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Abstract

In this viewpoint we describe the architecture of, and design rationale for, a new software platform designed to support the conduct
of digital phenotyping research studies. These studies seek to collect passive and active sensor signals from participants' smartphones
for the purposes of modelling and predicting health outcomes, with a specific focus on mental health. We also highlight features
of the current research landscape that recommend the coordinated development of such platforms, including the significant
technical and resource costs of development, and we identify specific considerations relevant to the design of platforms for digital
phenotyping. In addition, we describe trade-offs relating to data quality and completeness versus the experience for patients and
public users who consent to their devices being used to collect data. We summarize distinctive features of the resulting platform,
InSTIL (Intelligent Sensing to Inform and Learn), which includes universal (ie, cross-platform) support for both iOS and Android
devices and privacy-preserving mechanisms which, by default, collect only anonymized participant data. We conclude with a
discussion of recommendations for future work arising from learning during the development of the platform. The development
of the InSTIL platform is a key step towards our research vision of a population-scale, international, digital phenotyping bank.
With suitable adoption, the platform will aggregate signals from large numbers of participants and large numbers of research
studies to support modelling and machine learning analyses focused on the prediction of mental illness onset and disease
trajectories.
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Introduction

There has been a recent explosion of interest in consumer digital
tools across health care, such as smartphones. Mental health
has been no exception [1]. Clinically valuable applications have
been identified in depression and anxiety, suicidality, drug and

alcohol disorders, ageing and dementia, and neurological
disease. Through digital phenotyping [2,3] (or personal sensing
[4]), behavioral signals, sensor data, and self-reported
information gathered through smartphones, wearable sensors
and smart home devices can be combined to elucidate the nature
and clinical status of health conditions, such as depression [5,6],
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anxiety [7], and bipolar disorder [8-13]. These signals also
promise better insight into the earliest signs of mental disorders,
such as changes in sleep, social behavior, and cognitive function,
and raise the prospect of robust, individual-level risk
stratification and prediction [14]. Modern smartphones contain
multiple sensors that may be used for both passive (ie,
continuously running in the background without intervention)
and active (ie, with direct input from the user) data collections.
Individual sensors may be used for both, such as applying a
device accelerometer to collect measurements from a stereotyped
movement task while also recording circadian movement
patterns.

Importantly, these digital tools can be designed to use gathered
data to deliver and enhance interventions [2]. Techniques such
as artificial intelligence can transform data into self-management
recommendations concerning relapse or treatment adjustment,
and can also drive interactive experiences, such as chatbot-based
conversations [15,16]. The use of online and smartphone apps
for the prevention and management of mood disorders [17],
suicide [18], bipolar disorder [19], and the promotion of mental
wellbeing has either already been established or is under active
investigation and can deliver clinical outcomes comparable to
face-to-face therapy [20-24]. Automation has created
opportunities to reach global users in a timely way; creating
new mechanisms to support health care users that do not rely
on face-to-face services [25]. Data-driven tailoring also has the
potential to address key challenges of poor engagement and
meaningful use that are commonly seen in today’s apps [26,27].

Today, efforts to realize a vision of smart sensing and adaptive
intervention design are fragmented and often narrowly focused.
Despite enthusiastic efforts to build sensing and intervention
apps, many appear to have limited potential for clinical
translation because they are not backed by evidence of efficacy
[28], or do not clearly satisfy clinical quality [29] and safety
expectations (such as those concerning diagnostic accuracy
[30]). Our own review suggests that the choice of data collected
appears more often determined by technical ease rather than
what is most important to understand physiological,
neurological, and psychological processes [31]. There are also
numerous questions of data privacy [32], acceptability [33], and
the ethics of data collection [34] which have been fueled by
high-profile public data scandals. Left unaddressed, these
questions risk undermining public and professional confidence
in this transformative technology area. Crucially, without
large-scale public participation, much of the vision for digital
phenotyping and adaptive interventions cannot be realized. It
is becoming increasingly clear that a complete and
comprehensive data platform is required to capture the breadth
of available sensor data in a meaningful way. This itself is a
challenge, given the need to specify the various functional
modules required to support the range of available sensors
without negative impacts on user experience and to meaningfully
curate the data that is produced.

As a field, and at the beginning of what may prove to be one of
the most useful ways we can help understand the nature,
trajectory, treatment, and mechanisms of mental health
disorders, we need to change the way we operate. Over the next
few years, if appropriately and ethically acquired, we believe

that the time has come to create an international digital
phenotype bank. Its purpose will be to explore the relationship
between behavior and the development, and subsequent
trajectory, of common mental illnesses. It will also create the
opportunity to develop personalized digital interventions that
assist individuals in identifying and preempting periods of ill
health. Because predictive analytics and related methods can
efficiently leverage existing data [35], data consolidated in a
digital phenotype bank promises a multiplier effect from reuse
by clinical, research and, with appropriate governance, industry
users.

However, to enable these research and clinical uses, signals data
from potentially large numbers of participants must be collected,
marshalled, and persisted. A key enabler of this vision is,
therefore, the availability of scalable software platforms backed
by appropriate technical architecture. This paper describes the
design of a new platform for digital phenotyping intended to
satisfy this requirement. We outline the design goals of the
platform and highlight aspects that researchers may wish to
consider when developing similar platforms.

A Case for Shared Platforms

Overview
The technology landscape surrounding the development of both
digital phenotype data collection and data-driven intervention
studies can be characterized by significant heterogeneity (of
technologies, platforms, clinical problems, and research
approaches [31]). Nevertheless, several common features stand
out. These motivate our interest in the potential for shared data
platforms and are summarized below.

Most Digital Data Collection and Intervention Tools
Are Custom-Built
Researchers in electronic mental health (e-mental health) often
build custom digital solutions to support their studies. This
typically involves creating study-specific mobile (or web) apps,
often from scratch. These digital health research apps contain
code for gathering study specific data from sensors, surveys,
and custom workflows (such as games). Additionally, these
apps must handle aspects such as user management, data
transport to a secure server, data privacy, and ensuring that the
technical solution adheres to the approved ethics protocol. This
careful process of technical engineering to satisfy research and
governance requirements must be repeated for every study.

There Is a Significant Opportunity Cost for Creating
Digital Solutions
Although individual research groups may achieve economies
of scale through strategic development of shared code and the
reuse of assets, the ability of other research groups to exploit
these benefits is limited by the commitment of the originating
researchers to make these assets available (eg, as open source
repositories), to maintain them, and to provide support for their
use. Researchers (especially those working outside electronic
health [eHealth]) who may be interested in acquiring digital
sensor signals may be essentially locked out because they have
no access to enabling technology.
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Efforts by mobile platform vendors to create reusable research
tools (eg, Apple’s ResearchKit [Apple Inc, Cupertino,
California, USA]) do not address passive sensing scenarios and
do not solve the problem of researchers wanting to build tools
that will run on both iOS and Android platforms, since vendor
frameworks are not cross-platform compatible.

Life Cycle Concerns Are Rarely Addressed
To guarantee participant experience, digital solutions must be
supplied, set up, managed, and supported over the duration of
the study. Significant effort and resources may be needed to
address breaking changes introduced by updates to mobile
operating systems and to debug issues experienced on specific
device types (particularly for Android, where the device market
is highly fragmented and where modifications to the device
operating system by individual device manufacturers can create
unexpected issues). The challenge of resourcing life cycle
management is a potential contributor to the small numbers of
research-backed health apps currently available in public app
stores [28,36].

No Common Data Standards Exist for Digital
Phenotyping
A data standard is a consensus set of rules for describing and
recording information to facilitate its analysis, reuse, and
exchange [37]. A topical challenge for digital phenotyping is
the extent to which contextual information may be needed to
adequately interpret signals data. For example, device type,
version, and power state, sensor characteristics (such as
measurement precision), and user characteristics (such as height
and age) may all affect the interpretation of sensing data. Data
standards offer a means to ensure that this relevant information
is consistently collected in formats that are useful for both initial
and secondary analyses. A lack of common standards acts as a
potential barrier to combining data from multiple studies, with
time and effort needed for data wrangling (ie, the process of
converting data into compatible forms). Shared platforms stand
to help address the standards gap in two ways. Firstly, simply
by coordinating the activity of different researchers, they operate
as de facto standards providers since all data collected is
governed by the same technical collection mechanisms.
Secondly, as the digital phenotyping landscape matures, they
are well-placed to implement any standards that are
collaboratively developed by the research community. Other
areas where standardization may be beneficial include the
specification of data preprocessing steps and the methods used
to derive summary metrics and features intended for machine
learning.

Good Data Governance is Challenging
Poor quality and privacy controls, including a lack of
industry-standard safeguards such as appropriate encryption
and access control, have repeatedly been identified in health
apps available to the public [32,38]. Shared platforms may be
better able to command the resources and expertise needed to
monitor and respond to evolving governance risks than
individual projects.

Design Considerations for Digital
Phenotyping Platforms

In addition to factors motivating interest in coordinated
approaches towards digital phenotyping, there are several
specific design considerations. In a recent discussion [31], we
identified three priorities. We argued firstly for the need for
universal (ie, cross-platform) technology that is accessible
regardless of device type, to ensure equity of opportunity for
both research participants in the present and the potential future
users of clinical services that are built around digital
phenotyping. Despite almost equal market share between the
two major mobile operating system vendors (Android and
Apple) in multiple economies [39], digital phenotyping
platforms have historically focused exclusively on Android
devices because of the relative ease of implementing passive
sensing on these compared to Apple, whose app model does
not allow continuously running background services (except in
specific circumstances not directly relevant to digital
phenotyping).

Secondly, we advocated for platforms that could not only
efficiently support smaller pilot and exploratory projects (of the
kind that have largely characterized digital phenotyping research
to date [31]) but also larger studies running with potentially
thousands of concurrent participants. We justified this
requirement on the basis that, if a primary intent of digital
phenotyping is de novo biomarker discovery for clinical grade
uses, then there will need to be a step change in the
discriminative performance of models being derived from digital
phenotyping signals, which will likely require larger datasets
[40]. Reported sensitivities and specificities in digital
phenotyping classification studies to date rarely exceed 90%,
despite the use of state-of-the-art machine learning methods.
We have highlighted how improvements in test statistics will
be needed to obtain clinically acceptable rates of false positives
and negatives [31].

Thirdly, and relatedly, we identified a need for platforms that
could support the aggregation and efficient transformation of
collected data to: (1) support its secondary reuse, such as the
creation of artificial intelligence–based methods for predicting
mental health outcomes; and (2) enable future integrations with
digital health interventions. For example, models derived from
digital phenotyping data could be used to tailor the selection
and timing of components delivered by adaptive interventions.
Platforms supporting this kind of operational use case have
potentially more stringent requirements around uptime and
resilience than those used simply as repositories for research
data.

We identify here two further design considerations. The first is
that the use of smartphones as the primary data collection
mechanism introduces multiple constraints which necessitate
trade-offs during platform design. That is, there are competing
characteristics, such as user privacy concerns, energy efficiency
for extending battery life, hardware difference due to device
fragmentation, and strict app development guidelines [41-43].
Because each of these constraints has relevance for
research-relevant goals, such as being able to collect as much
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data as possible from a given user, there is a need for an explicit
decision-making process during platform design.

Table 1 highlights the relationship between typical constraints
and research goals, the tradeoffs that result, and potential design
solutions. For example, there is an implicit trade-off between
maximizing data collection volumes and potential negative
impacts on user experience resulting from sensor-related battery
drain and the use of data services to transmit collected data. For
platform creators, design challenges include not only finding
technical strategies that can optimize the efficiency of collection

but also whether and how to include hard constraints that
mitigate poor user experience (such as placing an upper limit
on data collection frequency). Whether or not such strategies
are necessary may depend, in turn, on the kind of operational
model backing the platform. For example, where a platform is
offered as a service to multiple research groups, the use of such
constraints may be justified on the basis that negative user
feedback arising from one study has the potential to affect the
recruitment and participation of users in other studies, even if
unrelated.

Table 1. Summary of the trade-offs between requirements, constraints, and resolution.

Potential design solution(s)Trade-offSmartphone constraintsResearch goal

Readily accessible
participant data

••• Strict adherence to mobile platform app guidelines
captured in a reusable app development kit for app
developers

Data availability versus
user privacy

Protect user’s privacy by
restricting access to data

Unified way to col-
lect passive and ac-
tive data

••• Tested and verified implementation for accessing
sensor data that wraps platform-specific data collection
strategies in a common interface

High quality data versus
Platform and device limi-
tations

Smartphone vendor frag-
mentation creating plat-
form-specific data collec-
tion challenges, such as
continuous background
sensing on Apple devices

High resolution data
collection strategy
(eg, continuous high
frequency sampling
over many days)

••• Custom communication protocol between mobile apps
and core platform allows tailoring of frequency and
duration of sensor sampling to manage energy and
bandwidth impacts for users

High resolution data ver-
sus poor user experience

Sensor usage limited to ex-
tend battery life

• •Impacts on network respon-
siveness and user data costs
if cellular networks used to
upload large data payloads

High resolution data ver-
sus additional costs to
participant • Platform enforces upper limits on data collection res-

olution
• Platform merges and schedules multiple requests to

minimize impacts on users’ devices
• Support for customized scheduling of data uploads

(eg, to use only Wi-Fi connectivity)

The second concerns the extent to which any platform enforces
particular workflows on research users and data collection
participants through its design. Even with modern software
development approaches, assumptions about how users will
perform key tasks are often incorporated at an early stage. As
a result, there are limits to which the initial design can be
modified [44], even with subsequent refactoring [45]. For
example, if strong governance of collected data is a desirable
outcome then it may be justifiable to introduce common platform
mechanisms, such as requiring Institutional Review Board (IRB)
approvals before data collection can be activated. However, our
own experience as researchers also recommends against creating
strong constraints on exactly what data research teams try to
collect or the methods used for collection. One potential strategy
for resolving this tension is to give study teams freedom
regarding the design and function of client-side infrastructure
(eg, data collection apps) while still mandating appropriate
controls, including governance requirements, over server-side
infrastructure where data are collected and processed for
subsequent analysis. This approach has been successfully used
in widely adopted software frameworks, such as those used to
provide usage analytics on mobile apps.

The InSTIL (Intelligent Sensing to Inform
and Learn) Digital Phenotyping Platform

Background
The InSTIL (Intelligent Sensing to Inform and Learn) platform
is a new, cloud-based system for collecting active and passive
sensor signals from both iPhone and Android smartphones.

Platform Design Aims
The platform was designed with the broad research aim of
improving understanding of the causes and trajectory of
youth-onset mood disorders using digital phenotyping.
Requirements analysis was informed by the issues discussed
above and by considering, through discussion with
representative stakeholders, what would be needed to support
multiple multidisciplinary teams working in parallel to explore
different facets of this research challenge. These imagined teams
consisted of: (1) mental health and clinical researchers wanting
to explore relationships between specific, digital
phenotyping–derived signals and traditional mental health
outcomes, such as GPS data and self-rated depression scores,
within observational studies of their own design; (2) researchers
wanting to combine (with consent) collected datasets for
secondary analyses, linkage, and machine learning; and (3)
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intervention designers wanting to consume digital phenotyping
data in some way to tailor or optimize new mental health
interventions. It was assumed that teams would not necessarily
be from the same institution and, although aligned with the
overall research aim, would not necessarily focus on the same
study populations.

From this analysis, we identified three interrelated design
objectives. Firstly, the platform should support high rates of
reliable data ingestion (ie, the collection of high-resolution data
from thousands of users without loss). This objective reflected
both the identified need for, and research interest in, larger-scale
digital phenotyping studies, as well as specific consideration of
the data volumes required to establish a digital phenotyping
bank. Platform design was influenced by this more than any
other objective, reflecting the impact that performance and
robustness requirements have on software architecture [46].
Secondly, the platform should be flexible enough to support the
requirements of multiple studies, including those not based in
mental health. In other words, the system needed to be flexible
enough that researchers could adapt the platform to the specific
requirements of their study while still benefiting from software
reuse. Thirdly, the platform design should seek to minimize
operational costs. Research teams often operate with constrained
budgets with minimal allowance for the developer and
operations teams that would be typical of such platforms in a
commercial setting. This objective informed the ultimate
decision to design certain platform components as shared
backend services, thus removing the need for individual
researchers to carry the risks and costs of initial setup and
creating a potential mechanism for formal operational support
in the future. Success in meeting this third objective is being
assessed through cost modelling incorporated into a randomized
controlled trial [47] that is using the platform for data collection.
This will be reported in a future analysis.

Common Research Workflow
From the requirements gathering process we identified a
common research workflow (Figure 1), which is a stereotyped
sequence of actions for the acquisition of digital phenotyping
data from study participants. This workflow incorporates the
following steps:

1. Researchers specify the study design, define which
questionnaires and sensors are required to deliver a trial or
set of clinical measurements and, optionally, how these are

integrated with any intervention components, such as
self-guided therapy. This specification is then hosted in a
secure online repository.

2. When the study commences, the specification is
automatically distributed to users’ devices. The same
mechanism can be used to update the specification
throughout the study.

3. The platform app development kit generates a range of data
streams, as required. This includes self-report data streams,
which consist of:
• Self-report questionnaires and assessments. Self-report

data can include single questions, standard instruments
(such as the Patient Health Questionnaire [PHQ-9]),
structured tests (such as response-time measurements)
and recordings from sensors (such as voice samples);
and

• Ecological momentary assessments. These include
quick-fire questions generated in response to temporal
or contextual cues (for example, when a user awakes),
to generate ecologically valid data.

4. There are also digital data streams, which might include:
• Passive sensing, which runs silently and continuously

to collect high resolution data about location, activity,
and social interaction from the user. A contemporary
smartphone may typically contain: an accelerometer,
gyroscope, compass, barometer, light sensor, GPS
receiver, microphone, camera, as well as Wi-Fi and
Bluetooth interfaces that can be used to detect
proximity to other users and devices. These sensor
types are all routinely available for digital data
collection.

• Device utilization data, which tracks ‘digital exhaust’,
such as time spent in apps, phone calls and text
messaging usage, as well as potential markers of
cognitive function, such as typing speed. The app
development kit automatically manages potential
barriers to data collection, such as user battery life and
limited connectivity, through smart scheduling and
caching.

5. Researchers can start to extract registry data as soon as it
is received, accelerating analysis, permitting study designs
that involve expert feedback, and allowing any data
collection issues to be identified and addressed early in the
research process.
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Figure 1. InSTIL Common research workflow. The figure shows how the platform supports a sequence of key activities for researchers involved in
digital phenotyping. InSTIL: Intelligent Sensing to Inform and Learn.

The workflow makes explicit several user requirements that
informed platform design. Firstly, and reflecting the status of
digital phenotyping as an emerging research area, an iterative
“test, analyze, test” approach is likely to be the norm, with the
timing and focus of digital phenotyping data collection revised
through a sequence of sub-studies. This requirement drives the
cyclical graph shown in Figure 1. Any iterative approach to
data collection must nevertheless be balanced with good study
governance requirements such as data integrity and versioning.

Secondly, researchers who are faced with practical study issues,
such as unforeseen protocol adjustments or managing participant
compliance, will expect the flexibility to amend data collection
parameters on demand. This gives rise to the concept of a
dynamic, study-specific, data collection specification that can
be updated and disseminated to participant devices as required.

Thirdly, support for acquisition of nondigital phenotyping data
types is essential to enable key uses cases, such as the need for
self-report and outcomes measures to provide labels against
which to train digital phenotyping models using supervised
machine learning.

Finally, despite the need for study-specific software
development work (eg, engineering apps to satisfy specific data
collection, intervention, and user experience requirements),
there is still value in common, researcher-facing software tools
to support routine administrative tasks such as scheduling,
monitoring participation, and data extraction. Relatedly, the

ways in which researchers will use collected data, whether for
statistical analysis, machine learning, or intervention tailoring,
are diverse enough to limit the value of single mechanisms for
visualizing and manipulating data. Instead the focus should be
on providing ways to efficiently extract collected data in useful
formats and slices (ie, subsets of users).

Platform Components
The resulting platform consists of a set of reusable software
components embedded within a common architecture (see Figure
2 and summary in Table 2). The architecture is consistent with
identified requirements for big data platforms, specifically those
of distributed computation and big data storage [48]. Together,
these components: (1) enable the collection of passive and active
sensor data (and other arbitrary data types); (2) enable secure
storage of deidentified data; (3) provide dynamic control over
the frequency and types of data being collected; (4) maintain
the provenance of data by ensuring source information is
recorded consistently; (5) provide a robust synchronization
protocol to reduce the risk of data corruption during transfer;
(6) record data in a standardized and stable data format to permit
replication and auditing; and (7) offer a common data export
and management method. The components shown in Table 2
have been designed to adhere to the software engineering
principle of separation of concerns [49], where each component
focuses on a well-defined functional process to minimize
repetition of code, maximize reusability, and simplify
maintenance or further development.
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Figure 2. Platform architecture. Architecture diagram showing the digital phenotyping platform consisting of reusable components (purple and blue
boxes) and components that need to be custom built for each study (orange).
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Table 2. Description of architecture components.

DescriptionComponent

Questionnaire, data collection strategy, and the frequency required for a specific experiment (active data).Study design and instruments

Some studies may need to reidentify users or provide custom authentication to ensure that only specific participants
join the study, and this component enables custom apps to provide that functionality.

User management

Integration endpoint for third party data visualization tools (eg, Power BI, Tableau, or Quicksight).Visualization tools

Integration endpoint for big data tools to provide analytics and support machine learning techniques.Data analytics tools

Database for storing study specific details. This store is independent of the platform, thus preserving the separation
between identifiable data (held in this database) and anonymized data (held in cloud data stores).

User profile database

Component responsible for extracting passive data from the mobile device and storing it locally prior to uploading
the data to the platform.

Data collector

Component responsible for uploading data to the cloud backend. Fault tolerance and automatic resume-retry sup-
ported.

Data uploader

Responsible for enrolling a participant and device with a specific experiment.Enrolment module

Dedicated component responsible for creating a new experiment with all the details specific to the study.Experiment manager web app

Accepts raw data from the mobile devices and triggers the data processor to store all data for the user.Data ingestion

Backend component responsible for transforming the data to the Data Sink component.Data processor

Component responsible for storing the study data in a database.Data sink

Triggers notifications to be sent to the mobile apps to ensure that they continue to collect the appropriate data required
for the study.

Notification engine

Module that researchers can use to extract data from the database in a standardized format.Data exporter

Core database that stores all deidentified data collected from an app.Deidentified database

Platform components are divided between a mobile app
development kit and shared cloud-based data backend. The app
development kit is available for both iOS and Android and is
intended to expedite development of new digital phenotyping
client apps. The app development kit reflects our skepticism
that any fully-fledged data collection app can meet the design,
content, and user experience requirements of any given study.
Instead, native libraries included in the kit provide drop-in
passive and active sensor data collection capabilities
(summarized in Figure 3), and separate error-tolerant and secure
upload management for collected data. These libraries allow
any app to be augmented with digital phenotyping capabilities,
while leaving researchers full control over the user-facing
interface and interaction design. The app development kit also
allows researchers to exert fine control over energy and data
impacts associated with sensor utilization and data upload.

The common data platform provides endpoints to authorize,
ingest and securely store data uploaded by apps using the app
development kit, allows researchers to dynamically configure
the behavior of data collection apps, makes collected data

available to researchers for further analysis, and maintains
persistent audit logs of data upload and access for governance
purposes. Although individual studies can set up and run their
own instance of the common data platform, it is principally
designed to support the use case where it can be hosted and
offered as a service to multiple concurrent projects. The design
is intended to reduce the learning curve, costs, and risks borne
by users new to the platform who can instead focus on the
client-side data collection experience. In our solution,
researchers interact with the platform through Experiment
Management, a web app (interface shown in Figure 4) which
allows them to specify data collection configurations, monitor
data collection progress, and download data collected from
previous experiments. The platform supports the creation of
custom study designs (questionnaires, interactions, etc) and
flexible data collection protocols (nightly uploads, type and
frequency of sensor data, etc). It also acts as a formal store for
audit-relevant information about study permissions, such as
documents received from an authorizing IRB. Without this
information, the study cannot commence data collection.

Figure 3. Supported data collection types. EMA: ecological momentary assessment.
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Figure 4. Experiment manager interface. Screenshot of the Experiment Manager application showing a summary of a study, including the data being
collected (top half), and the enrollment status for the participants (bottom half).

Platform Features

Support for Passive Sensing on Both iOS and Android
Devices
The platform app development kit provides native libraries to
support app development on the devices of both major platform
vendors. The ability to schedule passive sensing on Apple
devices differentiates ours from most other digital phenotyping
platforms. The provision of a kit ensures that researchers do not
need to reimplement best practices associated with privacy and
security in a mobile cloud computing environment, such as

appropriate authorization and encryption during data upload
[50].

Strategies to Maximize Passive Sensing Completeness
A principal challenge for passive sensing on smartphones is to
maximize the proportion of desired data points that are sampled
as planned and successfully returned for analysis. Although
data upload scheduling and error tolerance is an important
modifier of data completeness, a major barrier concerns reliable
sampling (ie, the initial acquisition of data from the desired
sensor at the desired time).

Concerns around data privacy have led mobile platform vendors
to introduce restrictions designed to give users greater control
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over how sensor data are collected and used. For example,
mobile apps must now explicitly obtain (and in some cases
periodically reobtain) user permission to collect GPS location
data. These permission mechanisms are platform-specific and
subject to change. To address these challenges, our development
kit provides support for a flexible onboarding mechanism to
guide users through the process of setting appropriate
permissions, configuring whether cellular data can be used for
data upload, and configuring hooks for notifying where
permissions have been denied or revoked. Fault tolerance means
that the kit handles such cases gracefully, continuing to collect
other sensor types even if one sensor no longer has permission.

Another limitation arises from concerns about the potential
impact of continuous background sensing on system
performance and battery drain adversely affecting the end-user
experience [43]. Platform vendors limit the amount of data that
can be collected passively, even closing apps that are energy
inefficient or have not been recently activated by the user. To
work within the constraints imposed by the platform vendors,
our communication protocol relies on periodically waking up
the mobile apps using silent background notifications. This
approach allows a common mechanism to be used on both
Android and iOS but is reliant on network connectivity. The
efficacy of these strategies in maximizing data completeness is
the subject of current investigation and we intend to report on
it in a future manuscript.

Extensible, Low-Cost Data Ingestion Pipeline
Data management has shown to be a core consideration in
large-scale, mobile app ecosystems [51]. This principle
influenced the decision to make the data ingestion pipeline
hosted by the cloud platform essentially agnostic to the form
and type of data uploaded from users’ devices. Instead, uploads
are required to be decorated with metadata, which encodes
information type and shared parameters, such as time of
collection, in a standardized format. This flexibility means that
support for new sensor types or data sources, or changes to the
form in which data are collected, can easily be introduced to
data collection clients without impacting the function of the
cloud-based ingestion pipeline. For example, a research group
wanting to extend the app development kit to collect high
volume data from a wearable sensor could do so and continue
to use existing data upload mechanisms without requiring
changes to the cloud architecture. This flexibility is intended to
expedite this kind of development and reduce the associated
costs for both research users and platform operators. The use
of standardized metadata means that analytics functions, such
as data submission rates, can easily be derived from submitted
data even if new types have been added.

In addition to extensibility, the data ingestion pipeline is
designed to minimize overheads associated with data acquisition
by performing minimal computation over the ingested data. For

example, data validation and compression are not performed
by the pipeline but are, instead, a client-side concern supported
by the app development kit. By distributing computation to
client devices, this reduces potential bottlenecks and consequent
costs for the common platform.

Strongly Typed, Client-Side Data Collection
While the data ingestion pipeline is type-agnostic, the app
development kit implements a core set of strongly typed schemas
for capturing and persisting common sensor data and related
data types. Schemas are currently available for GPS,
accelerometry, gyroscope, audio, longitudinal event log, and
questionnaire data and can be freely extended by users of the
kit. This combination of an agnostic pipeline with client-side
conventions for storing data represents a design trade-off
between the flexibility to extend and adapt the platform and the
ability to reuse, transform, and combine data (which
recommends the use of common data standards). As a result,
research users of the platform that implement the development
kit can use the provided data types and be reassured that the
data they collect will be compatible with existing datasets as
well any visualization/analysis tooling developed for the
platform, while those who want to adapt the data formats can
do so freely.

Privacy-Preserving Architecture
Consumer privacy law and research ethical guidelines create
strict requirements about data handling and management [52,53].
Considerations such as data privacy, which jurisdiction the data
can be stored and transferred to, and system security are all
relevant governance concerns addressed by the platform. For
example, the selected cloud/provider architecture allows us to
assure (with suitable configuration) that data belonging to each
research study are appropriately segregated and will be stored
only in a single legal jurisdiction, while the common data
platform enforces a requirement for IRB approvals to be lodged
prior to starting data collection.

A distinguishing feature of the platform is that all user data
contributions are anonymous by default. This is achieved using
a custom anonymous authentication mechanism (see Figure 5)
which is provided as part of the app development kit and
enforces contractual anonymity within the mobile app. We
recognize, however, that for certain studies it may be necessary
to identify and follow up with named individuals to augment
or verify results or deliver other intervention components. The
platform supports the case where participants do need to be
identified, but this requires explicit additional steps to be taken
by developers (in addition to appropriate ethical permissions)
to cache the unique enrollment identifier generated for every
participant. To do this, developers must create their own linkage
key store. This is, by definition, separate from the data stores
used by the platform, preserving anonymity in the unlikely event
that the platform stores are compromised.
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Figure 5. Privacy enforced enrolment protocol. Protocol for communication between the digital phenotyping app and the cloud backend supporting
passwordless authentication.

A second feature is the use of public key-based mechanisms as
a strategy to authorize and secure the time-limited transfer of
user data payloads to the platform. This mechanism (summarized
in Figure 6) guarantees that uploaded data are uniquely allocated
to the user that initiated the upload, minimizing the potential

for unauthorized access, upload spam, or mistakes in data
allocation during analysis. Together, these strategies mean that
there is no situation during routine platform operation in which
identifiable information is stored in the same cloud environment
as user response data.

Figure 6. Secure data upload protocol. Protocol for communication between the digital phenotyping app and the cloud backend involving anonymous
data collection and dynamically created upload locations.
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Technical Implementation Overview
A central tenet of the technical implementation was to leverage
existing open source components wherever possible. Due to the
scalable requirements of the platform, which is the eventual
ability to support tens of thousands of concurrent users, the
platform was built on top of the containerized platform
Kubernetes (Google LLC, Mountain View, California, USA).
Selecting a containerized solution simplified the processes of
integrating existing tools into the platform. These included
Elasticsearch (Elastic NV, Amsterdam, the Netherlands) for
efficient information retrieval, Kafka (Apache Software
Foundation, Forest Hill, Maryland, USA) for constructing data
pipelines, Zookeeper (Apache Software Foundation, Forest Hill,
Maryland, USA) for coordinating distributed components,
Kibana (Elastic NV, Amsterdam, the Netherlands) for
visualization and reporting, Redis (Redis Labs, Mountain View,
California, USA) as a central data store and PostgreSQL
(PostgreSQL Global Development Group, Berkeley, California,
USA) for data persistence. Scripts are provided to configure,
deploy, and run these components on Google’s Cloud Platform
(Google LLC, Mountain View, California, USA) (although the
platform will run on any cloud environment that supports
Kubernetes). The applications that make up the cloud backend
are written as Java microservices using the Spring Boot (Pivotal
Software, San Francisco, California, USA) web framework.
Digital phenotyping apps use platform specific native
programming languages, such as Swift for Apple’s iOS and
Java/Kotlin for Google’s Android.

Future Development
A principal task for future development is to identify where
shared value can be created for users once data have been
received by the platform. While we expect that most researchers
will expect direct access to raw data, there may be tasks,
particularly those that are either computationally expensive or
technically sophisticated, which it would make sense to be offer
as platform services. For example, feature computation or data
reduction techniques could be offered as options within a
standardized processing pipeline, minimizing set-up burden for
platform users while offering potential assurance about the
standardization of the datasets that are produced. Work is
underway to explore the scope, feasibility, and value of this
kind of preprocessing.

Additional work is also required to enhance error handling logic
for the platform. To achieve high data throughput, validation
logic (ie, steps to verify the correctness of incoming data) within
the ingestion pipeline was kept to a minimum. While this
pipeline can theoretically support efficient validation, such as
through asynchronous workers operating over accumulated data,
the current architecture does not support mechanisms to
propagate identified validation errors (eg, poor sample quality)
back to mobile clients. This introduces potential latency into
the process of identifying data quality issues and shifts the
burden of problem-solving onto the research team as a manual
process, which may be unfeasible in studies with large numbers
of participants. Future updates will introduce mechanisms to
trigger app development kit hooks when validation issues are
discovered, providing a potential route for data collection clients

to respond and fix any identified validation problems without
manual intervention. For example, in a study collecting active
voice samples, a collected sample that fails a quality check
could trigger the platform-associated mobile app to ask a
participant to provide a second sample.

We also recognize an ongoing requirement to review and
strengthen approaches to safeguarding participant
confidentiality. While the platform design ensures that
traditional identifiers, such as names and contact details, are
not collected, we acknowledge the risk that certain digital
phenotyping data types, such as GPS, are intrinsically
identifiable [54]. Potential platform-enforceable strategies to
manage this risk include: holding data in temporal escrow to
prevent individuals’current location being identified, remapping
GPS data to an alternate reference frame so that relationships
between points, but not their absolute location, are preserved,
and providing pipeline tools to preprocess data into features or
labels on behalf of researchers to avoid the need for teams to
handle raw data. Each of these involves potential trade-offs
between risk management and analytical value [55]. For
example, remapping GPS to an arbitrary coordinate system
limits the potential for semantic labelling of known locations.
We aim to explore the feasibility and acceptability of these
kinds of strategies in relation to both GPS and other sensor data
types in the next phase of work.

Finally, a process of technical refinement (currently underway)
aims to simplify the existing architecture to: (1) eliminate
unnecessary components which nevertheless confer operational
costs; and (2) reduce the effort required to extend the platform
for study-specific modifications. Currently, binary data such as
audio, video, and image files are stored in Elasticsearch,
enabling all data to be indexed for efficient searching. In later
development phases, blob storage will be used to house binary
data and only metadata describing the files will be indexed,
with the aim of reducing data processing costs. This shift may
also make it possible to replace Elasticsearch with a simpler
data store, such as a relational database, potentially reducing
the skills required of the team operating the platform.

Discussion

In this paper we describe the design of a scalable and
governance-aware platform for the acquisition of sensor data
from consumer smartphones, for the purposes of digital
phenotyping. The InSTIL platform provides a new suite of tools
for the development of digital phenotyping research studies.
The platform is currently being used to run studies at Black Dog
Institute and Deakin University, and will ultimately be made
available for research and public use. It sits alongside several
established and emerging technology platforms for digital
phenotyping that include Aware [56], Beiwe [57,58], EARS
[59], Purple [60], Monsenso [61], Passive Data Kit [62], and
RADAR-base [63]. InSTIL differs from these existing platforms
in several ways: (1) it supports passive sensing on iOS, unlike
EARS, Purple, and RADAR-base; (2) it runs sensing without
using special permissions that may prevent apps from being
deployed via public app stores, unlike Aware (albeit at the
expense of certain sensor streams, such as Bluetooth proximity
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tracking); (3) and its hosted server model means that research
teams do not have to worry about setting up, securing, and
maintaining the server infrastructure needed to run digital
phenotyping studies, unlike Passive Data Kit. Our platform
appears to be conceptually like Beiwe as a service [64], adopting
similar positions on issues such as participant anonymization
[65]; however, InSTIL differs by pairing its hosting model with
a software development kit, enabling custom apps to be built
for each project rather than offering standard data collection
apps (as Beiwe does). Each approach has pros and cons
concerning the ability to tailor user experience versus
development cost and timelines.

InSTIL is also an enabler for a research vision that seeks to
establish an international digital phenotype bank to pool sensor
signals data from a population-scale longitudinal cohort. This
initiative creates the opportunity to link digital phenotyping
data to ground truth data, including access to DNA information,
hospital records, and educational outcomes, to sensor data within
individual trials, projects, and experiments. So far, platform
development has focused primarily on technical aspects of data
collection, including the requirement to support the volume of
incoming data that would be necessary for a population scale
bank (potentially millions of data samples, per participant, per
year). The data collection platform is not the bank, however,
and we recognize that substantial additional work will be
required to address technical, governance, and operational issues
around efficient and secure data sharing (particularly across
international boundaries), participant recruitment, and
management.

From a technical perspective, there are several insights arising
from the development process which may be relevant to other
researchers involved in similar digital phenotyping or other
platform-scale efforts. Firstly, for managing even high-volume
data ingestion scenarios, a simple publish-subscribe messaging
queue may suffice. In retrospect, our selection of Kafka as the
queue management technology, while not creating any active
roadblocks, now provides few benefits. While Kafka can
perform persistent queries on the queue itself and replay data
streams, these features add limited value in the final system.
Second, the initial idea of simplifying the architecture by using
a comprehensive search engine (Elasticsearch) for all different
types of data proved to be unnecessary, as the principal data
storage format ended up being JSON. A simple document
storage database or a relational database system with JSON
indexes would be enough. Even where binary data are being
collected, such as audio samples, there is no specific use case
for holding these in an indexable store. Rather, it is the outputs
from analysis of these data packets (eg, machine
learning/algorithm-derived labels and annotations) where
indexing may be helpful, and since we propose that these outputs
be in JSON format, these too can be kept in a relational or
document store. Together these issues highlight the challenge
of accurately forecasting appropriate technology selection in
complex projects, particularly those developed using iterative
approaches. Finally, building and maintaining a digital
phenotyping platform requires a thorough understanding of the
limitations and constraints put in place by the mobile platform
vendors. This is a challenging task as mobile operating systems

are frequently updated, often with breaking changes. For
example, changes to the latest version of iOS significantly
reduced the ease with which passive location data could be
continuously collected.

In this paper, we also highlighted the trade-offs inherent in
designing data collection infrastructure that runs on users’ own
devices, which researchers have limited control over and where
inconvenience must be minimized. In addition to these
user-facing tradeoffs, the overall platform architecture itself
represents a trade-off between the desire to give researchers
maximum flexibility in configuring data collection to suit their
research and user experience requirements, while minimizing
the costs of completing technically challenging tasks such as
passive sensing and a secure data upload. We use the
client-server divide to orchestrate this trade-off, with researchers
given freedom on the app (client) side while being supported
by a common (server) backend with minimal scope for
study-specific changes. Work is now needed to critically
evaluate the value of this strategy, particularly since we have
already seen evidence of how it might be challenged. While
developing the app development kit, the team discovered that
the iOS App Store review process prevents apps from collecting
location data passively without surfacing this information in a
feature that directly benefits the end user. A design question
arises, then, as to whether the platform should provide native
visualization of GPS location data in some user-facing format
(which may require technical sophistication to achieve), or
whether this should be a study-specific concern. As the platform
is designed to be useful across many different studies,
implementation of such a feature may be beneficial but comes
with development and maintenance costs. It seems likely that,
should the platform become more widely used, a prioritization
mechanism will be needed to select features for inclusion in the
development kit/backend. We also recognize that the putative
benefits of a common and shared infrastructure are largely linked
to the ability to provide operational support to projects. As a
result, the next phase of platform development will also focus
on the feasibility of different operational and governance
models.

Although in the early stages of use, our vision for this new
science of behavior [2] promises benefits for health care, digital
health industries, and science. For health care, it provides the
means for users to learn more about their mental health, to be
able to, once sufficient work has been completed, anticipate
when their health may be at risk, and be able to access
techniques and interventions that have proved successful for
themselves and for many others. Ultimately, this work is aimed
at optimizing health care and alleviating disempowerment and
emotional toil. For the fast-growing digital industry, it raises
the possibility of new commercial opportunities, such as tools
for health insurers that incentivize health behaviors through
passive monitoring. For scientists, a collaborative platform to
generate, combine, and use signals reduces the opportunity costs
of digital phenotyping research and opens the door to new
multidisciplinary collaborations.

There is some understandable skepticism about the potential of
digital sensor signals to provide meaningful data to help manage
mental illness. Our own uncertainties have been reduced, in part
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by the success of modern machine learning methods in tackling
previously intractable classification problems in multiple
domains, by promising results from early digital phenotyping
studies [31], and by evidence supporting the existence of
prodromal phases with behavioral correlates for common mental
illnesses [66,67]. If these changes can manifest in sensor data

streams, then they can be detected and modelled. Ultimately,
we will not know if this can be a cost-effective, acceptable, and
robust approach unless we try. A collaborative digital
phenotyping platform, open to multiple users working in
parallel, will be critical to answer this question quickly.
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