-based heuristics are more expensive 

due to higher reliance upon the function values instead of the subordinate data. However, PSO is exposed to 

incomplete convergence, especially when it involves many possible conclusion or dimensions that can be 

optimized that can easily fall into local optima [109]-[111]. 

The Ant Colony Systems (ACS) is regarded as one of the heuristic approaches. Hence, the solution 

to the problem of combinatorial optimization is known as the ACS process, which was conducted in 

accordance with the innate nature of ants, particularly in the mechanism of cooperation and practice [112]. 

Meanwhile, another colony approach, which is in regard of heuristic algorithm, is known as Ant Colony 

Optimization (ACO). The key concept of ACO is to idealize a problem in regard to looking for the basic cost 

path in a graph. The ACO contradicts the ACS in the form of pheromone trails [105],[113],[114]. In the case 

of ACO, the pheromone is upgraded in two ways, which are locally and a global updating rule in order to 

adjust the pheromone level on the edges that is assigned to the finest existing ant tour. According to the 

literature, both ACS and ACO were discovered to generate robust and flexible skills in order to manage 

various optimization challenges. In addition, ACO has also been adjusted to number of odor source 

localization [41],[115],[116]. Other than that, it also presents two ant-inspired robot foraging algorithms, 

which generate a better arrangement between the robots [117]. Overall, the utilization of ACO algorithm in 

swarm robots applications tends to generate excellent achievement in the optimization process 

[31],[118],[119]. Nevertheless, the ACO algorithm in navigation system seems to possess a few 

disadvantages as a result of the dependent process of ACO, which results in the unclear time of convergence. 

Various natural systems have demonstrated that very basic individual organisms are able to form systems that 

can conduct extremely difficult work by dynamically communicating with one another.  

The artificial bee communities are deemed to share similar behavior and are regarded to be slightly 

different from the natural bees. Hence, the artificial bee colony optimization (BCO) is believed to be capable 

of solving constricted optimization issues. Apart from that, the BCO possess the ability to settle deterministic 

combinatorial problems, including combinatorial problems that are categorized by uncertainty [107]. Other 

than that, BCO has been utilized for the purpose of devising path in mobile robots [120]-[122]. The 

challenges of this study refer to the effort of finding out the trajectory of motion of the robots. This process 

begins from a predefined starting position to a permanent target position in the world map with the final aim 

of reducing the route distance of all the robots. The algorithm comprises of a recruitment method to 

collaborate the established findings with other robots of the swarm, including a navigation plan to navigate in 

an unfamiliar world. The BCO algorithm is useful in generating an effective solution to overcome the issues 
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of path planning, which consequently decrease the time for the path to emerge. However, the algorithm is 

local convergence, which is incapable of securing the global convergence because they are absolutely 

random [125]-[126]. Therefore, the algorithm must be improved in order to present an environment that is 

equipped with certainty, dynamic, and stochastic property.  

Firefly algorithm (FF) is known to generate short and rhythmic flashes. Specifically, the design of 

flashes is generally exclusive for a particular species. Two basic roles of such flashes are to draw the 

attention of mating partners (communication) and potential prey [108]. In the swarm robots application, 

firefly is utilized in the process of devising path as well as fault tolerance characteristic [127]-[129]. The path 

planning has become a major challenge in the navigation of mobile robots, with the focus of figuring out the 

best path with the minimum risk of collision in a given surrounding. Generally, there are different routes that 

can assist the robot to arrive at a particular target, but it is important to note that the best path has to be 

chosen based on the established guideline. 

 

 

Table 2. Swarm intelligence performance in intelligent navigation 
Algorithm Process Behavior Computational Word problems 

Particle Swarm 
Optimization 

aggregating 
and flocking 

coordinate motion and collective 
exploration 

low rate target seeking, path planning, 
localization 

Ant Colony 

Optimization 

foraging and 

trailing 

collective transport, task allocation 

and consensus achievement 

medium rate path planning, obstacle avoidance, 

trail avoidance, mapping 
Bee Colony 

Optimization 

foraging task allocation and consensus 

achievement 

low rate path planning, localization 

Firefly 
Algorithm 

gathering collective fault detection and group 
size regulation 

medium rate path planning and fault tolerance 

 

 

The key benefits of FA are described as the automatic subdivision as well as the competency to 

compromise with multimodality [123]. In the case of mobile robot navigation, it generates the outcomes in 

finding the perfect path with the following characteristics: shortest path, least energy consuming, or shortest 

time. However, it is possible for the swarm robots to be trapped into several local optimums as a result of the 

inability of firefly algorithm to recall or learn any past events with a better situation, thus causing them to 

move without the recollection of its previous better situation which can result in missing conditions [124]. 

All the approaches that can be used to describe the comparison between swarm intelligence algorithm and 

application in real-world problems are summarized in Table 2. 

Table 3 presents the main differences among conventional artificial intelligence, soft computing, 

and swarm intelligence approaches, particularly in terms of software, hardware, and algorithm requirements.  

 

 

Table 3. Comparison of three approaches in navigation system 
Performance Conventional AI Soft Computing Swarm Intelligence 

Processing time slow medium fast 

Computational high medium low 

Complexity high medium low 

Scalability low low high 

Adaptability nil low high 

Typical application single agent single agent/multi-agent multi-agent 

Environment known known/unknown unknown 

Algorithm design human experience human and animal behavior social animal 
Control architecture centralized centralized decentralized 

Design characteristic powerful hardware powerful hardware simple hardware 

Cost high high low 

 

 

4. SINGLE ROBOT VS SWARM ROBOTS NAVIGATION ALGORITHMS 

4.1. Single Robot 

Intensive reviews have been conducted between conventional AI and Soft Computing (SC) research 

in mobile robot navigation systems. Table 4 provides a summary of strengths and limitations of related 

approaches. On top of that, several comparisons of related technologies are displayed, especially regarding 

the utilization of soft computing technique in solving the inherent limitations of the navigation system. As 

can be observed in Table 4, a clear comparison is described between conventional AI approach and Soft 

Computing approach in mobile robot application. The traditional AI seem to provide full attention to the 

effort of imitating human intelligence through the use of symbol manipulation and symbolically organized 
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knowledge bases. This particular intelligence is exhibited by machines or software. On the other hand, this 

approach restricts the conditions that can be applied by conventional AI. Meanwhile, the importance of 

mapping and planning in controlling the movement of mobile robot seems to further generate more 

advantageous and disadvantageous. It is vital to note that the surrounding of the mobile robot is actual-time, 

always changing, and unorganized. Hence, it limits the implementation as a result of requiring a precisely 

stated analytical model and often a huge amount of computation time.   

SC is known to be a part of computational intelligence technique. More specifically, it refers to a 

group of nature-inspired computational techniques and procedures in order to focus on complicated real-

world issues. SC contradicts the conventional AI in its effects as well as the role model for soft computing 

which is the human mind. It is highly lenient of imprecision, uncertainty, partial truth, and approximation. 

Therefore, these advantages are very beneficial in intelligent navigation system design due to the presence of 

imprecision in sensor detection, uncertainty in dynamic environment, and error in the actuator. On top of that, 

SC is exploited to overcome the challenges and produce high performance of the navigation system, 

including simple and flexible algorithm for the purpose of navigation and communication. A number of 

characteristics are required to be exhibited by the robots to ensure excellent functonality, namely the ability 

to prevent any possible crash, cover the terrain effectively, distribute the task, assisting one another with 

more data through various sensors, and the capability of generating an unfixed redistribution to adhere to the 

situation provided if the robot is unable to function  [29]. Hence, it is without doubt that a great attention 

must be given to the process of controlling the robot teams. However, it is important to acknowledge the 

difficulty of the procedure due to its ability to complicate the system [130]. In addition, several types of 

conventional centralized method have been utilized [130],[131], but no significant limitations managed to be 

detected, thus it cannot treated as a general-purpose solution. The disadvantages of centralized control 

include high computational cost and communication complexity, lack of flexibility, and unreasonable 

robustness [132]. 

 

 

Table 4. Strengths and limitations of conventional AI and soft computing approach in navigation systems 
Approach Strengths Limitations References 

Simultaneous 

localization and map 
building (SLAM) 

able to eliminate the need for 

artificial infrastructures 
 

Complexity sub-optimal map-building 

high computational cost requires a 
consistent map  

 [6]; [133];[134]. 

Potential Field quickly observe efficient 

mathematical analysis and 
simplicity  

path sub-optimal high computational cost 

trap situations due to local minimum no 
passage between closely spaced obstacles. 

oscillations in the presence of obstacles and 

narrow passages. the global workspace must 
be known 

[56];[7]. 

Curvature velocity 

method 

high accuracy computational 

efficiency generalizes well to 
arbitrary simple to implement 

real-time computation  

Complexity path sub-optimal trap in local 

minima 

[65];[8].  

The dynamic 
window approach 

(DWA) 

Accuracy, consistency, 
efficiency, correctly and in a 

rigorous way ncorporates the 

dynamics of the robot 

Complexity, path sub-optimal, trap in local 
minima 

[135];[9].  

Type-1 Fuzzy Logic 

System 
 

constant sensitivity  

requires expert knowledge to 
incorporate in the control of the 

system  

difficult to construct fuzzy rule base , high 

computational cost involving larger 
numbers of input and output.   

 

[72];[136];[96].  

Type-2 Fuzzy Logic 
System 

 

better performance compared to 
T1FLS  

reduce the rule base number 

increase accuracy 

high computational cost even with few 
input  

difficult to construct fuzzy rule base  

[137];[138];[82];[81];[84]. 

Neural Networks 

 

provide mathematical modeling 

to approximate continuous real- 

valued functions.   

require large memory and high-speed 

processor.  

High computational cost 
slow convergence 

[139];[90]. 

Hybrid Fuzzy-GA 

 

process the online learning and 

adaptation of the controller  
possess the competency to 

dynamically adjust to new 

surrounding and update its 
knowledge  

produce high computational cost. 

require huge amount of iterations to develop 
a good controller 

[140];[141]. 

 

Hybrid Neural-

Fuzzy  

possess the ability to 

automatically extract the fuzzy 
rules and MFs.  

requires complex training and limited 

implementation in dedicated hardware  

[142];[143]. 
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4.2. Swarm Robots 

Swarm robots are widely known to be one of the highly crucial application areas in swarm 

intelligence. In this case,  assigned control approach is deemed to be more appropriate for the control of 

systems which involve a huge amount of robots, including for the systems whereby the information about the 

surrounding is able to be collected or sensed by the robots themselves. Swarm robots are inspired by 

biological evolution, which also consequently develop behaviors from animals in order to produce optimal 

collective decisions concerning the navigation of individual robots as well as to generate efficient and robust 

navigation. In this situation, each robot tends to determine its individual action by recognizing the present 

surrounding they are in and employing a number of predefined control laws. The central proposal is to 

construct control laws that will allow the entire robot system to accomplish the target objectives such as 

collision-free navigation or building a spatial structure.  

Currently, a number of swarm intelligence-based optimization algorithms have been suggested by 

numerous researchers in order to overcome the traditional centralized algorithms which include PSO, ACO, 

BCO, and FA. They move in a systematic manner without any coordinator. They are processed in simple 

code and low computational resources, whereby the individual system is believed to have the ability to 

transform its movement mode when the computational price is high. As for mobile robot navigation, swarm 

intelligence is proposed in order to figure out an optimal and collision-free route from a starting point to the 

target point in unfamiliar and changing surrounding [104]-[108]. The common swarm intelligence system 

possesses the listed fundamental principle characteristics such as proximity, quality, diverse response, 

stability, and adaptability. Finally, this review provides a number of comparisons on the related algorithm, 

especially on the utilization of the swarm intelligent algorithm in solving the inherent limitations of mobile 

robot navigation. 

 

 

Table 5. Strengths and limitations of swarm intelligence approach in navigation system 
Algorithm Strengths Limitations References 

Particle Swarm 

Optimization  

easy to implement  

few parameter control 
low computation  

great optimization ability fast 

convergence  
good implementation in swarm 

robots 

premature convergence  

slow convergence 
optimality convergence 

influenced by inertia weight  

low flexibility 
trap in local minima 

[50];[144];[145]. 

Ant Colony 
Optimization  

distributed computation 
dynamic application 

good result in swarm robots search 

and exploration  

difficult analysis  
slow convergence  

uncertain time to converge 

[104];[113];[114]; 
[105]. 

 

Bee Colony 

Optimization  

Fast convergence  

high flexibility 

global optimization  
support implementation of parallel 

processing 

high computational cost 

poor convergence  

local optimization 

[107];[121]. 

 

Firefly Algorithm the high convergence rate 
low computational cost  

less number of iterations and 

floating point 

suitable for parallel processing  

slow convergence speed 
the algorithm inflexible algorithm 

parameters do not change with the 

time 

Local optimization  

[127]; [128]. 

 

 

Table 5 shows swarm intelligence is suitable for simple agents, but with basic behavior and 

consciousness. The control structure is dispersed due to the absence of global information in the system. 

Moreover, the collapse of an individual agent is tolerated when mobile robots move dynamically in every 

changing surrounding. As far as swarm robots application is concerned, it is difficult to design the navigation 

system concerning the parameters because they may provide a dramatic effect related to the emergence of 

collective behavior. On the other hand, the individual behavior appears like noise. Moreover, there is no 

analytical mechanism and the collective behavior of swarm robots cannot be inferred from single robot 

behavior in the certain situation. In addition, it is necessary for the forms of coordination employed in swarm 

robots to take into consideration the uncertainty, limitation, and mistakes that arise from the processing 

method of sensor information. Other than that, each existing algorithms for swarm robots navigation possess 

its own strengths and restrictions that are related to a specific goal, which also considers the importance of 

priority among different performance. Finally, several algorithms managed to be briefly explained from a 

respective point of view. 
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5. CONCLUSION 

The present study has examined the problems, methods, and application of the advanced mobile 

robot navigation system. This study also set out to contribute new data to the literature of this particular area 

of study as well as to identify areas that require further research. Mobile robot navigation is considered as 

one of the main application areas, which have gathered numerous attentions due to its wide potential 

application. Moreover, general algorithms were observed to meet development obstacle in this field, which 

include complex computing and high dependence on high-precision sensors. The competency to navigate in 

any surrounding is vital in mobile robot application to avoid any hazardous situations such as collisions and 

serious conditions. Therefore, it is required to keep the stability of the trajectory and formation in order to 

reach the target in a short time. Basically, the navigation can be achieved with three combination algorithms, 

namely self-localization, path planning, and map building. Hence, several conventional environment 

algorithms have been proposed using an environmental model.  However, it is difficult to analyze sensing, 

actuating, and interaction with the mobile robot in a particular surrounding. Apart from that, it was 

discovered that the algorithm does not ensure uncertainty, impression, and inaccuracy in the dynamic 

environment. Hence, the intelligent algorithm is proposed to improve the performance as well as to overcome 

the disadvantages related to mobile robot navigation. On top of that, the computational intelligent algorithm, 

which includes soft computing and swarms intelligent are considered as powerful approaches that can 

provide the solution without modeling the environment. In regard to this, three competencies were built, 

namely reasoning, learning, and optimizing. Unfortunately, it is best to acknowledge that not all algorithms 

are suitable for the general task because each task has to follow its own specific criteria. Finally, if the 

algorithms are combined, a good performance in the single robot, the multi-robot, and the swarm robots 

system is achieved. 
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