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Abstract – This paper proposes an intelligent method for 
scheduling usage of available energy storage capacity from plug-
in hybrid electric vehicles (PHEV) and electric vehicles (EV).  The 
batteries on these vehicles can either provide power to the grid 
when parked, known as vehicle- to-grid (V2G) concept or take 
power from the grid to charge the batteries on the vehicles. A 
scalable parking lot model is developed with different parameters 
assigned to fleets of vehicles. The size of the parking lot is assumed 
to be large enough to accommodate the number of vehicles 
performing grid transactions.  In order to figure out the 
appropriate charge and discharge times throughout the day, 
binary particle swarm optimization is applied. Price curves from 
the California ISO database are used in this study to have realistic 
price fluctuations.  Finding optimal solutions that maximize 
profits to vehicle owners while satisfying system and vehicle 
owners’ constraints is the objective of this study. Different fleets of 
vehicles are used to approximate varying customer base and 
demonstrate the scalability of parking lots for V2G. The results are 
compared for consistency and scalability.  Discussions on how this 
technique can be applied to other grid issues such as peaking 
power are included at the end. 
 

I. INTRODUCTION 

Upcoming deployment of plug-in hybrid electric vehicles 
(PHEVs) and fully electric vehicles (EVs) can integrate a 
huge amount of electrical storage into the electric utility grid.  
Current plans only allow for this storage to extract power 
from the grid through charging.  With relatively small 
modifications in design of these vehicles, power could also be 
transferred into the grid from their batteries.  Since PHEVs 
and EVs already have the necessary electronics to drive their 
electric motors, programming and wiring adjustments can be 
made to turn their power electronics into inverters suitable for 
grid interactions [1-2].  Alternatively, kits can be used to 
retrofit existing vehicles [3]. 

As the price of batteries decrease and the amount of 
personal distributed generation increases, consumers are 
likely to be interested in either selling power obtained from  
i) nightly charging at cheap prices or ii) their own generation 
such as photovoltaic (PV) or small wind turbines.  Storage is 

especially beneficial for wind power, since its power 
generation fluctuates greatly throughout a given day [4-5].  If 
variable electric pricing is implemented, homes that produce 
extra wind power at night might want to store that power in 
their vehicles to either drive with or sell during peak pricing.  
Since these vehicles are likely to be parked in some type of 
parking lot during the day, a parking lot capable of selling 
this excess power would be needed. 

In large parking lots with hundreds of vehicles, selling 
power in bulk could allow the parking lot operator to enter 
the peak power market where the best prices are available.  
The goal for the operator would then be to maximize profits 
by selling the excess power in these vehicles at the times 
when the market power price is highest.  Due to the frequent 
turnover of vehicles in a parking lot, scheduling issues arise 
that make it difficult to determine the appropriate time for a 
given vehicle to buy or sell power.  The optimal time to 
charge and discharge must be determined combined within 
the parking lot and vehicle owner’s limitations and thus calls 
for an intelligent optimization algorithm capable of handling 
nonlinear and discontinuous variables. 

Particle swarm optimization (PSO) is an iterative 
stochastic optimization algorithm based on the movement 
patters of flocks of birds or schools of fish [6-7].  The 
algorithm is able to search a multi-dimensional solution space 
by collectively searching with different particles and 
communicating the best solutions found to the other particles.  
This communication allows for an intelligent decision to be 
made on where each particle should move at each iteration to 
find the best possible solution.  Random variations and 
weighting factors are also used in the algorithm to prevent 
early convergence where a local minimum is present.  Binary 
particle swarm optimization (BPSO) applies the same 
stochastic search methodology as PSO except that it handles 
problems with discrete variables instead of the continuous 
variables [8-9].   

In this paper, BPSO is applied to intelligently schedule 
whether each vehicle should buy, sell, or hold at every time 
step that it is in a parking lot.  The typical results presented 
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demonstrate the effectiveness of the BPSO algorithm to 
schedule optimal buying and selling times for a fleet of 
vehicles.  Vehicle sets of 50, 500, and 5000, initialized within 
some given parameters, are tested and show the scalability of 
parking lots for V2G integration.    The results are compared 
with buying or selling power only at the best corresponding 
price. The BPSO algorithm accurately finds near optimal 
solutions and significantly increases the potential profits for 
the vehicle owners. 

II. SYSTEM DESIGN 

The parking lot system is a scalable set of vehicles each 
with its own system parameters within the ranges defined in 
Table 1.  Each parameter is determined by a uniformly 
distributed random number in each variable range.  A given 
day is split up into hourly intervals to coincide with the 
hourly prices taken from the California Independent System 
Operators (CAISO) website [10].  The losses from charging 
and discharging limit the ability of a vehicle to charge when 
prices are low and sell when prices are high.  Therefore only 
a certain number of power cycles are economical. 

In this study, it is assumed that each parking lot and the 
vehicles have an infinitely large connection to the grid to 
avoid possible current limitations.  This assumption allows 
for observation of the maximum possible grid transactions.  
While transactions between two vehicles are possible, it is 
unlikely that circumstance would arise.  Since power 
transactions are driven by price thresholds it would be costly 
to buy at the same time when it is economical for another 
vehicle to be selling.  This situation can occur however if a 
vehicle is present for a very short period of time and needs to 
charge.  With all vehicles being on the same bus, selling 
amongst vehicles simply results in a smaller grid power 
transfers.  A typical parking lot setup is shown in Figure 1. 

At each vehicle’s departure time the battery state of charge 
(SoC) is expected to be at a certain desirable level.  For the 
studies in this paper, every vehicle is assumed to have the 
same desired departure SoC of 60%.  As an added limitation, 
once a vehicle reaches this desired departure SoC it can never 
be discharged below this level.  This limitation or a similar 
discharge restriction would likely be implemented in a real 
system to account for situations where a vehicle unexpectedly 
leaves before its expected departure time.  While PHEVs can 
make up for a lower SoC by using their alternative fuel 
sources, EVs cannot.  Vehicle owners should be able to 
determine their minimum SoC in a real implementation, but 
this scenario is not considered in this study. 

 
Fig. 1. – Example of a parking lot diagram 

Table 1 – Vehicle Parameters 
Parameter Minimum Maximum 

Battery Capacity (kWh) 10 25 
Available Capacity (%) 50 100 

Arrive Time 1st hour 23rd hour 
Departure Time 2nd hour 24th hour 

Inverter Discharge Eff. (%) 80 95 
Battery Charge Eff. (%) 80 95 

 

III. PARTICLE SWARM OPTIMIZATION 

PSO is an optimization algorithm suitable for finding 
potential solutions for multidimensional problems using real 
valued variables.  The solution search is performed in a 
stochastic nature allowing the algorithm to overcome 
nonlinear, non-differentiable, and discontinuous problems.  A 
set or population of potential solutions is known as a swarm.  
These potential solutions are referred to as particles and each 
one searches for the solution with a degree of independence 
from every other.  In each iteration, the particles use their 
previous best solution as well as the swarm’s best solution.  
In this way, the particles are guided collectively toward better 
and better solutions. 

BPSO is a binary version of PSO where position updates 
correspond to bit changes.  The difference between the 
versions is in how the positions are updated.  The velocity is 
first calculated using (1), but a new normalized velocity term 
is also calculated by applying the sigmoid equation to the 
velocity as shown in (2).  This new velocity term is 
constrained in the range [0-1].  The new position is then 
determined by (3) using the new velocity found from (2).  
The positions of the particles in BPSO can represent any of 
the three possible statuses of the vehicles. These statuses are 
namely – vehicle selling power, vehicle buying power and 
vehicle not buying nor selling. Two bits are used to define the 
three statuses of the vehicles that have been defined. The 
binary search is performed as described below. 
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1. Initialize a population of particles, each representing a 
possible solution, by assigning random solutions 
within the given solution space to the problem’s 
variables. 

2. Evaluate fitness function assigned to the problem.  In 
this application equation (7) is used with better 
solutions having a higher result when the fitness 
function is evaluated. 

3. For each particle, compare the fitness at the current 
iteration with the particle’s best previous fitness.  The 
best previous solution for a particle is known as its 
personal best or Pbest solution. 

4. Select the best solution of all the Pbest solutions to be 
the global best or Gbest solution. 

5. Update of every particle velocity using (1) and (2), 
and position using (3). 

6. Repeat steps 2-5 until a global solution is found 
within a predefined number of iterations.  In this 
study the number of iterations is 100. 

 
  1 1( ) * ( 1) * *( ( ) ( 1))ij ij best ijv k w v k c rand P k X k= − + − −                                               

2 2* *( ( ) ( 1))best ijc rand G k X k+ − −                     (1) 
 

Where, 
Xij = particle position 
w = inertia weight 
c1 = cognitive acceleration constant 
c2 = social acceleration constant 
i = particle number 
j = dimension 
k = iteration 

( )
1( ) ( ( ))
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e−
′ = =
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0
ij

ij
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otherwise

′<⎧⎪= ⎨
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                                                 (3) 

     

IV. CASE STUDIES 

In this paper, the two following case studies show 
different methods for determining how a vehicle should buy 
and sell power throughout a given day.  The decisions are 
based upon the market prices given by CAISO for different 
days.  The day selected for the majority of the study was 
arbitrarily determined and is August 07, 2008.  The other two 
dates chosen for use as a comparison of different price curves 
are December 07, 2007 and April 07, 2008.  By spreading out 
the dates, different seasonal conditions are considered and 
examined.  Figure 2 shows the hourly average clearing price 
for August 07, 2008 and Table 2 lists the prices for all three 
days mentioned above.  The prices are read from the graphs 
and therefore are estimated prices.  For the purposes of these 

studies they are accurate enough to generalize how the 
scheduling would be performed on the given days. 

 

Fig. 2. – Price curve from CAISO [10] on 08/07/2008 

Table 2 – Market Clearing Price Each Day in $/kWH 
Hour Dec. 07, 2007 Apr. 07, 2008 Aug. 07, 2008 

1 $ 0.052 $ 0.071 $ 0.071 
2 $ 0.051 $ 0.060 $ 0.060 
3 $ 0.046 $ 0.058 $ 0.056 
4 $ 0.055 $ 0.042 $ 0.056 
5 $ 0.069 $ 0.059 $ 0.059 
6 $ 0.060 $ 0.056 $ 0.061 
7 $ 0.094 $ 0.075 $ 0.045 
8 $ 0.066 $ 0.099 $ 0.060 
9 $ 0.062 $ 0.084 $ 0.066 
10 $ 0.058 $ 0.089 $ 0.062 
11 $ 0.067 $ 0.095 $ 0.076 
12 $ 0.060 $ 0.096 $ 0.080 
13 $ 0.061 $ 0.095 $ 0.078 
14 $ 0.071 $ 0.094 $ 0.098 
15 $ 0.044 $ 0.090 $ 0.049 
16 $ 0.044 $ 0.100 $ 0.043 
17 $ 0.040 $ 0.109 $ 0.076 
18 $ 0.107 $ 0.078 $ 0.134 
19 $ 0.063 $ 0.068 $ 0.082 
20 $ 0.061 $ 0.211 $ 0.080 
21 $ 0.072 $ 0.282 $ 0.085 
22 $ 0.072 $ 0.161 $ 0.079 
23 $ 0.105 $ 0.105 $ 0.086 
24 $ 0.073 $ 0.157 $ 0.070 

A. Case Study 1 – Sell at Maximum Price or Purchase at 
Minimum Price 

This first case study takes the price curve and finds the 
best (maximum) selling price for each vehicle over the 
desired departure SoC of 60% and the best (minimum) 
buying price for each vehicle under the desired departure 
SoC.  With this strategy, a single transaction occurs for each 
vehicle in a given day.  This limitation results in lower profit 
potential but the schedule is very easy to determine.   

Since each vehicle has a defined charging and discharging 
efficiency, an extra factor is needed in the profit and cost 
equations.  The cost and revenue resulting from the 
transactions at each vehicle’s optimal hour of buying or 
selling are found using (4) and (5).  Table 3 shows the results 
for this case study and is compared to those of case study 2. 
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C
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−

=                         (4) 

 arg( )*( * )*Available Max Disch eR P k kWH SoC kWH Eff= −      (5) 

Where, 
C = the resulting cost of charging that vehicle 
R = the revenue made by selling from that vehicle 
P(k) = the price at instant k 
k = the optimal buy/sell time instant 
kWHAvailable = Kilowatt*Hrs in the battery 
kWHMax = maximum battery capacity 
SoC = desired departure battery state of charge 
EffCharge = charging efficiency 
EffDischarge = inverter efficiency 

B. Case Study 2 – Multiple Purchases and Sells 

This second case study allows for multiple transactions to 
occur for each vehicle throughout the day.  Multiple 
transactions allow for higher profits but greatly increase the 
scheduling difficulty.  Higher profits are achieved by buying 
power when the price is low then selling it at a higher price 
later in the day.  BPSO is used to find the solution for each 
vehicle individually.  Since there are no common constraints 
between vehicles in this study, it is much easier to schedule 
buy and sell times on a per vehicle basis.  Two bits are used 
to represent buy, sell, and hold.  Specifically, buying is 
represented by ‘11’, selling by ‘00’, and hold by ‘10’ or ’01.’  
Since priority should not be given to either buying or selling, 
holding is allowed to be represented by the extra state. There 
are 24 sets of these bits, one for each hour, but not each set is 
used for a given vehicle.  The arrival and departure times 
define the time window that transactions are allowed.  
Therefore the buying and selling information outside of the 
determined time window is disregarded. 

The BPSO algorithm evaluates the fitness of each particle 
in a very similar manner as the first case study.  Instead of 
finding the best time to buy or sell, the algorithm finds the 
best combination of times to buy and then sell later.  With 
buying, selling, and holding at each time step defined for 
each particle, (4) and (5) are used again except at more than 
once if possible.  Also after every transaction the available 
kWh (kWHAvailable) of each vehicle is updated according to (6) 
to keep track of the batteries’ SoC.  Since the schedules of 
each vehicle are independent of each other, the BPSO 
algorithm only needs to find the appropriate schedule for one 
vehicle at a time.  This separation of the problem greatly 
reduces the dimensionality of the problem and allows the 
parking lot operator to quickly find a good schedule. 

( )
* ( || )

Max
Available

Max

kWH if A
kWH

SoC kWH if B C
⎧

= ⎨
⎩

                       (6) 

 

Where, 
A = buying more than once 
B = selling 
C = buying only once 
 

1

( )
Hours

i ij ij
j

Fitness R C
=

= −∑                                                     (7) 

 
Where, 

Fitnessi = the fitness for a given vehicle, i 
Cij = (4) for different vehicles and times 
Rij = (5) for different vehicles and times 

V. RESULTS 

The results section is divided into three sections with each 
section comparing case studies 1 and 2.  The first section 
shows the scalability of the parking lot system by showing 
the scheduled magnitude of power transactions, monetary 
transactions, and number of vehicles involved in the V2G 
transactions per hour.  The second section focuses on how a 
different price curves affect the V2G transactions results.  
The same 500 vehicle parking lot is used with the three 
different price curves form Table 2.  The last section shows 
the consistency of results for a given parking lot with 10 
different vehicle settings and then for 10 different parking 
lots. 

A. Results Comparing Parking Lots of 50, 500, and 5000 
Vehicles 

The results shown in Table 3 indicate that case study 2 not 
only significantly increases the profits of a given parking lot 
but also significantly decreases the net power out to the grid.  
The reason for the smaller net power is the efficiency drops.  
Every time a vehicle buys power from the grid and sells later 
there are two efficiency drops, one for the charger and one for 
the inverter.  Given that the only goal of these case studies is 
profit maximization the results are still very good.  Figures 3 
to 8 show a clear pattern in the grid power transactions.  All 
three cases look very similar except scaled up from 50 to 500 
to 5000.   
 

Table 3 – Results of the Three Different Sized Sets of 
Vehicles on August 07, 2008 

# of 
Vehicles 

Case 
Study 

Power 
into Lot 
(MWh) 

Power out 
of Lot 

(MWh) 

Net Power 
Out (MW) 

Profit 

CS1 0.0089 0.1131 0.1042 $11.41 50 
CS2 0.3492 0.3421 -0.0072 $19.09 
CS1 0.0984 1.2533 1.1549 $128.42 500 
CS2 3.5167 3.8271 0.3104 $234.22 
CS1 1.0359 12.1769 11.1401 $1223.49 5000 
CS2 31.9632 35.2408 3.2777 $2200.40 
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Fig. 3.   CS1 - 50 Vehicle Set on Aug. 07, 2008 
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Fig. 4.   CS2 - 50 Vehicle Set on Aug. 07, 2008 
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Fig. 5.   CS1 - 500 Vehicle Set on Aug. 07, 2008 
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Fig. 6.   CS2 - 500 Vehicle Set on Aug. 07, 2008 
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Fig. 7.   CS1 - 5000 Vehicle Set on Aug. 07, 2008 
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Fig. 8.   CS2 - 5000 Vehicle Set on Aug. 07, 2008 

B. Three Different Price Curves on the Same 500 Vehicle 
Set 

When comparing the results for the three different price 
curves in Figure 9, it is evident that prices can very greatly at 
different times of the year as well as within one day.  Every 
day sees a large increase in profit when using the intelligent 
algorithm to find the appropriate buy and sell times.  As 
expected the net power for CS1 is exactly the same on each 
day.  Table 4 shows that the same amount of power is used to 
charge and discharge the vehicles since the vehicle 
parameters are identical.  The differences in power in and out 
of the lot for CS1 are attributed to overlap where buying and 
selling is done internal to the parking lot.  For this vehicle set 
there is 1.2533 MW of power available to sell and 0.0984 
MW of power needing to be purchased resulting in the net 
power output to the grid equaling 1.1549 MW. 

Table 4 – Results Comparing 3 Price Curves  
Date Case 

Study 
Power 

into Lot 
(MWh) 

Power out 
of Lot 

(MWh) 

Net Power 
Out (MW) 

Profit 

CS1 0.0863 1.2412 1.1549 $112.45 12/07/07 
CS2 3.1902 3.6094 0.4191 $190.74 
CS1 0.0830 1.2379 1.1549 $190.65 04/07/08 
CS2 2.8958 3.3845 0.4886 $334.51 
CS1 0.0984 1.2533 1.1549 $128.42 08/07/08 
CS2 3.5167 3.8271 0.3104 $234.22 
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Fig. 9. – Daily Price Curves for the 3 Test Days 

 

C. Consistency of Solutions  

The results of running the BPSO algorithm on the same 
500 vehicle set 10 times are shown in Table 5.  Since the 
BPSO algorithm is stochastic and the maximum number of 
internal BPSO iterations is limited to 100, the same solution 
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is not found each time.  With a standard deviation of less than 
$1.00 or 0.045% of the average, the solutions in each case 
were very close to each other.  Implementation of an 
improved BPSO algorithm or an increase in the number of 
internal BPSO iterations would increase the consistency and 
accuracy, but the results are still very good. 

The study of 10 different vehicle sets with the same price 
curve as in Table 6 shows that as the number of vehicles in 
each set increases, the differences between vehicles begin to 
average out.  With 10 different randomly initialized vehicle 
sets defined within the constraints of Table 1, the standard 
deviation in profit is only $22.22 or 0.01% of the average.  
This conclusion suggests that with an accurate market price 
curve and estimate of the number of incoming vehicles, the 
profit made in a given day can be predicted with a small 
margin of error.  Data over the course of a parking lot’s 
lifetime can aid the operator in determining average vehicle 
parameters. Tables 7 and 8 show the best schedules found by 
the BPSO algorithm on August 07, 2008 for the 50 vehicle 
parking lot. 

Table 5 – Results Over 10 Trials, Same 500 Vehicles on 
August 07, 2008  

Run Power into 
Lot (MWh) 

Power out of 
Lot (MWh) 

Net Power 
Out (MW) 

Profit 

1 31.9632 35.2408 3.2777 $2200.44 
2 31.9970 35.2534 3.2564 $2203.67 
3 32.0993 35.3389 3.2395 $2201.88 
4 31.9690 35.1875 3.2185 $2200.59 
5 32.1034 35.3485 3.2450 $2200.27 
6 31.9942 35.2482 3.2540 $2200.37 
7 32.0954 35.3311 3.2358 $2201.96 
8 32.1325 35.3531 3.2205 $2201.10 
9 32.0281 35.2952 3.2672 $2201.59 

10 32.1526 35.3788 3.2262 $2201.04 
Avg 32.05±0.067 35.30±0.059 3.24±0.019 $2201.29±0.99 

 
Table 6 – Results for 10 Different Sets of 500 Vehicles on 

August 07, 2008 
Run Power into 

Lot (MWh) 
Power out of 
Lot (MWh) 

Net Power 
Out (MW) 

Profit 

1 32.0520 35.3283 3.2763 $2221.74 
2 32.6428 35.8169 3.1741 $2220.27 
3 32.3628 35.5204 3.1576 $2228.07 
4 32.0382 35.2211 3.1829 $2207.05 
5 32.0490 35.5350 3.4860 $2207.83 
6 31.6423 34.8533 3.2110 $2180.61 
7 31.5704 35.3345 3.7641 $2219.38 
8 31.3600 34.8054 3.4454 $2174.77 
9 31.9023 35.2629 3.3606 $2194.69 

10 32.4391 35.9618 3.5227 $2253.98 
Avg 32.01±0.384 35.36±0.350 3.36±0.187 $2210.84±22.22 

VI. CONCLUSIONS 

The proposed intelligent BPSO algorithm based approach 
to determining buying and selling times throughout a day 
successfully found very profitable solutions.  In every test, 
comparing case studies 1 and 2, the results proved that 

multiple power transactions in a day resulted in much higher 
profits.  The results also show that if profit is the only goal of 
the hybrid parking lot then the net power into the grid is 
greatly reduced.  If a different fitness functions is defined 
such as replacing the price curves with power demand curves 
to offset peak power, different grid issues can be solved. 

Table 7 –Parking Lot Owner’s Schedule for the 50 Vehicle 
Set on August 07, 2008 

Hour Buying Vehicle ID Purchases Selling Vehicle ID Sale 
1 - 0 7, 10, 47 3 
2 8 1 39 1 
3 25 1 - 0 
4 1 1 8 1 
5 14 1 22 1 
6 34 1 1, 6, 9, 25, 49 5 
7 1, 6, 8, 9, 10, 21, 

23, 24, 27, 30, 33, 
36, 41, 45, 47, 48, 
49 

17 

- 

0 

8 40 1 9, 47 2 
9 15, 31 2 43, 49 2 
10 12, 17, 37, 43, 44 5  0 
11 26, 46 2 21, 23, 28 3 
12 

- 
0 10, 16, 24, 27, 30, 

41 
6 

13 - 0 45 1 
14 

- 

0 1, 6, 8, 11, 12, 14, 
15, 17, 26, 29, 31, 
33, 34, 36, 37, 40, 
43, 44, 46, 48 

20 

15 12, 33 2 2, 32 2 
16 1, 4, 5, 8, 14, 15, 

17, 19, 20, 29, 31, 
34, 36, 37, 38, 40, 
41, 43, 45, 46, 50 

21 

- 

0 

17 13, 35, 42 3 1, 4, 5, 37, 38, 46 6 
18 

- 

0 8, 12, 13, 14, 15, 
17, 19, 20, 29, 31, 
33, 34, 35, 36, 40, 
41, 42, 43, 45, 50 

20 

19 - 0 - 0 
20 - 0 - 0 
21 - 0 - 0 
22 - 0 - 0 
23 - 0 - 0 
24 - 0 - 0 

 

VII. FUTURE WORK 

Now that a preliminary parking lot power transaction 
scheduling technique has been explored different additional 
problems can be included.  The next step is to implement a 
vehicle set with proportional buying and selling to account 
for system and vehicle current limits as well as setting unique 
thresholds for charging and discharging each vehicle.  In a 
real implementation these limitations are present and affect 
the overall scheduling of the parking lot.  Once these steps 
are complete it is possible to expand further and consider 
other markets such as regulation, spinning reserves, and peak 

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on September 8, 2009 at 23:29 from IEEE Xplore.  Restrictions apply. 



power offsetting which add another dimension of complexity 
to the scheduling algorithm with multiple sources of income 
and new time limitations on when each activity can be 
performed. 
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Table 8 – Sample Vehicle Owner’s Schedules from Same 
Vehicle Set as Table 7 on August 07, 2008 

Vehicle ID Buying Hours Selling Hours 
1 4, 7, 16 6, 14, 17 
2 - 15 
3 13 - 
4 16 17 
5 16 17 
6 7 6, 14 
7 - 1 
8 2, 7, 16 4, 14, 18 
9 7 68 
10 7 1, 12 
11 - 14 
12 10, 15 14, 18 
13 17 18 
14 5, 16 14, 18 
15 9, 16 14, 18 
16 - 12 
17 10, 16 14, 18 
18 3 - 
19 16 18 
20 16 18 
21 - 11 
22 - 5 
23 7 11 
24 7 12 
25 - 6 
26 11 14 
27 7 12 
28 - 11 
29 16 14, 18 
30 7 12 
31 9, 16 14, 18 
32 - 15 
33 7, 15 14, 18 
34 6, 16 14, 18 
35 17 18 
36 7, 16 14, 18 
37 10, 16 14, 17 
38 16 17 
39 - 2 
40 8, 16 14, 18 
41 7, 16 12, 18 
42 17 18 
43 10, 16 9, 14, 18 
44 10 14 
45 7, 16 13, 18 
46 11, 16 14, 17 
47 7 18 
48 7 14 
49 7 69 
50 16 18 
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