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ABSTRACT In this paper, we study an intelligent secure communication scheme for cognitive networks
with multiple primary transmit power, where a secondary Alice transmits its secrecy data to a secondary
Bob threatened by a secondary attacker. The secondary nodes limit their transmit power among multiple
levels, in order to maintain the quality of service of the primary networks. The attacker can work in an
eavesdropping, spoofing, jamming or silent mode, which can be viewed as the action in the traditional Q-
learning algorithm. On the other hand, the system can adaptively choose the transmit power level among
multiple ones to suppress the intelligent attacker, which can be viewed as the status of Q-learning algorithm.
Accordingly, we firstly formulate this secure communication problem as a static secure communication game
with Nash equilibrium (NE) between the main links and attacker, and then employ the Q-learning algorithm
to select the transmit power level. Simulation results are finally demonstrated to verify that the intelligent
attacker can be effectively suppressed by the proposed studies in this paper.

INDEX TERMS Intelligent secure communication, Q-learning algorithm, Nash equilibrium.

I. INTRODUCTION
In recent years, there have been many progresses in the
development of wireless communications [1]–[4], in order
to tackle with the increasing challenge of wireless big data
[5]–[8] and mobile edge computing [9]–[12]. Among the
newly increasing techniques, cognitive technique can be
viewed as a novel approach to improve spectrum utiliza-
tion effectively and also has been recognized as a smart
wireless communication technology in the limited of radio
spectrum [13]–[17]. When the interference from the sec-
ondary users to the primary ones [18] is below a given
level or the spectrum is not used, the secondary users are
enabled to access the spectrum of the primary users. The
channel capacity of the secondary users is limited by the
primary users’ tolerant interference power in cognitive net-
work [19]–[21]. Thus, it is of vital importance to make sure
that the secondary user should make use of the spectrum
and reduce interference to the primary user. Most of studies
in cognitive network focus on channel identification, detec-
tion and management of spectrum and power allocation.
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In practice, the level of primary transmit power can be single
due to the transmission of fixed services. When the trans-
mission services are varying, the primary users should use
multiple levels of transmit power, in order to provide better
performance [22], [23].

On the other hand, with the rapid development of the
wireless networks, wireless networks are closely related to
people’s privacy communication and so on [24]–[26]. The
security of wireless communication network has received
more and more attention. Wireless communication secu-
rity has become an important research topic recently and
it mainly focuses on the physical-layer security research of
wireless networks. Traditional encryption techniques rely on
application-layer operations, which causes much more com-
putational complexity [27]. In contrast, the application of the
physical-layer security mechanism can make it more difficult
for attackers to decipher the transmitted information. In [28],
[29], physical-layer security has been proposed to safeguard
data confidentiality in 5G wireless communication networks.
Besides the above research, there have been some researches
on the newly developed materials, which can be used in
wireless networks for both transmission and improving the
environments [30]–[33].
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Most of the research works on the physical-layer security
focus on the fixed-mode attacker, which however ignores the
fact that the attacker can be change its mode in order to
increase the attack rate. In practice, wireless communication
networks are more vulnerable to be attacked by intelli-
gent attackers with the rise and development of new intel-
ligent attackers such as unmanned aerial vehicles [34]. Smart
attackers can perform many types of attack based on the
environment of the wireless network, including eavesdrop-
ping, jamming and spoofing [35], [36]. In order to improve
the security performance of communication and reduce the
security loss caused by failure to detect attacks in time,
many researches have focused on the detection of smart
attackers and suppressed the attacks. Specifically, in [37],
[38], a Q-learning based power allocation algorithm has
been applied to strengthen the secrecy capacity under UAV
smart attack. The work in [39] has proposed a power control
strategy to suppress the intelligent attacks by using some
advanced signal processing techniques such as beamforming
and filtering.

In this paper, we consider the wireless communication
system where there is a secondary user wants to contact with
another secondary user under the constraint of the primary
user in the cognitive radio network. Meanwhile, a secondary
intelligent attacker exists in this network, and it can work in
the eavesdropping, jamming and spoofing modes. In order
to improve the security performance of the communication
system, a static secure communication game with Nash equi-
librium (NE) between the main links and attacker is for-
mulated. We further propose a power control strategy based
on Q-learning algorithm to select the transmit power level
for the secondary user in the range of tolerant interference
power of the primary user. The attacker can select its attack
mode among eavesdropping, jamming, spoofing or keep-
ing quiet, according to the practical environments and the
cost. The transmitter eventually obtains the optimal transmit
power to improve the system secrecy capacity by using the
Q-learning algorithm. Simulation results validate that the
intelligent attacker can be effectively suppressed by the pro-
posed scheme in the cognitive radio network.

The main contributions of this work are summarized as
follows:
• A secure transmission of communication problem in

cognitive radio networks under a smart attacker is investi-
gated in this paper, and it is formulated as a static secure
communication game with NE strategy.
• A Q-learning algorithm is introduced to determine the

transmit power of the secondary user which should not be
larger than the peak level of the tolerant interference power.
The Q-learning algorithm can improve secrecy capacity of
the secondary user and suppress smart attacks under the
constraint of the primary user.

The outline of this paper is given as follows. Section II
describes the system model in the cognitive radio networks.
And then in Section III, we study the secure communica-
tion game and present the NE of the game. In Section IV,

FIGURE 1. Alice communicate with Bob under attack of the smart
attacker Mallory in a CR network.

we present the Q-learning algorithm in detail which is used to
select the transmit power level in a dynamic game. Section V
presents the simulation results followed by the conclusions in
Section VI.

II. SYSTEM MODEL
Fig. 1 shows the systemmodel of the cognitive radio network,
where there is one secondary Alice wants to send information
to the secondary Bob under the constraint of the primary
user. The intelligent attacker Mallory exists in the network,
and it can work in the eavesdropping, jamming, spoof-
ing, or silent mode, depending on the instantaneous channel
state and system settings. Specifically, if the channel between
the Alice and Mallory is in good condition, the Mallory may
tend to eavesdrop the confidential signal from the Alice.
On the other hand, if the channel between the Bob and Mal-
lory is in good condition, the Mallory may tend to perform
spoofing or jamming. When all the channels associated with
the Mallory are in poor condition, the intelligent attacker
may select to keep silent, as it cannot achieve good result
in performing eavesdropping, spoofing or jamming. In this
work, we use q ∈ {0, 1, 2, . . . ,K } to denote the Mallory
action mold, and K is the total number of attack modes.
In particular, K = 3 corresponds to that the action mode of
Mallory consists of keeping silent, eavesdropping, jamming
and spoofing, and q = 0, 1, 2 or 3 represents the silent,
eavesdropping, jamming and spoofing modes, respectively.

To maintain the quality of service for the primary network,
the transmit power of the secondary nodes should be limited.
In this work, we consider a practical cognitive communica-
tion scenario where there exist multiple level of interference
transmit power. In particular, we use IP ∈ [0, IP,max] to denote
the tolerant interference from the primary user, which IP,max
is the tolerant peak interference. Moreover, suppose that the
primary user has (L+1) levels of tolerant interference power,
and the primary user can use the l-th level of the tolerant
interference power, denoted by IP,l , where l ∈ [0,L]. Note
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that IP,l is equal to
lIP,max
L . When the l-th level of the tolerant

interference power is used, the transmit power at the Alice is
given by

PAlice =
IP,l
|g1|2

, (1)

where g1 ∼ CN (0, σ 2
i1) denote the channel parameters of the

link from the Alice to the primary user. Here we use Pq,Mallory
to denote the transmit power at the Mallory. From PAlice
and Pq,Mallory, we will discuss the secure data transmission
process, as follows.

A. WHEN MALLORY KEEPS SILENT
When q = 0 holds where the Mallory keeps silent, Alice
communicates with Bob by sending signal Xa and then Bob
receives a signal YB, given by

YB = gab
√
PAliceXa + nb, (2)

where the channel parameter of the Alice-Bob link is denoted
by gab ∼ CN (0, σ 2

ab), and nb ∼ CN (0, σ 2
n ) is the additive

white Gaussian noise at the Bob [40]–[42], where the noise
effect on the communication systems can be found in the
works [43]–[46]. Note that the Alice can utilize the spectrum
resources of the primary networks, as long as its interference
is tolerated, which can help improve the system spectrum
efficiency significantly. Based on the Shannon theory, we can
write the capacity of the Alice-Bob link named by R, given
by [47]–[49]

R = log2
(
1+

IP,l |gab|2

σ 2
n |g1|2

)
. (3)

B. WHEN MALLORY PERFORMS EAVESDROPPING
When q = 1 holds where Mallory performs eavesdropping
on the signal Xa of Alice, it obtains a signal YE , given by

YE = gea
√
PAliceXa + ne, (4)

where the channel parameter of the Mallory-Alice link is
denoted by gea ∼ CN (0, σ 2

ea), and ne ∼ CN (0, σ 2
n ) is the

additive white Gaussian noise at the Mallory. In this case,
the secrecy capacity under eavesdropping can be written as

RE = log2
(
1+

IP,l |gab|2

σ 2
n |g1|2

)
− log2

(
1+

IP,l |gea|2

σ 2
n |g1|2

)
. (5)

C. WHEN MALLORY PERFORMS JAMMING
When q = 2 holds where Bob is disturbed by the Mallory’s
jamming signal denoted by ZJ , Bob receives a signal YJ
which consists of both the desired signal and the jamming
signal, given by

YJ = gab
√
PAliceXa + gbe

√
Pq,MalloryZJ + nb, (6)

where the channel parameter of the Mallory-Bob link is
denoted by gbe ∼ CN (0, σ 2

be).To limit the interference on
the primary user, Pq,Mallory is given by

Pq,Mallory =
PJ
|g2|2

, (7)

where PJ is the peak interference when the Mallory performs
jamming. And g2 ∼ CN (0, σ 2

i2) denote the channel parame-
ters of the link from Mallory to the primary user.

In this case, the transmission capacity is given by,

RJ = log2
(
(1+

IP,l |gab|2

σ 2
n |g1|2

)(1+
PJ |g2be|

σ 2
n |g2|2

)−1
)

(8)

= log2
(
1+

IP,l |gab|2|g2|2

|g1|2(σ 2
n |g2|2 + PJ |g

2
be|)

)
(9)

D. WHEN MALLORY PERFORMS SPOOFING
When Mallory selects to be a spoofer, it transmits a spoofing
signal ZS with the power PS to lie to Bob. Then Bob gets a
signal YS , given by

YS = gbe
√
Pq,MalloryZS + nb (10)

where Pq,Mallory is limited by

Pq,Mallory =
PS
|g2|2

, (11)

in which PS is the peak interference when the Mallory per-
forms spoofing.

The capacity under spoofing is denoted by RS . The more
spoofing messages Bob receives, the greater it loses. Hence,
the secrecy data rate is modeled as a liner function. Note that
the intention of the spoofer is to send a spoofing message to
Bob, instead of preventing Alice’s transmission. Therefore,
if Mallory chooses to perform as a spoofing attack, it only
sends a signal when the Alice is silent. The secrecy data rate
of Alice which is attacked can be formulated as

RS = log2(1+
IP,l |gab|2

σ 2
n |g1|2

)− γ log2(1+
PS |gbe|2

σ 2
n |g2|2

) (12)

where γ is the impact factor of each spoofing signal, and γ
is in the range of [0.1] .

III. SECURE TRANSMISSION GAME
In this work, we study the condition of secure communication
which is under the environment of CR network. We model
this problem as a non-cooperative static security game. When
the secondary user, Alice andMallory find the spectrum hole,
they can use the spectrum resources of primary users, without
affecting the communication of primary networks. Therefore,
Alice can select to send signals with transmit power in the
range of [0, IP,max

|g1|2
]. The intelligent attacker Mallory chooses

its attack mode according to the actual situation, that is,
q = 0, 1, 2 or 3, which corresponds to keeping quiet, eaves-
dropping, jamming and spoofing, respectively. These attack
modes will destroy the Alice’s secure communication rate
while ensuring that they are not discovered. Alice, instead,
needs to maximize its communication security performance,
i.e., RE ,RJ and RS .

Let f (q) be the cost of attack mode q caused by Mallory
in this paper. When q = 1 holds which represents eaves-
dropping, the attack cost f (q) is equal to θE . Similarly, when
q = 2 and 3 holds which represents jamming and spoofing,
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the corresponding attack costs f (q) are equal to θJ and θS ,
respectively.

In this non-cooperative static secure game, the utility of
Alice is related to the confidential capacity and transmit
power, and it can be formulated as

Ua(PAlice, q) = Rq ln 2− CaPAlice, (13)

where Ca represents the Alice’s cost by unit transmit
power. The q-th element of the secrecy capability vector
[R,RE ,RJ ,RS ] is denoted by Rq. Take this data rate and
multiply by the coefficient ln 2, for simplicity. As same as
above, the utility of the Mallory is related to the confidential
capacity and transmit power, and it can be formulated as

Ue(PAlice, q) = −Rq ln 2− f (q). (14)

In general, the NE strategy of this game is expressed as
(P∗Alice, q

∗). In order to maximize the Alice’s own utility Ua,
it needs to choose the transmit power PAlice appropriately.
Meanwhile, Mallory needs to select its attack mode to max-
imize its own utility Ue combined with the actual transmit
power of Alice. Neither Alice nor Mallory will benefit from
changing the strategy alone. Therefore, in order to maximize
the own interest, neither party is willing to change its strategy.
From this, we can get the following inequality.

Ua(P∗Alice, q
∗) ≥ Ua(PAlice, q∗),∀0≤PAlice≤PmaxAlice (15)

Ue(P∗Alice, q
∗) ≥ Ue(P∗Alice, q),∀q = 0, 1, 2, 3 (16)

Lemma 1: The static secure game has an NE(x∗Alice, 0)
given by

1
σ 2
n /|gab|2 + x

∗
Alice
= Ca, (17a)

0 ≤ x∗Alice ≤ P
max
Alice, (17b)

If θE ∈ Y1, θJ ∈ Y2, θS ∈ Y3, and Ca ∈ Y4 hold, where

Y1=

[
ln
(
1+

x∗Alice|gea|
2

σ 2
n

)
,∞

)
(18a)

Y2=

[
ln
(σ 2
|g2|2+PJ |gbe|2+x∗Alice

|gab|2

σ 2
(|g2|2+PJ |gbe|2)

σ 2|g2|2+PJ |gbe|2+x∗Alice|gab|
2|g2|2

)
,

∞

)
(18b)

Y3 =

[
γ ln

(
1+

PS |gbe|2

σ 2
n |g2|2

)
,∞

)
(18c)

Y4 =

[
1

σ 2
n /|gab|2 + P

max
Alice

,≤
1

σ 2
n /|gab|2

]
(18d)

Proof: See Appendix A. �
It can be seen from Lemma 1 that when the cost of attack is

much higher than the transmission lost, the incentive to attack
disappears (i.e., eqs. (18a)-(18c)). Moreover, in the case of
poor channel communication environments and serious infor-
mation leakage (i.e., eqs. (18d)), Alice will stop transmission.

Lemma 2: The static secure game has an NE (PmaxAlice, 0),
if θE ∈ Y ′1, θJ ∈ Y ′2, θS ∈ Y ′3, and Ca ∈ Y ′4 hold, where

Y ′1 =
[
ln
(
1+

PmaxAlice|gea|
2

σ 2
n

)
,∞

)
(19a)

Y ′2=
[
ln
(σ 2
|g2|2+PJ |gbe|2+PmaxAlice

|gab|2

σ 2
[|g2|2+PJ |gbe|2]

σ 2|g2|2+PJ |gbe|2+PmaxAlice|gab|
2|g2|2

)
,

∞

)
(19b)

Y ′3 =
[
≥ γ ln

(
1+

PS |gbe|2

σ 2
n |g2|2

)
,∞

)
(19c)

Y ′3 =
[
0,

1
σ 2
n /|gab|2 + P

max
Alice

]
(19d)

Proof: See Appendix B. �
Lemma 2 illustrates that Alice prefers to transmit with the

maximum power in the case of low transmission cost or high
attack cost.

IV. POWER ALLOCATION STRATEGY IN DYNAMIC GAME
In practical communication environments, it is difficult for
Alice to predict the attack mode and channel information
of Mallory in a certain period of time under the constraint
of primary user. Q-learning is a classic and widely used
algorithm, which can derive the solution of the non-convex
problem. In this work, Alice can learn how to select the
optimal transmit power by the Q-learning algorithm when it
communicates with Bob in the range of tolerant interference
power of primary user to suppress the attack from Mallory
effectively. Meanwhile, Mallory chooses the corresponding
attack mode according to the cost and the choice of Alice.

As shown in Algorithm 1, Q-learning is a value-based and
off-policy algorithm. Let Q(s,PAlice) denote the Q-function
of Alice, in which s is the system state and the action PAlice is
the transmit power of Alice. PAlice is limited by the primary
user which should be not larger than the peak level of the
tolerant interference power. The Q-functionQ(s,PAlice) is the
expected discounted long-term reward of Alice. The value
function V (s) is the maximum of Q(s,PAlice).
At time n, the attack mode of Mallory is denoted by qn.

Alice uses the Mallory’s attack mode qn−1 in the last slot
as the system state at time n, which is given by sn = qn−1.
In Algorithm 1, we select Alice’s action by using the ε-greedy
algorithm in a time slot. We randomly explore an action with
probability ε and exploit the best action in highest reward Q
with probability 1 − ε. The learning rate is denoted by β,
which determines how much the error is learned in this time
slot. And β is a number less than 1. Meanwhile, the decay
value of the future rewards is denoted by the discount factor
δ, which is the range of [0,1]. In this trial-and-error process,
Alice selects its transmit power to maximize its long-term
reward, and can adaptively suppress the Mallory’s smart
attack.

Note that in the secure game involving two users, the action
of one user can be regarded as the state of the other user.
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Algorithm 1:Power Control With Q-learning

1: Initialize Q(s,PAlice)=0,V (s)=0, q0=0,∀s,PAlice;
2: for n = 1, 2, 3, ... do
3: Update the state sn = qn−1;
4: Choose transmit power PnAlice by using the ε-greedy

algorithm
5: Transmit with power PnAlice
6: Observe the attack mold qn and the utility of Alice Ua

7: Update the value function and Q function:
Q(sn,PnAlice) = (1− β)Q(sn,PnAlice)+
β(Ua(sn,PnAlice)+ δV (s

n+1))
8: V (sn)= max

0≤P≤PmaxAlice

Q(sn,PAlice)

9: end for

Accordingly, we regard attacking mode of Mallory, i.e., the
action ofMallory, as the state space of Alice, which is denoted
as q = 0, 1, 2 and 3. Moreover, we discretize the maximum
transmit power Pmax into L+1 levels, and define the transmit
power level PAlice ∈ {lPmax/L}0≤l≤L as the action of Alice,
which is also regarded as the state of Mallory. In further,
the state transition probability of the Markov states is not
known prior, and hence we use the Q-learning algorithm
to solve the secure game, which does not need the state
transition probability.

In order to execute the Q-learning algorithm, the system
needs to observe the attacking mode of Mallory and the
utility of Alice. Although such information is maybe dif-
ficult to obtain in practice, it is meaningful to study with
known information of Mallory’s mode and Alice’s utility,
in the following three folds. Firstly, such information can be
obtained through some signal processing methods, such as
using some pilot signals in the system to estimate the required
channel parameters and the Mallory’s mode. Secondly, if we
cannot obtain the accurate data of the required information,
we can try to obtain some statistical value, through some
estimation methods, such as estimating the location of the
Mallory. Thirdly, even if we cannot obtain any information of
the Mallory’s mode and Alice’s utility, the study in our work
can still serve as a useful benchmark, and help obtain some
insights on the secure system.

V. SIMULATION RESULTS
The performance of the proposed Q-learning algorithm was
evaluated in this section. In order to implement the algo-
rithm and simulate the practical communication environ-
ments, we set σ 2

ab = 1.2, σ 2
ea = 0.1, σ 2

be = 3, σ 2
g1 = 6, and

σ 2
g2 = 4.2 as the average channel gains 1 [50]. We denote the

peak interference power when theMallory performs jamming
and spoofing by PJ = 7.4 and PS = 7.2, respectively. The
cost of transmit power for Alice Ca is set to 0.1, and the
impact factor of each spoofing signal γ is set to 0.5.

1Note that the node location is actually used in the secure game, since the
statistical channel gains are related to the distance between the nodes.

FIGURE 2. Anti-attack performance when the tolerant interference power
of PU is in the range of [1,10].

Fig. 2 shows the anti-attack performance when the tolerant
interference power of the primary user ranges from 1 to
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FIGURE 3. The eavesdropping rate of Mallory with respect to the tolerant
interference power of the primary user.

10. Specifically, Fig. 2 (a), (b) and (c) are associated with
the eavesdropping rate, jamming rate and spoofing rate of
Mallory, respectively. As can be seen from Fig. 2, there is

FIGURE 4. The average secrecy capacity of Alice with respect to the
tolerant interference power of the primary user.

a decreasing trend in the attack rate of Mallory after many
times of training and learning, and it tends to zero gradually.
For example, as can be seen from Fig. 2 (a), there is an evident
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decline in eavesdropping rate from 25% at the beginning to
almost zero after 1000 time slots. Similarly, both the jamming
rate and the spoofing rate of Mallory decrease significantly
and finally tend to zero. Fig. 2 indicates that Alice can learn
how to select the transmit power when it contacts with Bob
by the training of Q-learning algorithm in the specific range.
In this situation, Mallory tends not to attack because the cost
of the attack is too high. In other words, Alice can suppress the
attack behavior of Mallory when it communicates with Bob,
which further proves that the proposed Q-learning algorithm
can achieve the purpose of secure communication.

Fig. 3 shows the eavesdropping rate of Mallory with
respect to the range of tolerant interference power of the
primary user. In particular, Fig. 3 (a), (b) and (c) correspond to
the tolerant interference power of primary user in the range
of [1,50], [50,100] and [100,150], respectively. We can see
fromFig. 3 that the proposedQ-learning algorithm can reduce
the eavesdropping rate effectively. For instance, as shown
in Fig. 3 (a), the eavesdropping rate falls below 0.025 after
500 time slots and it tends to zero as the time slot increases
when the tolerant interference power of PU is in the range
of [1,50]. Similarly, the eavesdropping rate begins to show a
downward trend after 1500 time slots when the tolerant inter-
ference power of PU is in the range of [50,100] and [100,150],
respectively. Finally, they all converge to zero when the time
slots are larger than 3000. Simulation result in Fig.3 validates
that the proposed Q-learning algorithm can make Alice select
the optimal transmit power so that it can suppress the attack
rate of the attacker in any range of the tolerant interference
power of the primary user. In further, the jamming rate and
the spoofing rate also decrease significantly and converge to
zero in the same range of tolerant interference power.

Fig. 4 shows the average secrecy capacity of Alice with
respect to the tolerant interference power of the primary user.
Fig. 4 (a), (b), (c) and (d) are associated with the tolerant
interference power of primary user in the range of [1,10],
[1,50], [50,100] and [100,150], respectively. As observed
from Fig. 4, we can find that the Alice’s average secrecy
capacity increases on the whole as the number of training
increases. For example, as shown in Fig. 4 (a), the average
secrecy capacity of Alice based on the Q-learning algorithm
increases dramatically with a rise of around 50%. We can
observe from Fig. 4 (b) that there is an obvious increase after
1000 time slots in the secrecy capacity. Similarly, the average
secrecy capacity of Alice continues to rise after a short period
of decline both in Fig. 4 (c) and (d). In further, the secrecy
capacity in Fig. 4 (c) and (d) is much more stable than
that in Fig. 4 (b) after 3000 time slots. Simulation result
in Fig. 4 demonstrates that the average secrecy capacity of
Alice can be improved after learning and can move towards
maximization.

VI. CONCLUSION
In this work, we have investigated the secure transmission
problem under the smart attack in cognitive networks. The
secondary users, Alice and Mallory, were allowed to utilize

spectrum resources which were also used by primary user.
The attacker, Mallory, had three attack modes including
eavesdropping, jamming, and spoofing. We formulated an
NE strategy game to maximize the utility of the transmit-
ter and meanwhile minimized its damage from the attacker.
The Q-learning algorithm was utilized to control the trans-
mit power of the transmitter and determine the attack mode
of the smart attacker. The employed Q-learning algorithm
enabled the transmitter to obtain the optimal transmit power
during the learning stage in the range of tolerant interfer-
ence power of the primary user which hence suppressed
the attacker eventually. Simulation results were provided to
show that the algorithm could effectively and clearly achieve
the expected target, which suppressed the attack behavior of
the attacker. In future works, we will consider some learn-
ing based algorithms [51], [52], especially the deep learn-
ing based algorithms [53]–[55], to the considered system,
in order to enhance the system performance.

APPENDIXES
APPENDIX A
PROOF OF LEMMA 1
If eqs. (18a)-(18c) hold, from (14), we have Thus, (16) holds
for (x∗Alice, 0). From (13), we have (A.1a), (A.1b), and (A.1c)
as shown at the top of the next page,

∂Ua(PAlice, 0)
∂PAlice

=
1

σ 2
n /|gab|2 + PAlice

− Ca, (A.2)

∂2Ua(PAlice, 0)

∂P2Alice
= −

( 1
σ 2
n /|gab|2 + PAlice

)2
≤ 0. (A.3)

The above formulas show that ∂Ua(PAlice, 0)/∂PAlice
decreases monotonically with respect to PAlice. Thus, if (18d)
holds, from (A.2) we have

∂Ua(PAlice,0)
∂PAlice

∣∣∣
PAlice=0

=
1

σ 2n /|gab|2
− Ca > 0, (A.4)

∂Ua(PAlice,0)
∂PAlice

∣∣∣
PAlice=PmaxAlice

=
1

σ 2n /|gab|2+P
max
Alice
−Ca < 0, (A.5)

indicating that ∂Ua(PAlice, 0)/∂PAlice = 0 has only a
sole solution because of the formula (17a). From (A.2)-
(A.4) we can know that when PAlice is smaller than
x∗Alice,Ua(PAlice, 0) monotonically increases. On the contrary,
when PAlice is larger than x∗Alice, Ua(PAlice, 0) monotonically
decreases, which means that Ua(PAlice, 0) has a maximum
value. Thus, (15) holds and (x∗Alice, 0) is an NE of this game.
In this way, we have completed the proof of Lemma 1.

APPENDIX B
PROOF OF LEMMA 2
Similar to the proof in Lemma 1, if eqs. (19a)-(19c) hold,
from (14), we have

Ue(PmaxAlice, 0)−Ue(P
max
Alice, 1)=θE −ln

(
1+
PmaxAlice|gea|

2

σ 2
n |g1|2

)
≥ 0.

(B.1)

In the same way, Ue(PmaxAlice, 0) ≥ Ue(PmaxAlice, 2) and
Ue(PmaxAlice, 0) ≥ Ue(PmaxAlice, 3) imply that (16) holds. The
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Ue(x∗, 0)− Ue(x∗, 1) = θE − ln
(
1+

x∗Alice|gea|
2

σ 2
n

)
≥ 0, (A.1a)

Ue(x∗, 0)− Ue(x∗, 2) = θJ − ln
(σ 2
|g2|2+PJ |gbe|2+x∗Alice

|gab|2

σ 2
(|g2|2+PJ |gbe|2)

σ 2|g2|2+PJ |gbe|2+x∗Alice|gab|
2|g2|2

)
, (A.1b)

Ue(x∗, 0)− Ue(x∗, 3) = θS − γ ln
(
1+

PS |gbe|2

σ 2
n |g2|2

)
≥ 0. (A.1c)

above formulas, show that ∂Ua(PAlice, 0)/∂PAlice decreases
monotonically with respect to PAlice, and we have

∂Ua(PAlice, 0)
∂PAlice

≥
∂Ua(PAlice, 0)
∂PAlice

∣∣∣
PAlice=PmaxAlice

≥ 0,

∀0 ≤ PAlice≤PmaxAlice. (B.2)

This implies that (15) holds and (PmaxAlice, 0) is an NE of this
game. In this way, we have completed the proof of Lemma 2.
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