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Abstract 

Dynamic scheduling of manufacturing systems has primarily involved the use of dispatching 

rules. In the context of conventional job shops, the relative performance of these rules zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAhas 

been found to depend upon the system attributes, and no single rule is dominant across 

all possible scenarios. This indicates the need for developing a scheduling approach which 

adopts a state-dependent dispatching rule selection policy. The importance of adapting the 

dispatching rule employed to the current state of the system is even more critical in a flexible 

manufacturing system because zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof alternative machine routing possibilities and the need for 

increased coordination among various machines. 

This study develops a framework for incorporating mxhine learning capabilities in in- 

telligent scheduling. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA pattern- directed method, with a built-in inductive learning module, 

is developed for heuristic acquisition and refinement. This method enables the scheduler to 

classify distinct manufacturing patterns and to generate a decision tree consisting of heuristic 

policies for dynamically selecting the dispatching rule appropriate €or a given set of system 

attributes. 

ComputationaI experience indicates that the learning-augmented approach leads to im- 

proved system performance. In addition, the process of generating the decision tree shows 

the efficacy of inductive learning in extracting and ranking the various system attributes 

relevant for deciding upon the appropriate dispatching rule to employ. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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1 Introduction zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Scheduling forms a part of the operational control process in a manufacturing system. The 

need for scheduling arises whenever a common set of resources in the manufacturing system 

must zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbe shared zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto make a variety of different products during the same period of time. 

The objective of manufacturing scheduling is the efficient allocation of machines and other 

resources to jobs, or operations within jobs, and the subsequent time-phasing of these jobs 

on individual machines. 

The needs of research in new approaches to manufacturing scheduling have been stim- 

ulated by a variety of pragmatic and theoretical considerations. On one hand, scheduling 

is a notoriously difficult problem zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto solve computationally; on the other hand, it is also a 

problem encountered in every manufacturing system and .there are a great deal of finan- 

cial incentives for factories to improve their scheduling practices. Global competition has 

enhanced ?he significance of manufacturing effectiveness. Better manufacturing schedules 

provide competitive advantage through reduced production cost and increased productiv- 

ity. Moreover, global competition in the last decade has forced US. companies to invest 

in automated, capital- intensive new manufacturing systems, such as flexible manufacturing 

systems (FMSs). These new systems have created a range of new operational problems, mak- 

ing the development of new methods for scheduling these sophisticated systems increasingly 

important (Raman and Talbot 1985; Shaw 1986-89). 

The maturation of artificial intelligence (AI) has redirected the body of scheduling re- 

search (Rodammer and White 1988; Stockey 1989). There are several capabilities of A I  that 

make this technology particularly suitable for scheduling; these include (1) the richer, more 

structured, knowledge representation schemes capable of fully incorporating manufacturing 

knowledge, constraints, state information, and heuristics; (2) the reasoning ability enabling 

the scheduling systems to perform more reactive scheduling in addition to predictive schedul- 

ing; (3) the ease to integrate AI-based scheduler with other decision support systems in the 

manufacturing environment, such as diagnostic systems, process controllers, senmr monitors, 

and process planning systems; and ( 4 )  the ability to incorporate descriptive, organization- 

ally specific scheduling knowledge usually possessed only by human expert schedulers. The zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

- 
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adoption of A I  for factory automation is the general trend in the industry; for example, a 

recent survey showed that in the near future manufacturing process controllers will be mostly 

rule-based (Booker 1989). 

However, the development of AI systems for intelligent scheduling is now a t  a critical 

junction, very much in need zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof new advancements to resolve a number of common difficulties 

encountered in applying the technology. The proposed research project is aimed at  develop 

ing new methods for intelligent scheduling to address some of these issues, such as (1) how 

to automate the acquisition of scheduling knowledge in a given manufacturing environment? zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(2) how to perform dynamic, adaptive scheduling? (3) what would be the most relevant 

information for making such scheduling decisions. (4) bow to improve the robustness of 

t he  AI-based scheduling process? zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 5 )  how best to integrate the simulation and scheduling 

systems for reactive- based scheduling? These research questions will be addressed in this 

paper by developing a new methodology using machine learning for intelligent scheduling. 

This methodology points to a new direction for scheduling research-the development zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof 

intelligent schedulers with machine learning capabilities. As a first step, this paper focuses 

on the use of inductive learning in a pattern-directed scheduling process (Shaw 1989). 

Previous scheduling research has indicated that the relative effectiveness of a given 

scheduling rule is dependent upon the system characteristics. In a dynamic manufacturing 

system, these characteristics continue to change over tim. It appears conceptually appealing, 

therefore, to adopt an approach which employs appropriate and possibly different scheduling 

-at various paints in time. In order to do so, however, we need a mechanism which can dis- 

tinguish different system characteristics, upon the rule appropriate for a given combination. 

This paper presents an approach to achieve these objectives by integrating pattern- directed 

scheduling with inductive learning. 

The integration of inductive learning with pattern-directed scheduling results in an inter- 

esting scheduling approach capable of performing adaptive scheduling by selecting scheduling 

heuristics opportunistically; moreover, it also help identify the relative importance of a va- 

riety of manufacturing attributes in dynamic scheduling. Empirical results from simulation 

studies showed that this learning-augmented approach generates better scheduling perfor- 

mance than the traditional methods. 
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This paper is organized zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas follows. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA$2 discusses how machine learning can be applied in 

solving scheduling problems and the advantages of doing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAso. In 53 we describe the inductive 

learning process which is illustrated in 54 in the context of machine scheduling. 55 describes 

the generation of decision trees for selecting the appropriate scheduling rules in an FMS 

environment. We present an experimental study in 56 for evaluating the relative merit of 

this method over the single scheduling rule approach adopted in most of the previous research 

on dynamic scheduling. We conclude in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA97 with a summary discussion of the major results. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2 Intelligent Scheduling and Machine Learning 

In the recent past, several researchers have applied artificial intelligence (AI )  based methods 

for solving scheduling problems. This body of research can best be reviewed by highlighting 

the focus of the A I  techniques used as done below. 

Scheduling as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASeorch: Scheduling can be viewed as a process search through the state 

space of all possible partial and complete schedules. Search is ubiquitous in AI problems, but 

it is more significant an issue in scheduling problems. Several methods have been suggested 

in literature to alleviate the computational complexity incurred by the search process. The 

ISIS system (Fox and Smith 1984, Fox 1987) uses several types of constraints to reduce the 

state space; constraint satisfaction is used as a n  index to direct the search. Shaw (1986a, 

1988a), Shaw and Whinston (19S9a) use the combination of A' procedure and scheduling 

-heuristics to facilitate the search for the final schedule. The OPIS system (Ow et al. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA198s) 

employs an opportunistic approach to improve upon ISIS. It selects the most appropriate 

strategy for scheduling opportunistically; the resulting flexibility achieved in problem solving 

results in better performance. Ow (19S4) describes the beam search method for scheduling 

problems. 

Scheduling as Planning/Replanning One of the goals of intelligent scheduling is to be 

able to generate schedules more flexibly whenever alternative machine routing is possible 

while simultaneously taking the dynamically changing system state information into account. 

Thus, the scheduler not only has to decide the time sequences for performing the operations, 

i t  also has to allow for dynamic machine assignments as well. Shaw (1986a, 1988a) uses a 
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nonlinear planning method for deciding machine assignments and the temporal relationships 

among various operations. This method integrates scheduling with process planning by 

utilizing a two-phase procedure. In phase 1, the various machine and resource assignments 

for achieving the required manufacturing goals are selected. Subsequently, phase 2 works 

to resolve conflicts while maintaining progressive performance improvement. This approach 

originated with the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArobot planning method (Fikes and Nilsson 1971; Georgeff and Lansky 

1986), and it is especially suitable for dynamic scheduling which is treated as the problem 

of replanning with a changed goal. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Scheduling zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas Rule-Based Inference: This method attempts to incorporate scheduling 

knowledge into an IF-THEN rule form which is implemented by an expert system. Wysk et 

al. (1986) use a multipass expert system to decide the appropriate scheduling rules based on 

information such as the current system status, scheduling objective and management goals. 

Other examples in this line of work include Raghavan (1988), Kusiak and Chen (1988) and 

Kusiak (1987). Bruno et al. (1986) use an expert system for knowledge representation and 

heuristic problem solving in the scheduling domain. In their study, the expert system is 

coupled with an activity-scanning scheduler adapted from discrete event simulation and a 

closed queueing network based algorithm for schedule analysis and performance evaluation. 

Another example is the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAISA (Intelligent Scheduling Assistant) system developed at  Digital 

Equipment Corporation (Kanet and Adelsberger 1987) in which approximately 300 rules 

were used to construct the evolving schedules. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
- Scheduling as Coopernlive Problem Solving: Scheduling in manufacturing environment is 

typically performed by a group of scheduling agents. As computer integrated manufacturing 

makes scheduling progressively more complex because of the large number of resources, infor- 

mation requirements and decisions as well as a larger variety of jobs involved, the scheduling 

of manufacturing processes will increasingly require team effort. In such a n  environment, the 

scheduling agents can be flexible cells, machine centers, or human schedulers (Parunak 1987, 

Ow et a]. 1988). Shaw and Whinston (1985, 1989b) and Shaw (1986b, 1988b, 1988c) apply 

distributed artificial intelligence to the scheduling of manufacturing cells. Using coopera- 

tive problem solving, the scheduling problem can be decomposed into several subproblems 

to be solved by individual agents through task sharing and parallel processing. Moreover, 
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this approach fits naturally into the distributed manufacturing environment in which various 

subsystems are interconnected through communication networks. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Machine Learning is a rapidly emerging research area for studying methods for developing 

artificial intelligence systems which are capable of learning (Michalski et al. 1983). The 

ability to learn and improve is essential for an intelligent system; however, little zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwork has 

been done in applying machine learning to intelligent scheduling. Shaw (1989b) and Park 

et al. (1989) apply machine learning to identify the combination of system attributes which 

would lead to the use of a given scheduling rule. This knowledge can then be exploited by a 

pattern-directed scheduler in an adaptive fashion. In addition to heuristic learning, machine 

learning results in the identification of manufacturing attributes critical to the scheduling 

decision, and it generates an  adaptive mechanism for applying the scheduling rules. 

Incorporating machine learning capabilities into intelligent scheduling systems can be 

quite useful in enhancing scheduling performance. The potential enhancements are in the 

following areas: 1) Machine learning can accelerate the search process by accumulating 

heuristics (Shaw 19S9b), 2) machine learning can facilitate the planning/replanning process 

by learning schemata (Shaw et aI. 1988), 3) machine learning can enhanoe rulebased infer- 

ence by automating the acquisition and the refinement of rules (Shaw 1987), and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4)  machine 

learning can help cooperative problem solving by improving the coordination among the 

multiple scheduling agents (Shaw and Whinston 1989b). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
- 
3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAInductive Learning 

lnductivelearning can be defined as the precess of inferring the description (i. e., the concept) 

of a class from the description of individual objects of the class (Shaw 1987). A concept is 

a symbolic description which is true if it describes the class correctly when applied to a 

data case, and false otherwise. The concept to be learned in scheduling, for example, can 

be the identification of the most appropriate dispatching rule (a class) for a given set of 

manufacturing attributes. 

A set of training examples is provided as input for learning the concept representing each 

class. A training example consists of a vector of attribute values and the corresponding zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5 



class. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA learned concept can be described by a rule which is determined by the inductive 

learning process. If a new data case satisfies the conditions of this rule, then it belongs to 

the corresponding class. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFor example, a rule defining a concept can be the following: 

IF (bii zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 ail zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGI) AND zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. . . (bim zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 a i m  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 Cim) 

THEN zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT .  

where a,j represents the jth. attribute, b,, and G~ define the range for (I,>, and T denotes the 

class. 

Shaw (1989b) and Park et al. (1989) employ inductive learning to derive heuristics 

for selecting the appropriate dispatching rules in a flexible manufacturing system. In this 

instance, the IF-THEN rule is treated as a selection heuristic which is a conjunction of 

attribute conditions collectively defining the paltern, and 7 represents the best scheduling 

rule for that pattern. 

An instance that satisfies the definition of a given concept is called a positiae example 

of that concept; an instance which does not do so is a negative example. In the dynamic 

scheduling problem, because there are several scheduling rules which can potentially be 

selected, multiple concepts need to be learned. In this situation, the training examples 

supporting the use of a given scheduling rule are treated as the positive examples of that 

rule; training examples supporting any other rule vould be treated as negative examples. 

Generalization and specialization are essential steps for the inductive learning process. 

.4 generalization of an example is a concept definition which describes a set containing that 

example. In other words, if a concept description Q is more general that the concept de- 

scription P, then the transformation from P to Q is called generalization; a transformation 

from Q to P would be specialization. For a set of training examples, the generalization 

process identifies the common features of these examples and formulates a concept definition 

describing these features; the specialization process, on the other hand, helps restrict the 

coverage of features for a concept description. Thus, inductive learning can be viewed as 

the process of making successive iterations of generalizations and specializations on concept 

descriptions as observed from examples. This process would continue until an inductive 

concept description which is consistent with all the training examples is found. Thus the 

6 
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generalization/specialization zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArelations between concept descriptions provide the basic struc- 

ture to guide the search t he  inductive learning process. For a given problem, applying the 

inductive learning process can contribute to one's understanding of the decision process on 

the following three dimensions (Shaw and Gentry zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1990): 

Predictive zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAvalidill/: the ability to predict the decision outcome for a given data base. 

Structural zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAvalidity. the ability to capture the underlying structure of the decision 

process. 

Identyying validity. the ability to infer the most critical attributes in the decision 

process. 

These features of inductivelearning makeit useful in dealing with the scheduling problem. If 

we can make an inductive learning system observe the effects of various scheduling decisions 

on the manufacturing p roceM and the resulting scheduling performance, then it can 1) 

predict the outcome of any schedule for a given manufacturing process in a specified set of 

manufacturing conditions (predictive validity), 2) capture the underlying decision structure 

of the scheduling process (structural validity), and 3) identify the critical manufacturing 

attributes for the scheduling decision process (identifying validity). 

The input to an inductive learning algorithm consists of three steps: 1) A set of positive 

and negative examples, 2) a set of generalization and other transformation rules, and 3) 

criteria for successful inference. Each training example consists of two components zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- a 

data case consisting of a set of attributes, each with an assigned value; and the classification 

decision made by a domain expert according to the given data case. The output generated 

by this inductive learning algorithm is a set of decision rules consisting of inductive concept 

definition for each of the classes. Learning programs falling into this category include AQ15 

(Michalski zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1983), PLS (Rendell 1983) and ID3 (Quinlan 1986). These programs are referred 

to as similarity- based learning methods. 

Shaw et a]. (1990) compare the above three inductive learning programs in terms of their 

algorithmic designs and classification accuracy. They find that, in general, ID3 and PLS pro- 

duce more accurate classifications than AQ15. They are also more efficient computationally 

and are better able to handle noisy data. For these reasons, we use ID3 in this research. The 
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learning process in ID3 follows a sequence of specialization steps guided by an zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAinjormation 

entropy function for evaluating class membership. The concept description generated by a 

learning process can be represented by a decision tree, which is a special case of disjunctive 

normal form expressions. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAHeuristic Scheduling zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand Inductive Learning 

4.1 Heuristic Scheduling 

One of the major applications of machine learning zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto scheduling is in dynamic job shops 

and flexible manufacturing systems (FMSs) in which jobs arrive randomly over time and 

the system behaves like a network of queues. Because of the combinatorial nature of the 

underlying optimization problem, scheduling decisions in such systems are specified in terms 

of dispatching rules; whenever a machine becomes idle, the scheduler must decide which job 

should next be processed on the machine. This selection is based on assigning priority indices 

to various jobs competing for the given machine; the job with the highest priority is selected 

next. Dispatching rules differ in how they assign these priority indices. 

Because it is difficult to evaluate most of these dispatching rules analytically, computer 

simulation methods are used generally to study their behavior and compare their relative 

performance. Prior research in this area (see, for example, Conway et al. 1967, and Baker 

1974, 1964 for a survey of this research) deals primarily with conventional job shops for 

the scheduling objectives of minimizing mean job flow time and mean job tardiness. The 

conclusions reached by the various studies are, however, at variance with one another. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 

Baker (1984) suggests that the fundamental reason underlying these conflicting results 

is the fact that they address different systems, and the relative performance of a given 

dispatching rule depends upon the system and job characteristics. In the context of a job 

shop under balanced machine workloads, Baker studies the impact of one such attribute, 

namely, the tightness of job due dates. He shows that, depending upon due date tightness, 

there are crossovers between dispatching rules. In particular, at the extremes, EDD is 

superior when due dates are set loosely, and SPT performs well when they are tightly set. 
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MOD performs the best in the intermediate range (which is, nevertheless, quite wide in his 

study). 

Raman et al. (1989) extend Baker’s investigation to also understand the impact of 

imbalance of machine workloads (which leads to one zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAor more bottlenecks in the system) as 

well as variability in due date assignment on the performance of dispatching rule. Their zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
study shows that while MOD retains its effectiveness under balanced workloads, there are 

crossovers between MOD and MDD when significant imbalanw in machine workloads exists. 

In particular, MDD is superior when due date tightness is low to moderately high, and 

when there is greater variability in the due date assignment. They also study the benefits 

of using an adaptive scheduling procedure in which the selection of the dispatching rule is 

machine workload dependent, In particular, the shop performance improves significantly zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAif 

the dispatching rule used at the bottleneck machine(s) is MDD, and MOD is used at other 

machines. 

t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

4.2 Induction of Heuristic Knowledge 

The aforementioned studies on heuristic scheduling raise two important questions: I )  LV’hat 

are the job and system attributes that affect the relative performance of a given dispatching 

rule, and 2) How should the scheduIer take these into account while making the dynamic 

scheduling decisions? Inductive learning can help resolve these issues by first identifying the 

relevant system and job attributes, and subsequently, developing scheduling systems capable 

of selecting the dispatching rule most appropriate for a given state of the manufacturing 

system as characterized by the combination of these attributes (i. e., the manulacluring zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApaf -  

terns). Because the selection of dispatching rules is determined by the dynamically chang- 

ing manufacturing patterns, we refer to this scheduling approach as Pattern-Directed 

Scheduling (PDS). 

The suggested approach consists of two basic stages: 1) The learning stage, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7) the 

scheduling stage. The learning stage extracts relevant manufacturing patterns, which are 

conjunctions of attribute-value pairs, from simulation experiments. The output of this stage 

is a set of heuristic rules which describe the relationships among manufacturing patterns and 

the appropriate dispatching rule in the form 
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pattern zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(i,j} zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-+ dispatching zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArule i 

An example of such a heuristic is 

IF: (TBF < 14) AND (S zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 63) AND (NSDRL 2 16) 

THEN: MDD rule. 

This rulestates that when the Total zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbuffer size isless than zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA14, thesystem utilization is greater 

than or equal to 0.63, and the normalized standard deviation of relative machine loading is 

greater than or equal to 1.6, then the dispatching rule to be applied is the Modified Job Due 

Date rule. Index j is used in the above expression zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto denote the various patterns for which 

rule i would be applicable. 

The pattern-directed scheduling stage applies the dispatching rules selected in stage 

1 adaptively for performing dynamic scheduling based on the manufacturing pattern mani- 

fested by the system. 

The learning stage starts with conducting a series of simulation experiments to generate 

training examples to study the performance of various dispatching rules under a variety of 

manufacturing environments which are modeled in the simulation program. These training 

examples are input into the inductive learning proceks, which generates the heuristic rules 

describing the dependence between manufaduring patterns and the dispatching rules. This 

integratio 
- 

Figure 

of inductive learning and pattern directed scheduling is depicted in Figure 1. 

INSERT FIGURE 1 HERE 

also shows an additional stage, that of rule refinement. This stage collects the 

performance results of the pattern-directed stage, and uses a critic program to evaluate the 

performance of a given rule. If the heuristic rule is found to yield unfavorable results, then 

the rule-refinement module generates additional training examples with a view to revise the 

rule (possibly through attribute conjunction). Thus, the rule- refinement program iterates 

through the steps of obtaining performance results of various rules, analyzing rules which 

are not satisfactory, and appropriately modifying these rules. [Politakis and Weiss (l984), 
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Bundy and Silver (1982) and Wilkins (1989) describe some methods for refining rules.] Xieta- 

rules are used zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto suggest further experimentation involving training examples. The ‘IF’ part zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
of the meta-rule contains a conjunction of predicate clauses that look for certain features 

of the unsatisfactory rules as well as the training examples which generated these rules. 

The ‘THEN’ part of the meta-rule suggests further experiments with modified attributes for 

generating additional training examples and refining the rula.  

The proposed pattern-directed scheduling approach can be viewed as an AI planning 

process (Georgeff and Lansky 1986). in which a sequence of operators, Le., the dispatching 

rules, are selected on the basis of the current manufacturing state. In terms of the problem 

solving strategy, the selection of rules in pattern directed scheduling is driven by the changes 

in manufacturing pattern, rather than the goal. Moreover, rule zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAselectjon is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAopportunistic 

based on the dynamics of the manufacturing process. It is not preplanned as is the case for 

most planning problems. 

We are now in a position to formally state the difference in the approach taken by this 

paper relative to the previous work on dynamic scheduling which has primarily adopted the 

use of a single dispatching rule. 

Definition 1 The single rule scheduling problem zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis represented by (J,So,?i,D) whcre J 

denotes the scheduling objective, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASa is the initial state of the manufacturing system, 32 rep- 

resents the set of candidate dispatching rules, and D denotes the decision that selccfs zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa 

dispatching rule from 71 based on So. This rule is used until J is  achieved. 

Definition 2 The pattern directed scheduling probiem i s  represented by ( J ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM ,  R, R, E )  

where J and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7-1 are defined as above. M is the set of manufacturing states, and ‘R is the 

set of heuristics for selecting dispatching rules. Each rule r in ‘R is o f the  form p --t h,p E 

M ,  h E ?i. E is a list of events, e,,, eiz, .  . . , e,k,. . ., which trigger the applicaiion of s e l d i o n  

heuristics at time t l , t z , . .  .. At lime ttk, dispatching rule h selected by R is activated, and 

the manulacturing system transits from state m,l; to state m l k + l .  i. e., h(mik) = mtk+,.  

- 

In our approach, inductive learning is used to determine the set R from simulation esperi- 

ments. Because the pattern-directed approach is more adaptive to the environmental changes 
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of the manufacturing system, it should result in better scheduling performance. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs discussed 

later in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA$6, this conjecture is verified by empirical studies. 

The fact that the pattern-directed approach can select dispatching rules dynamically 

implies that it should be especially useful in manufacturing systems with more dynamic 

processes. This feature makes the pattern-directed approach a good candidate for scheduling 

flexible manufacturing systems which are characterized by the versatility of their machines 

and routing flexibility, and therefore, require a more dynamic approach to scheduling. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFMS Scheduling 

5.1 Problem Characteristics 

FMS scheduling differs from conventional job shop scheduling in that FMSs offer many more 

alternative to the scheduler. For example, an operation could be processed at any one of 

several machines. In addition, the various machines in the system are linked more tightly 

because of limited available buffer space and the use of common material transporters. This 

results in a more difficult scheduling problem as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAit leads to more manufacturing patterns 

that can be manifest in an FMS. Consequently, the ability of PDS to discern these patterns 

and to apply the appropriate dispatching rules becomes even more appealing in an FMS 

environment. 

In addition to due date tightness and relative workload imbalance, which have been 

discussed in the previous section, the attributes which are likely to be significant for selecting 

the appropriate dispatching rule in an FMS include: 1) The scope for alternative job routing, 

2) the limitation on local buffers available at individual machines, and 3) the increased 

versatility of machines. It is possible in an FMS to configure the machines in such a way 

that a given operation can be done on one or more machines. Elementary queueing theory 

suggests that the routing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJezibi l i ty provided by such parallel servers can lead to significant 

reductions in the job flow time, which in turn, should reduce job tardiness. However, it 

is not clear how this flexibility will impact the relative effectiveness of various dispatching 

rules. The system performance will also be affected by the constraints on the available zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

- 
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buffer space. When this constraint is binding, various machines in the system are likely to 

go through phases zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof blocking and starving which adversely affect the system performance. 

In such a case, the overall performance of a scheduling rule also depends upon its ability to 

minimize such instances. Finally, the increased processing capability of some machines in the 

system would lead to varying number of operations being processed at different machines. 

This would affect, among other factors, the coefficient of variation of the machine service 

times which would, in turn, impact the flow times and tardiness values. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5.2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAImplementation of PDS 

We now discuss the application of PDS in an FMS which permits random, job shop like 

material flows. The scheduling objective considered is minimizing mean tardiness. This 

objective was selected primarily because it has been studied extensively. As mentioned in 53, 

a variety of dispatching rules have been found to be effective under different situations. This 

not only provides with a larger set zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1-1 of effective dispatching rules, but more importantly, 

we have a strong benchmark for testing the relative effectiveness of the PDS approach. The 

set of dispatching rules which have been found to be dominant in previous research includes 

the Earliest Due Date (EDD) rule [Baker and Bertrand 1981, 19821, the Shortest Processing 

Time (SPT) rule [Baker and Bertrand 1981,1982; Conway 19651, the Modified Job Due Date 

(MDD) rule [Baker and Kanet 1983; Raman et al. 19893 and the Modified Operation Due 

date (MOD) rule [Baker 1984; Raman et al. 19S9]. Consequently, these four dispatching 

rules were selected in this study. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 

The control attributes selected for capturing the relevant manufacturing patterns were: 

1. Number of machines in the system (NMAC) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2. Total buffer size (TBF). 

3. Maximum relative machine workload (BOTTLE) which checks whether any one of the 

machines in the system is a bottleneck at a given point in time. It is expressed as the 

ratio MfmaZ/iV, where WmaZ is the maximum trorkload, measured in terms of remaining 

processing time, in front of any machine in the system currently, and w is the current 

average machine workload. 
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4 .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAVariability in machine workload (NSDRL). This is expressed zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas the ratio of the stan- 

dard deviation of individual machine utilizations to the average machine utilization. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5. Contention factor (CFACT) which indicates the average number of alternative ma- 

chines available for processing a given operation. 

6.  Contention factor ratio (CFRATIO) which is the ratio of CFACT to NMAC. 

7. Machine homogeneity (MH) which measures the variability in the number of operations 

that individual machines can process. It is expressed as the ratio of the standard 

deviation of the number of operations that each machine zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcan process to the average 

number of operations that a machine can process. 

8. Flow allowance factor (F) which measures due date tightness. Following Baker (1984), 

we used the Total Work Content (TWK) rule for assigning job due dates. Under TWK, 

the due date zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdj of job j is determined as follows: 

dj zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= a j  + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF p j  

where ~j is the arrival time and pj is the total processing time of job j .  

9. Overall system utilization (S). 

Note that NMAC, in conjunction with MH, is a measure of the versatility of the machines 

in the system. BOTTLE and NSDRL together describe the relative machine workloads. S 

-impacts job flow times directly. As Baker (1984) notes, the due date tightness induced 

by a given value of F depends upon system utilization as well. However, when significant 

imbalances in machine workloads exist, S merits independent consideration, 

In the learning stage, we generated 130 training examples which covered various combi- 

nations of the nine attributes discussed above. For each example, steady state statistics per- 

taining to the mean tardiness values under each of the four dispatching rules were recorded. 

Those instances in which a given rule performed the best were selected as positive exam- 

ples pertaining to that rule. The ID3 algorithm was used for rule induction based on these 

positive examples. The resulting decision tree was translated into a set of pattern directed 

heuristics which is depicted in Figure 2. 

14 



INSERT FIGURE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 HERE 

Note that an important contribution of this decision tree is in its ability to highlight the 

relative importance of the control attributes in influencing the selection of dispatching rules. 

Thus, from Figure 2, these attributes can be ranked in the following order of decreasing 

importance: TBF, (S, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBABOTTLE), (F, NSDRL), CFACT, and CFRATIO. Also note that 

MH is screened out because of its marginal impact. 

Preliminary studies with PDS indicated the need to curtail excessive nervousness of the 

scheduling system. We observed that PDS performs poorly in many instances if switch- 

ing between dispatching zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArules was affected immediately upon a pattern change. In order 

to mitigate overreaction to patterns which are only transitory, we developed a smoothing 

approach in which the scheduling mechanism retains a cumulative score of the number of 

occasions a given dispatching rule is favored. Whenever a scheduling decision is to be made, 

the dispatching rule with the maximum cumulative score is selected provided it is aLove a 

prespecified threshold. Suppose that the dispatching rule being used currently is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi with a 

cumulative score of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASi. Whenever a scheduling decision is required, this scheme will select 

rule zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj ,  if it exists, where 

j = arg m a  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(Sh), and Sj 1 OS;, 

and 0 is a measure of the required threshold; otherwise it will continue using rule i. 8 is a 

smoothing coefficient; higher 0 values lead to increased damping of system responsiveness. 

Further experimentation revealed that varying degrees of smoothing are required to respond 

to different manufacturing patterns. This resulted in a scheme in which 8 was allowed to 

vary, and the rule induction process was applied once again to yield another decision tree; 

the corresponding set of heuristic selection rules is shown in Figure 3. 

AEH 

INSERT FIGURE 3 HERE 

The overall PDS module, therefore, consists of two functional components: the heuristic 

selection module (HSM) and the pattern smoothing module (PSM). These two modules and 

their interactions are depicted in Figure 4.  Whenever a scheduling decision is required. 

PSM selects the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB value based upon the current manufacturing pattern observed and the 
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induction tree for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8. This value of 0 determines the required smoothing threshold. HSM 

uses this threshold in conjunction with the observed pattern and the heuristic knowledge 

generated through inductive learning to select the appropriate dispatching rule to use. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
INSERT zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFIGURE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 HERE 

We now discuss the experiments conducted to evaluate the relative merit of the PDS 

approach. 

6 Experimental Study 

This section describes an experimental study conducted to understand the performance char- 

acteristics of PDS. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA priori, we expect the PDS approach to be superior to the conventional 

single dispatching rule approach for two reasons. First, as depicted in Figure 2, PDS iden- 

tifies the best dispatching rule for a given manufacturing scenario. Because of this selecting 

ability, PDS should perform at least as well as the best from among the candidate dispatching 

rules considered in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW. Second, PDS is able to adapt its selection of the best dispatching rule 

dynamically to the changing patterns. Such an odapling ability should result in a schedule 

quality which is even superior to that of the best dispatching rule. Simulation studies were 

designed specifically to verify these two expectations. 

As noted earlier, the PDS module consists of the HMS and PSM components. This 

expermiental study focused on the performance of HSM in selecting the best dispatching 

rule through inductive learning. Thus, the selection function performed by PSM is emulated 

by employing the value of 8 which is the best of three predetermined values zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 0.0, 0.7 and 1.0, 

so that the impact of HSM can be isolated and better understood. [The smoothing effect of 

PSM is, however, indispensable for achieving the adapting ability of PDS. As an extension to 

this work, we are currently conducting another study which focuses on the adapting behavior 

of PDS in response to such disturbances as machine breakdowns and sudden changes of job 

loading patterns.] 

,. 

The simulation experiments addressed an FMS at which jobs arrive following a. Poisson 

process. Upon its arrival, each job was assigned the number of required operations randomly 
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from a uniform distribution which ranged between 1 and the total number of machines in 

the system. Operation processing times were sampled from an exponential distribution with 

a mean of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA400. A range zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof due date tightness was achieved by allowing the flow allowance 

factor to vary between 2 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA15. 

Three different system sizes comprising 4,6  and 8 machines were considered. The relative 

machine workload was allowed to vary between 0.6 and 1.2. Machine homogeneity was 

allowed to vary between 0 and 0.4. [A value of 0 implies that the same number of operations 

are assigned to all machines.] The contention factor ranged between 2 and 4. Job interarrival 

times were varied to yield overall system utilizations between 50% and 95%. 

The experiments addressed 69 different combinations of these parameters. In each cdse, 

the method of batching was used to determine the steady state mean tardiness values re- 

sulting from employing SPT, EDD, MOD and MDD dispatching rules individually, as well 

as the values obtained by using PDS which incorporated the selection heuristics depicted in 

Figures 2 and 3. 

The mean tardiness values obtained by using different scheduling rules are shown in Table 

1. In this table, BEST refers to the mean tardiness value obtained by the dispatching rule 

which performs the best for the corresponding scenario. This dispatching rule is labeled the 

Best zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARule. 

Overall, PDS resulted in an improvement of 11.5% over BEST. It produced lower mean 

tardiness values in 33 cases and the same values in 26 cases. It was worse in the remaining zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
- 10 cases; however, the tardiness values obtained in 8 of these cases were quite low (less than 

19) under both BEST and PDS. 

INSERT TABLE 1 HERE 

These experiments indicate that the performance of PDS depends upon two factors. First 

is the impact of the number of machines in the system. Table 2 gives a breakdown of the 

number of instances in which PDS was better, the same and worse for the three system 

sizes studied. PDS is distinctly superior for +-machine systems. However, as the system size 

increases, the number of instances in which PDS and BEST are equally effective increases 

as well. 
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No. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof Machines zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
6 

8 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Second, as depicted in Figure 5, the relative improvement achieved by PDS depends upon 

the frequency of pattern changes realized in the system. Recall that a pattern change signals 

a potential switch in the applicable dispatching rule as determined by the PDS decision 

tree. However, depending upon the appropriate value of 0,  a change may not be affected in 

practice. Therefore, the number of actual dispatching rule switches would be smaller than 

the number of pattern changes. [Also note that the number of pattern changes is dependent 

upon the PDS tree generated. If this tree is different, possibly because of the use of a 

different rule induction algorithm, the number of pattern changes for the same experiment 

is also likely to be different.] 

INSERT FIGURE 5 HERE 

In order to understand these results, it is important to first note that the relative perfor- 

-mance of PDS will depend, among other factors, upon i )  the difference in the performance of 

individual dispatching rules under a given pattern, and ii) whether the system characteristics 

result in a dominant pattern. If the system attributes are such that they yield a sequence of 

patterns in which the various dispatching rules yield similar results, PDS is not likely to be 

significantly superior to BEST. This argument partially explains the apparent dependence 

of PDS upon system size. An increase in the number of machines, in general, leads to an 

increase in contention factor as well. As reported in Wayson’s (1965) and Stecke and Ra- 

man’s (1990) studies, the difference in mean flow times and mean tardiness values obtained 

under different dispatching rules decreases with an increase in the number of alternative ma- 

chines available for processing any operation. Consequently, higher contention factors lead zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

No. of Cases in which PDS is 

Better Same Worse 

18 2 4 

10 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 3 

5 16 3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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to smaller differences between PDS and BEST. Therefore, conceptually, we would expect 

PDS and BEST to behave identically in the limit. 

However, in most real zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFAtSs, providing high contention factors, which amounts to creating 

more redundancies in the system, may not be economically viable because it leads to a 

reduction in the number of parts which can be manufactured concurrently and/or a reduction 

in system utilization. In most practical situations, contention factor is likely to be low to 

moderately high, a range in which PDS is significantly superior to BEST. 

We observed from our experiments that the relative difference between various dispatch- 

ing rules decreases also when mean tardiness values are small. [This result is reported in 

earlier simulation studies of job shops zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas well; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsee, for example, Baker 1984.1 In such cases, 

the benefit in using PDS is small etlen zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAif zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthere zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm e  large number of rule switches. [As shown 

in Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5, the experiments do show that small tardiness values are accompanied by a large 

number of pattern changes. This would indicate the existence of several crossovers among 

the dispatching rules when tardiness is small even though they differ only marginally from 

each other.] This argument partially explains why, in Figure 5, we find that the improvement 

ratio decreases with a decrease in mean tardiness and an increase in the number of pattern 

changes. 

A t  the other extreme, fewer pattern changes imply that there is a small number of dorn- 

inant patterns that characterize the system. In such cases, PDS would frequently select the 

dispatching rule(s) most appropriate for the dominant pattern(s); as a result, the difference zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
- between PDS and BEST would be marginal. As shown in Figure 5,  we observed that domi- 

nant patterns are accompanied by high tardiness values. This would happen, for example, if 

system utilization levels are high and buffer sizes are small. In such instances, MDD would 

be the most appropriate dispatching rule across a wide range of other system attributes. 

Consequently, the manufacturing pattern which favors MDD will be dominant resulting in 

a small difference between PDS and MDD (which would be the BEST rule). Of course, i t  is 

unlikely that most real systems would operate at high tardiness values on a sustained basis. 

In summary, the maximum effectiveness of PDS is realized when the number of pattern 

changes is medium to reasonably high, and no one pattern is clearly dominant. This range 

also corresponds to tardiness values ranging from low to moderately high - a range which 
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would be applicable to most viable manufacturing systems. 

Finally, we note three possible reasons why PDS results in higher tardiness values com- 

pared to BEST in some instances. First, because the set of training examples used for 

generating PDS is a subset of the universe of the possible scheduling environments, the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
learned heuristics are likely to be zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAovergenemlized to some extent leading to a few prediction 

errors. Specifically, PDS may not perform well in a situation which is not explicitly ad- 

dressed by the training examples. Second, the performance of PDS is limited by the number 

of control attributes considered for designing the training examples. While, on the basis 

of the available scheduling literature, the nine attributes considered in this study are fairly 

comprehensive, it is possible that for a given system, the selection of appropriate dispatching 

rules is affected significantly by some other attributes. Third, because the training examples 

are driven by simulation experiments, the appropriateness of a dispatching rule for a given 

pattern is determined by its steady state average performance over the length of the simula- 

tion run. Its implementation during real time scheduling is, however, based on the pattern 

which is observed at  the instant a scheduling decision is to be made. While a dispatching 

rule may perform well in the long run for a given set of attributes, it need not necessarily be 

effective when it is applied on a rolling basis on transient patterns. 

The adverse impact of overgeneralization can be mitigated in practice by employing 

a feedback mechanism to monitor scenarios in which PDS does not perform well, and to 

update the set of training examples accordingly. The suggested rule induction process can zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
- then be used to appropriately refine the selection heuristics. In a similar vein, if empirical 

evidence suggests that one or more control attributes, which were not previously considered 

for generating training examples, have significant impact on the selection of dispatching rules, 

then they can be included in new training examples (and, if necessary, selection heuristics 

can be modified). In a real system, therefore, the relative performance of PDS should 

continuously improve with the incorporation of a feedback mechanism. 

However, the use of steady state average values for determining the appropriateness of 

any dispatching rule is intrinsic to the overall PDS approach in the context of dynamic 

scheduling. The adverse impact, if any, of doing so is partially mitigated by the use of B 

which helps in smoothing out the transient patterns. Nevertheless, it must be understood 
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that PDS may not perform very well if the pattern changes are extremely frequent. This 

is another factor which contributes to a reduction in improvement ratio as the number of 

pattern changes increases. As the experimental results indicate, however, in most such 

instances there is only a minor degradation in the quality of the PDS schedule. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
7 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAConclusion 

This study develops a scheduling approach which employs inductive learning to generate 

pattern-directed heuristics for making dynamic scheduling decisions in an FMS. This ap- 

proach comprises the three steps of: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1) Generation of training examples through experimen- 

tation involving various dispatching rules, 2) determination of selection heuristics through 

inductive learning, and 3) executing pattern-directed scheduling adaptively. 

The PDS approach performs better than the conventional single dispatching rule ap- 

proach because of its capabilities of selecting the best rule (the selecting ability), and of 

switching between different rules in real time with changes in the state of the system (the 

adapting ability). The decision trees generated in this study to depict the selection heuris- 

tics clearly show the efficacy of inductive learning in extracting and ranking the system 

attributes relevant for deciding upon the appropriate dispatching rule to employ. In this 

process, those attributes which have only a marginal impact are screened out. The experi- 

mental results show that this approach results in significantly improved system performance. 

-This is especially so in systems which exhibit dynamically changing patterns. 

We believe that the most appealing characteristic of PDS, in the presence of a feedback 

mechanism, is its ability to dynamically refine the set zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof selection heuristics in response to 

manufacturing scenarios in which it does not preform very well. Consequently, in a real 

system, the relative performance of PDS should improve continuously. 
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Figure 2: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADecision Tree for Selecting Dispatching Rules zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Figure 3: Decision zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATree for Selecting 0 
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ScheduIing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Heuristics zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfrom 

Inductive Learning zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I R  

Figure 4: PDS Module Execution through its Functional Components 
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3.5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 

No. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof Pattern Changes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMean Tardiness -I- Improvement Ratio 

Figure 5: Impact zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the Number of Pattern Changes 
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