
Northumbria Research Link

Citation: Tan, Teck, Zhang, Li and Lim, Chee Peng (2019) Intelligent skin cancer diagnosis

using  improved  particle  swarm optimization  and  deep  learning  models.  Applied  Soft

Computing, 84. p. 105725. ISSN 1568-4946 

Published by: Elsevier

URL:  https://doi.org/10.1016/j.asoc.2019.105725

<https://doi.org/10.1016/j.asoc.2019.105725>

This  version  was  downloaded  from  Northumbria  Research  Link:

http://nrl.northumbria.ac.uk/id/eprint/40453/

Northumbria University has developed Northumbria Research Link (NRL) to enable users

to access the University’s research output. Copyright © and moral rights for items on

NRL are retained by the individual author(s) and/or other copyright owners.  Single copies

of full items can be reproduced, displayed or performed, and given to third parties in any

format or medium for personal research or study, educational, or not-for-profit purposes

without  prior  permission  or  charge,  provided  the  authors,  title  and  full  bibliographic

details are given, as well as a hyperlink and/or URL to the original metadata page. The

content must not be changed in any way. Full items must not be sold commercially in any

format or medium without formal permission of the copyright holder.  The full policy is

available online: http://nrl.northumbria.ac.uk/policies.html

This document may differ from the final, published version of the research and has been

made available online in accordance with publisher policies. To read and/or cite from the

published version of  the research,  please visit  the publisher’s website (a subscription

may be required.)

                        

http://nrl.northumbria.ac.uk/policies.html


 

 

Intelligent Skin Cancer Diagnosis Using Improved 

Particle Swarm Optimization and Deep Learning 

Models 

Teck Yan Tan1, Li Zhang1 and Chee Peng Lim2 

1Computational Intelligence Research Group 

Department of Computer and Information Sciences 

Faculty of Engineering and Environment 

University of Northumbria 

Newcastle, NE1 8ST, UK 

 

2Institute for Intelligent Systems Research and Innovation 

Deakin University 

Waurn Ponds, VIC 3216, Australia 

 

Email: {teck.tan; li.zhang}@northumbria.ac.uk; chee.lim@deakin.edu.au 

 

 

Abstract.  

In this research, we propose an intelligent decision support system for skin cancer 

detection. Since generating an effective lesion representation is a vital step to ensure the 

success of lesion classification, the discriminative power of different types of features is 

exploited. Specifically, we combine clinically important asymmetry, border irregularity, 

colour and dermoscopic structure features with texture features extracted using Grey Level 

Run Length Matrix, Local Binary Patterns, and Histogram of Oriented Gradients operators 

for lesion representation. Then, we propose two enhanced Particle Swarm Optimization 

(PSO) models for feature optimization. The first model employs adaptive acceleration 

coefficients, multiple remote leaders, in-depth sub-dimension feature search and re-

initialization mechanisms to overcome stagnation. The second model uses random 

acceleration coefficients, instead of adaptive ones, based on non-linear circle, sine and 

helix functions, respectively, to increase diversification and intensification. Ensemble 
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classifiers are also constructed with each base model trained using each optimized feature 

subset. A deep convolutional neural network is devised whose hyper-parameters are fine-

tuned using the proposed PSO models. Extensive experimental studies using dermoscopic 

skin lesion data, medical data from the UCI machine learning repository, and ALL-IDB2 

image data are conducted to evaluate the model efficiency systematically. The results from 

empirical evaluations and statistical tests indicate the superiority of the proposed models 

over other advanced PSO variants and classical search methods pertaining to 

discriminative feature selection and optimal hyper-parameter identification for deep 

learning networks in lesion classification as well as other disease diagnosis. 

 

Keywords: Skin Cancer Detection, Feature Selection, Hyper-parameter Tuning, 

Evolutionary Algorithm, and Deep and Ensemble Classifier. 

1. INTRODUCTION 

Melanoma is the deadliest form of skin cancer. Accurate and early detection could 

significantly increase the survival rate [1-3]. Owing to the visual similarity between non-

melanoma and melanoma dermoscopic images, it is a challenging task in attaining precise 

diagnosis of different lesion cases. Since generating an effective lesion representation is a 

vital step to ensure the success of lesion classification, we explore dermoscopic feature 

extraction and evolutionary algorithm-based lesion feature selection in this research. 

 

Specifically, to formulate an effective lesion representation, we employ several feature 

descriptors to obtain not only clinically important asymmetry, border irregularity, colour 

and dermoscopic structure (ABCD) features, but also textual features using Grey Level 

Run Length Matrix (GLRLM), Local Binary Patterns (LBP), and Histogram of Oriented 

Gradients (HOG) operators. In this way, the discriminating power of different types of 

features is explored. Then, two variants of the Particle Swarm Optimization (PSO) model 

are proposed for feature selection. The objective is to identify the most significant 

characteristics pertaining to different lesions. The first proposed PSO algorithm employs 

dynamic adaptive acceleration coefficients, multiple remote swarm leaders, sub-dimension 

regional lesion feature enhancement, and re-initialization mechanisms to overcome 



 

 

stagnation and accelerate convergence. The second proposed PSO model uses random 

acceleration coefficients, instead of adaptive ones, based on non-linear circle, sine and 

helix functions to increase diversification and intensification.  

 

After identifying the most significant features by the proposed PSO models, two ensemble 

models are built with three K-Nearest Neighbour (KNN) models and three Support Vector 

Machines (SVMs) as the base classifiers. Ensemble models are known to yield better 

performances as compared with single classifiers. The base classifiers of each ensemble 

model are generated using the identified three sets of optimal features, i.e. 

ABCD+GLRLM, LBP, and HOG feature subsets. A weighted majority voting is adopted 

to draw a final conclusion on benign and malignant lesion classification. Moreover, a deep 

convolutional neural network (CNN) is employed for melanoma classification. Optimal 

hyper-parameter identification of the deep CNN is performed using the proposed PSO 

models, owing to the importance of these hyper-parameters in affecting the classification 

performance. Figure 1 depicts the overall system architecture. The research contributions 

are summarized as follows. 

 

1. A set of shape, colour and textural features (ABCD+GLRLM) is first extracted, 

owing to their significance in clinical diagnosis. The LBP operator with a (8, 1) 

circular neighbourhood and the HOG operator with an overlap of half the block size 

are used to extract refined textural information for lesion representation.  

2. Since generating an effective lesion representation is vital, two modified PSO models 

are proposed for discriminative feature selection. The first modified PSO model not 

only combines lesion features for performing global search, but also separates lesion 

features into specific areas for in-depth local search. Firstly, three remote swarm 

leaders with competitive fitness scores but low correlation in positions are identified. 

The overall population is then randomly split into three subswarms with each leader 

leading the search of each subswarm, respectively. Dynamic descending and 

ascending acceleration coefficients are generated by using partial circle, sine and helix 

waveforms to lead the search in the three subswarms, respectively. Such adaptive 

coefficients are able to increase global exploration in early iterations and converge 

towards the global best solution towards the end of iterations. Sub-dimension-based 



 

 

search is also conducted to obtain more refined regional discriminative information 

for lesion representation. A re-initialization strategy is used to assign random 

positions for the weakest solutions in the swarm, in order to diversify the search. 

3. Instead of using adaptive coefficients, the second proposed PSO model employs 

random acceleration coefficients based on the full waveforms generated by non-linear 

circle, sine, and helix functions. Such random coefficients not only increase 

diversification and enable a wider exploration of the search space, but also increase 

intensification to fine-tune the regions of both local and global optimal solutions. 

Specifically, the second model simulates the hovering flight behaviours of 

hummingbirds around attraction (e.g. flowers), and is able to explore a wider search 

space, therefore is more capable of finding global optima. 

4. Besides ensemble classifiers, a deep CNN model with adaptive parameter tuning is 

employed to further assess efficiency of the proposed PSO models. The hyper-

parameters, such as the learning rate and regularization strength, have important 

effects on the CNN results. As such, these parameters are adaptively adjusted and 

fine-tuned for each lesion recognition task using the proposed PSO models. Evaluated 

using dermoscopic skin lesion, UCI and ALL-IDB2 image data sets, the results from 

empirical evaluations and statistical tests indicate the superiority of the proposed PSO 

models over 11 advanced PSO variants and 10 classical search methods for 

discriminative feature selection and optimal hyper-parameter identification. 

 

The paper is organized as follows. Section 2 presents the related studies on benign and 

malignant lesion classification and Evolutionary Computation (EC) techniques for feature 

selection. Details of ABCD+GLRLM, LBP, and HOG feature extraction, the proposed 

PSO-based feature selection, and ensemble and deep networks for lesion classification are 

explained in Section 3. The evaluation results and discussion are presented in Section 4. A 

summary of this research and the directions for further research are given in Section 5. 

 



 

 

 
 

Figure 1. The system architecture 

 

2. RELATED WORK 

In this section, we introduce diverse evolutionary algorithm-based feature selection 

methods as well as related research on automated skin cancer detection. 

 

2.1 Feature Selection  

Owing to the powerful global search capabilities, evolutionary algorithms such as PSO are 

widely used for feature selection problems. Nayak et al. [4] employed a modified PSO 

(MPSO) model to optimize the input weights and hidden biases of an Extreme Learning 

Machine (ELM) for pathological brain detection from MR images. Both time-varying 

acceleration coefficients and an inertia weight factor were employed in MPSO to enable 

the search process to focus on global exploration in early iterations and converge towards 

the global optima in final iterations. Issa et al. [5] proposed a hybrid optimization method, 

known as ASCA-PSO, which integrated an enhanced sine cosine optimization algorithm 

(SCA) with the PSO model. The search process was split into two layers, with the top and 

bottom layers dedicated to the search strategies of PSO and SCA, respectively. The 

bottom layer used SCA to conduct subswarm-based search. The identified subswarm 



 

 

leaders were stored in the upper layer, which employed the PSO mechanism to explore the 

search space. Evaluated with well-known benchmark functions, their model showed more 

chances of finding global optima by combining intensification and diversification 

processes in each iteration. Patwal et al. [6] developed another modified PSO model, 

namely time varying acceleration coefficient PSO with mutation strategies (TVAC-

PSOMS). Besides employing adaptive acceleration coefficients, Cauchy, Gaussian and 

opposition based mutations were used to further enhance the local best solutions 

respectively. TVAC-PSOMS was used to solve hydrothermal generation scheduling 

problems, and it outperformed other modified search methods. Xue et al. [7] proposed a 

modified PSO model for feature selection in classification. The swarm initialization was 

conducted using both small and relatively large feature subsets. Classification 

performance was also used as the highest priority for updating both personal and global 

best solutions. Tested with 20 data sets, their PSO model, with a reduced feature subset, 

outperformed the original PSO model with a single objective function combining the two 

objectives of maximizing performance and minimizing the number of selected features. 

Lu et al. [8] proposed six PSO models for feature selection in text categorization, 

including PSO with (1) fixed inertia weight, (2) liner decreasing inertia weight, (3) fixed 

constriction factor, (4) adaptive constriction factor, (5) synchronous inertia weight and 

constriction factor, and (6) asynchronous inertia weight and constriction factor, 

respectively. Their experiments indicated the superiority of the PSO model with 

asynchronous inertia weight and constriction factor among all the proposed methods in 

terms of classification performance and convergence speed. Chuang et al. [9] proposed a 

chaotic binary PSO (BPSO) model for feature selection. It employed two chaotic maps, 

i.e. Logistic and Tent maps, as the inertia weight in BPSO, respectively. Evaluated with 10 

UCI data sets, BPSO with the Tent map showed better feature selection performances in 

comparison with those of BPSO with the Logistic map. A hybrid PSO model, known as 

GMPSO [10], was proposed for static and dynamic feature selection in bodily expression 

regression by integrating PSO with a Genetic Algorithm (GA) and Gaussian/Cauchy/Levy 

distributions. A modified bare-bones PSO model, denoted as BBPSOV [11], incorporating 

new position updating mechanisms, was used to conduct shape, colour, and texture feature 

selection in leukaemia diagnosis. PSO incorporated with a micro-GA concept was 

proposed for horizontal and vertical LBP-based texture feature selection for facial 



 

 

expression recognition [12], whereas a threshold-based PSO model (ThBPSO) was 

developed in [13] for pose and illumination invariant facial feature selection in face 

recognition. Three enhanced Whale Optimization Algorithms (WOA) were proposed in 

[14] for feature selection, which incorporated WOA with tournament, roulette wheel 

selection and crossover and mutation operators, respectively. 

 

2.2 Skin Cancer Detection 

In our previous study [1], we developed a decision support system for dermoscopic skin 

cancer diagnosis. A total of 11 shape, 15 colour, and 3888 Generalised Co-Occurrence 

Matrix (GCM) texture features were extracted. A GA was employed for feature selection 

while a SVM classifier was used for benign/malignant lesion classification. Owing to the 

severe imbalanced shape, colour, and texture features as well as low discriminative 

capabilities of GCM features, in this research, we employ more effective texture 

descriptors, which include GLRLM, LBP, and HOG, for texture generation. More 

discriminative shape (13) and colour (87) features are also extracted. Since the classical 

GA is likely to be trapped in local optima, two PSO variants are proposed for feature 

selection. The empirical results indicate their superior discriminative capabilities for 

feature selection. We also employ ensemble classifiers and deep CNN models for lesion 

classification, in order to further enhance performance. Moreover, Adjed et al. [2] 

employed the fusion of structural features and textual features for melanoma 

classification. Wavelet and curvelet transforms and diverse LBP variants were used for 

structural and textural feature extraction, respectively. Tested with the PH2 data set using 

a SVM model and a random sampling cross-validation strategy, their study achieved an 

accuracy rate of 86.07%. Sáez et al. [3] conducted thickness classification for melanoma 

lesions. Properties and features associated with dermoscopic images and tumour depth 

were explored. A total of 81 morphological, colour, and textural features were derived for 

lesion representation. Both 2-class (thin and thick) and 3-class (thin, intermediate, and 

thick) categorization schemes were proposed. Logistic regression using Initial variables 

and Product Units (LIPU) obtained the highest accuracy for binary classification tasks. For 

the 3-class thickness classification, a set of ordinal classification methods was used, which 

performed more stably in comparison with LIPU. Yu et al. [15] proposed deep CNNs for 

melanoma classification. First, a fully convolutional residual network (FCRN) was used 



 

 

for skin lesion segmentation. Further enhancement was realized by combining the FCRN 

with a multi-scale contextual information integration mechanism. A deep CNN model 

with more than 50 layers was then used to extract discriminative features from the 

segmented lesion regions for melanoma classification. A residual learning mechanism was 

also employed for training both networks to avoid overfitting. Tested with the ISBI 2016 

Challenge data set, their model achieved the first and second places for classification and 

segmentation tasks, respectively. Barata et al. [16] proposed global and local methods for 

melanoma classification, and indicated the efficiency of colour features over texture 

features for melanoma identification.  

 

Codella et al. [17] proposed ensembles of deep learning models for melanoma detection. 

The lesion segmentation was conducted using a fully convolutional network, which has a 

similar structure to that of U-Net. Besides sparse coding and hand-coded feature 

representations (e.g. a multi-scale variant of colour LBP), deep residual networks, CNNs, 

and fully convolutional U-Net architecture were also employed for feature extraction. A 

set of SVM classifiers was subsequently trained with each SVM dedicated to each 

extracted feature vector. The final classification results were obtained by averaging the 

outputs of all SVMs. Kruk et al. [18] proposed a skin cancer detection system, which 

consisted of image filtering, comprehensive ABCD feature extraction, feature selection, 

and non-melanoma/melanoma classification. A set of powerful descriptors was employed 

for feature extraction including Kolmogorov–Smirnov statistical distance, maximum sub-

region principle, percolation theory, and fractal texture analysis. Moreover, Fisher 

discriminant measure, correlation feature selection, and fast correlation-based filter were 

employed for discriminative feature selection. SVM and random forest (RF) were applied 

to melanoma classification. Their empirical results indicated that Fisher discriminant 

measure integrated with the SVM model obtained the best performance. Sánchez-

Monedero et al. [19] conducted not only melanoma classification but also the 

identification of different stages of lesions. A set of 100 morphological, colour, textural 

and pigment network features was extracted for each lesion image. A five-class 

classification was performed to identify benign and four other melanoma cases with 

different stages. A partial order assumption was considered in their methodologies owing 

to the presence of an order relationship among different melanoma stages and the absence 



 

 

of such a relationship in the benign cases. Over-sampling techniques were also employed 

for the generation of synthetic images to deal with imbalanced data problems. Bozorgtabar 

et al. [20] proposed deep networks guided by local unsupervised learning for lesion 

segmentation, while Li and Shen [21] developed a comprehensive deep architecture 

consisting of the Lesion Indexing Network (LIN) and the Lesion Feature Network (LFN) 

for skin lesion classification. 

3. THE PROPOSED SYSTEM 

In this research, we propose intelligent melanoma classification consisting of three key 

stages. Firstly, different feature descriptors are used to extract not only clinically 

significant ABCD characteristics, but also both high-level and low-level textural features 

using GLRLM, LBP, and HOG descriptors, respectively. Secondly, we propose two PSO 

models for discriminative feature selection. The first PSO model employs adaptive 

decreasing and increasing coefficients and in-depth local and global search for feature 

selection. The second model is equipped with the capability of exploring an extended 

search space by using random coefficients to attain global optima. Finally, two ensemble 

classifiers are generated for lesion classification using the identified three sets of optimal 

features, i.e. (1) ABCD+GLRLM, (2) LBP, and (3) HOG feature subsets. A deep CNN 

model is also implemented. Its optimal hyper-parameters are identified using the proposed 

PSO models. We introduce each key stage comprehensively, as follows. 

  

3.1 Feature Extraction  

First of all, the lesion images used in this research are re-sized to 500×500. Several pre-

processing steps are conducted including noise filtering, image segmentation, and 

grayscale conversion for noise removal and contrast enhancement. We extract ABCD 

morphological and colour properties, high-level GLRLM features, as well as low-level 

LBP and HOG histograms for representing skin lesions.  

 

We extract ABCD characteristics and GLRLM textural features owing to their clinical 

significance in medical skin cancer diagnosis. The following morphological features are 

extracted, i.e. asymmetry, compactness, border irregularity, perimeter, solidity, extent, etc. 

The extracted colour features include colour variance, entropy, skewness, correlation, etc, 



 

 

while the obtained textural features contain GLRLM in 4 orientations with 11 different 

emphases. Overall, a set of 146 ABCD and high-level GLRLM textural features (13 

shape, 87 colour and 46 texture features) is obtained. 

 

Since LBP and HOG operators are popular techniques to represent texture deformations, 

we employ both operators for feature extraction. Owing to computational simplicity and 

robustness to illumination changes, LBP has been successfully used for a wide range of 

image processing problems. According to [12], the LBP operator with a neighbourhood of 

8 and a radius of 1 is able to extract 90% discriminative uniform patterns among all the 

patterns retrieved, which play key roles in texture classification. Therefore, the LBP 

operator with a neighbourhood of 8 and a radius of 1 is employed in this research. We use 

a cell size of 191×191 in our experiment. A total of 236 features are extracted using the 

LBP operator. Since different texture descriptors are able to extract distinguishing textural 

deformations, the HOG operator is also used in this research. It employs a cell size of 

110×110 with a block size of 4×4. In order to ensure sufficient contrast normalization, the 

HOG operator with an overlap of half the block size is employed. A total of 324 features 

are extracted. 

 

The above extracted skin lesion representations using high-level textural, morphological 

and colour features, and low-level LBP and HOG features have high dimensionality. Two 

PSO-based feature selection models are proposed to remove redundant attributes and to 

extract the most significant characteristics from the above three sets of features, 

respectively, for benign and melanoma classification.  

 

3.2 The Proposed PSO-based Feature Selection 

Proposed in [22], PSO is one of the popular swarm intelligence algorithms, and it shows 

impressive search capabilities in solving diverse optimization problems. It employs the 

personal and global best solutions to guide the search process. Equations (1)-(2) define the 

velocity and position updating operations in PSO.  

 𝑣𝑣𝑖𝑖𝑖𝑖𝑡𝑡+1 = 𝑤𝑤 ∗ 𝑣𝑣𝑖𝑖𝑖𝑖𝑡𝑡 + 𝑐𝑐1 ∗ 𝑟𝑟1 ∗ (𝑝𝑝𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑖𝑖𝑖𝑖𝑡𝑡 ) + 𝑐𝑐2 ∗ 𝑟𝑟2  ∗ (𝑝𝑝𝑔𝑔𝑖𝑖 − 𝑥𝑥𝑖𝑖𝑖𝑖𝑡𝑡 )             (1) 



 

 

 𝑥𝑥𝑖𝑖𝑖𝑖𝑡𝑡+1 = 𝑥𝑥𝑖𝑖𝑖𝑖𝑡𝑡 + 𝑣𝑣𝑖𝑖𝑖𝑖𝑡𝑡+1                                               (2) 

 

where 𝑥𝑥𝑖𝑖𝑖𝑖𝑡𝑡+1 and 𝑥𝑥𝑖𝑖𝑖𝑖𝑡𝑡  represent the positions of particle 𝑖𝑖 in the 𝑑𝑑-th dimension in 𝑡𝑡+1-th 

and 𝑡𝑡-th iterations respectively. 𝑣𝑣𝑖𝑖𝑖𝑖𝑡𝑡+1 and 𝑣𝑣𝑖𝑖𝑖𝑖𝑡𝑡  denote the velocities in the 𝑡𝑡+1-th and 𝑡𝑡-th 

iterations, respectively. 𝑤𝑤 is the inertia weight to embed iteration influence of the previous 

velocity. 𝑐𝑐1 and 𝑐𝑐2 are acceleration coefficients with 𝑟𝑟1 and 𝑟𝑟2 as random vectors. 

Moreover, 𝑝𝑝𝑖𝑖𝑖𝑖 and 𝑝𝑝𝑔𝑔𝑖𝑖 represent the personal best solution of particle 𝑖𝑖 and the global best 

solution in the 𝑑𝑑-th dimension, respectively. Since the search process of PSO is led by a 

single swarm leader, it is more likely to be trapped in local optima.  

 

In this research, we propose two modified PSO models to mitigate the premature 

convergence problem of the original PSO for lesion feature optimization. Instead of using 

fixed acceleration coefficients, dynamic coefficients are proposed in both PSO models. 

Specifically, dynamic ascending and descending acceleration coefficients, in-depth local 

search and re-initialization mechanisms are used in the first PSO model. A wider 

exploration using both positive and negative random acceleration coefficients oriented by 

non-linear functions is implemented in the second PSO model. We discuss the proposed 

PSO algorithms in detail, as follows. 

 

3.2.1 The First Proposed PSO Model 

The first proposed PSO model with adaptive coefficients is denoted as ACPSO. It 

employs adaptive cognitive and social components, sub-dimension based search, and re-

initialization mechanisms to diversify the search. Algorithm 1 shows the pseudo-codes of 

ACPSO. 

 

Algorithm 1: Pseudo-Codes of Proposed ACPSO 

1. Start 

2. Initialize a particle swarm randomly; 

3. Evaluate each particle using the fitness/objective function 𝑓𝑓(𝑥𝑥); 

4. Rank the swarm based on fitness values and identify 𝑔𝑔𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡. 
5. While (Stopping criterion is not satisfied) 

{ 

6. Identify the second and third swarm leaders with comparable 



 

 

fitness scores but remote in positions to 𝑔𝑔𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡; 
7. Randomly divide the swarm into three subswarms with each 

subswarm led by each leader; 

8. While (!Stagnation) 

9. {       //use each strategy to lead each subswarm-based search 

10. Update position using Eqn. (1)-(3) in subswarm 1; 

11. Update position using Eqn. (1), (2) and (4) in subswarm 

2; 

12. Update position using Eqn. (1), (2) and (5)-(7) in 

subswarm 3; 

13. Evaluate each particle in each subswarm and update its 

personal best and the subswarm leaders;  

14. Compare three subswarm leaders and store the best 

subswarm leader;   

15.     }Until (stagnation detected) 

16.     Combine the three subswarms and update 𝑔𝑔𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡;   
17. Conduct sub-dimension based search in Algorithm 2 and 

return a new best solution, 𝑔𝑔𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡′ ; 

18.     If (𝑔𝑔𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡′  is fitter than 𝑔𝑔𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡) 
19.     {   Replace the worst particle in the swarm with 𝑔𝑔𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡; 
20.          Update 𝑔𝑔𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡 with 𝑔𝑔𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡′ ; } 

21.     Else If 

22.     {   Replace the worst particle in the swarm with 𝑔𝑔𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡′ ;} 

23.     EndIf 

24. Replace the last second and third worst solutions in the swarm 

with two newly generated random particles; 

25. }Until (Stagnate several times and no improvement found) 

26. Output 𝑔𝑔𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡; 
27. End 

 

In Algorithm 1, after initializing the swarm and identifying the swarm leader, 𝑔𝑔𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡, the 

second and third swarm leaders which show comparable fitness scores but a low 

correlation in position to 𝑔𝑔𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡 are identified. Then, the overall swarm is randomly divided 

into three subswarms, with each leader leading the search in each subswarm. Three sets of 

non-linear ascending or descending functions are used to generate dynamic acceleration 

coefficients in three subswarms to lead adaptive cognitive and social search components. 

Specifically, 𝑐𝑐1 and 𝑐𝑐2 are generated as partial descending and ascending contours of 

circle, sine, and helix functions, respectively, to increase local and global exploration. 

After a number of iterations, three subswarm leaders are produced, with the best 

subswarm leader used to update 𝑔𝑔𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡. The three subswarms are subsequently merged, and 

a sub-dimension based search defined in Algorithm 2 is conducted using the overall 

swarm to further enhance 𝑔𝑔𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡. Specifically, we divide each particle into three sub-



 

 

dimensions. These sub-dimensions represent the search areas of top, middle, and bottom 

sections of each lesion image. The sub-dimension based search performs local exploitation 

of the lesion sub-regions (i.e. feature subsections) to generate a new global best solution, 𝑔𝑔𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡′ . It updates 𝑔𝑔𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡 if it is fitter than 𝑔𝑔𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡, otherwise it replaces the worst particle in 

the swarm. A re-initialization strategy is also used to replace the last second and third 

worst solutions in the swarm with two newly generated random particles. The above 

search process iterates until the stopping criteria are fulfilled. 

 

3.2.1.1 Descending and ascending acceleration coefficients 

We introduce the three proposed non-linear functions for adaptive coefficient generation. 

Equation (3) defines a circle function for descending and ascending adaptive coefficient 

generation in subswarm 1. Specifically, 𝑐𝑐1 and 𝑐𝑐2 are generated as partial descending and 

ascending contours of circles, respectively.  

 𝑦𝑦1 =  √𝑟𝑟𝑟𝑟𝑑𝑑𝑖𝑖𝑟𝑟𝑟𝑟2 − 𝑘𝑘2       𝑘𝑘 ∈ [0, 2.5]                                     (3) 

In Equation (3), 𝑟𝑟𝑟𝑟𝑑𝑑𝑖𝑖𝑟𝑟𝑟𝑟 denotes the radius of a circle with a value of 2.5, i.e. the 

maximum value for both coefficients, while 𝑘𝑘 ∈ [0, 2.5] is the input value for circle 

generation. In order to produce a descending coefficient 𝑐𝑐1 ∈ (0, 2.5], the upper right 

quarter of the circle generated by Equation (3) is divided into m portions evenly, as 

indicated in Figure 2, where m is the maximum iteration number. Therefore, each portion 

is used for the generation of 𝑐𝑐1 in each iteration. Specifically, we start the traverse of all 

the m portions from 90 to 0 degree, and randomly select one value from the circle contour 

in each portion and assign it as 𝑐𝑐1. This process ensures the generation of a series of 

descending 𝑐𝑐1. On the contrary, by traversing through all the m portions from 0 to 90 

degree, a series of ascending 𝑐𝑐2 is generated, where 𝑐𝑐2 ∈ (0, 2.5]. 

 

Figure 2. Dynamic coefficient generation using the circle function 



 

 

 

Therefore, 𝑐𝑐1 is decreased while 𝑐𝑐2 is increased over the generation. The impact of the 

personal best and global best experiences to guide the search process is, therefore, 

dynamically adjusted. When 𝑐𝑐1 > 𝑐𝑐2, the subswarm-based search focuses more on local 

exploitation, whereas when 𝑐𝑐2 > 𝑐𝑐1, the search process emphasizes more on global 

exploration. 

 

Similarly, Equation (4) defines a sine function for dynamic coefficient generation in 

subswarm 2. Specifically, 𝑐𝑐1 and 𝑐𝑐2 are generated as partial descending and ascending 

contours of a sine function, respectively.  

 𝑦𝑦2 =  2.5 ∗ sin (𝑙𝑙)     𝑙𝑙 ∈ [𝜋𝜋/2,𝜋𝜋]                                      (4)     

 

In Equation (4), 𝑙𝑙 is the input value. Figure 3 illustrates the generated sine waveform 

defined in Equation (4). Similar to the abovementioned circle-oriented coefficient 

generation, we split the upper right contour of the sine waveform into m portions. One 

value from each portion is randomly selected for the generation of each coefficient. A 

series of descending 𝑐𝑐1 is produced by traversing through all the m portions from 90 to 0 

degree, and vice versa for the generation of a series of ascending 𝑐𝑐2. Both coefficients are 

dynamically adjusted through iterations. When 𝑐𝑐1 > 𝑐𝑐2, the search process is more 

strongly guided by the personal best experiences, whereas when 𝑐𝑐2 > 𝑐𝑐1, the global best 

experiences show more impact on the subswarm-based search. 

 

 

 

Figure 3. Dynamic coefficient generation using the sine function 



 

 

 

Moreover, Equations (5)-(7) define the proposed helix function for dynamic coefficient 

generation in subswarm 3.                                                                𝑥𝑥 = 0.0065 × 𝑡𝑡 × cos(2 × 𝑡𝑡)     𝑥𝑥 ∈ [−2.522, 2.532]                       (5) 𝑦𝑦3 = 0.0065 × 𝑡𝑡 × sin(2 × 𝑡𝑡)    𝑦𝑦3 ∈ [0, 2.517]                           (6) 𝑧𝑧 = 𝑡𝑡                                                                  (7) 

where 𝑡𝑡 ∈ [0, 389.5575]. 

 

 

 

 

Figure 4. Dynamic coefficient generation using the helix function 

 

Figure 4 shows the generated helix waveform in two dimensions, although in our 

implementation, we generate the helix waveform in three dimensions. The top half of the 

contours of the helix waveform is used for adaptive coefficient generation. The 

descending and ascending contours of 𝑐𝑐1 and 𝑐𝑐2 are produced as follows. We first generate 

m layers of the waveforms using the helix function defined in Equations (5)-(7). These m 

layers are dedicated to the generation of each coefficient in each iteration, as shown in 

Figure 4. We then divide both the upper right and upper left waveforms in all the layers 

into m portions, respectively. By starting from 90 degree, we label each portion from both 

sides successively as 1, 2, …, and m in each layer.  

 

Instead of generating descending and ascending coefficients using a single waveform as 

illustrated in the sine and circle-based functions, we employ all the m layers to generate 

the dynamic adaptive coefficients for subswarm 3. In layer 1 (i.e. the largest outer layer), 



 

 

we only use the two contours with portion index 1 from both right and left sides for the 

generation of 𝑐𝑐1(see Iteration 1 in Figure 4). A random value is selected from the above 

two contours in layer 1, which is assigned as 𝑐𝑐1in iteration 1. Then, we select a random 

value from the two contours with portion index 2 from both right and left sides in layer 2 

(see Iteration 2 in Figure 4) and assign it to 𝑐𝑐1in iteration 2. This process continues until a 

random value is selected from the two contours with portion index m from right and left 

sides in layer m (i.e. the smallest inner layer) for the last iteration (see Iteration m in 

Figure 4). The above process ensures the generation of a series of descending 𝑐𝑐1 as 

indicated in Figure 4. A reverse process of the above operation ensures the generation of a 

series of ascending 𝑐𝑐2, where the operation starts from portion index m in layer m and 

increases to finish at portion index 1 in layer 1. 

 

When 𝑐𝑐1 > 𝑐𝑐2, the subswarm-based search leans more towards local exploitation, whereas 

when 𝑐𝑐2 > 𝑐𝑐1, the search process is more dominated by the global best experiences. The 

above process employs multiple waveforms with different radiuses for adaptive 

coefficient generation in comparison with the previous circle and sine-based processes 

where single waveforms are adopted. Overall, the above diverse dynamic strategies are 

used for the generation of adaptive acceleration coefficients to equip the proposed model 

with more flexibility in solving a wide range of optimization problems. 

 

3.2.1.2 The sub-dimension based search   

After obtaining a global best solution 𝑔𝑔𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡 using the above subswarm based search with 

adaptive acceleration coefficients, a sub-dimension based search is conducted to further 

enhance 𝑔𝑔𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡. The pseudo-codes of the sub-dimension based search operation are 

provided in Algorithm 2.  

 

Algorithm 2: Pseudo-Codes of Sub-dimension based Search 

1.    Start 

2.    Divide each particle in the population into 3 subsections; 

3.    // Conduct the search using Equations (1)-(2) in each subsection; 

4.    For subsection 1 in each individual in the swarm do 

5.           {Apply operations of Equations (1)-(2);} 

6.    Obtain the best solution 𝑔𝑔𝑏𝑏𝑠𝑠𝑏𝑏1_𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡 for subsection 1 based search; 

7.    For subsection 2 in each individual in the swarm do 



 

 

8.           {Apply operations of Equations (1)-(2);} 

9.    Obtain the best solution 𝑔𝑔𝑏𝑏𝑠𝑠𝑏𝑏2_𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡 for subsection 2 based search; 

10.    For subsection 3 in each individual in the swarm do 

11.           {Apply operations of Equations (1)-(2);} 

12.    Obtain the best solution 𝑔𝑔𝑏𝑏𝑠𝑠𝑏𝑏3_𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡 for subsection 3 based search; 

13. Select the best leader, 𝑔𝑔𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡′ , among the above three best solutions 𝑔𝑔𝑏𝑏𝑠𝑠𝑏𝑏1_𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡, 𝑔𝑔𝑏𝑏𝑠𝑠𝑏𝑏2_𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡, and 𝑔𝑔𝑏𝑏𝑠𝑠𝑏𝑏3_𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡; 
14.    Return 𝑔𝑔𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡′ ; 

15.    End 

 

As indicated in Algorithm 2, each particle is divided into three sub-dimensions, which are 

also denoted as three subsections. For the swarm particles, the sub-dimension based search 

mechanism implements the original PSO operation purely for each selected subsection, 

with the remaining subsections fixed. As an example, with respect to the feature selection 

task, for the extracted HOG features, a total of 324 dimensions are available to represent 

the texture information of a lesion image, which are further divided into three subsections, 

i.e. [1, 108], [109, 216], and [217, 324]. These three subsections are denoted as 

subsections 1, 2, and 3. For the sub-dimension based search for subsection 1, the PSO 

operation defined in Equations (1)-(2) is applied to sub-dimensions [1, 108] with the 

remaining two subsections comprising dimensions [109, 216] and [217, 324] fixed. For 

the sub-dimension based search for subsection 2, the search operation of the PSO model is 

deployed to sub-dimensions [109, 216], with two subsections comprising dimensions [1, 

108] and [217, 324] intact. Similarly, for the sub-dimension based search with respect to 

subsection 3, sub-dimensions [217, 324] are updated using the PSO operation, with two 

subsections comprising dimensions [1, 108] and [109, 216] un-altered. In this way, the 

sub-dimension based search mechanism conducts local exploitation of each particle to 

implement fine-tuning. 

 

The above three sub-dimension based search procedures return three best solutions, i.e. 𝑔𝑔𝑏𝑏𝑠𝑠𝑏𝑏1_𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡, 𝑔𝑔𝑏𝑏𝑠𝑠𝑏𝑏2_𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡, and 𝑔𝑔𝑏𝑏𝑠𝑠𝑏𝑏3_𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡, pertaining to the corresponding feature subsections, 

respectively. We further identify the best leader 𝑔𝑔𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡′   from 𝑔𝑔𝑏𝑏𝑠𝑠𝑏𝑏1_𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡, 𝑔𝑔𝑏𝑏𝑠𝑠𝑏𝑏2_𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡, and 𝑔𝑔𝑏𝑏𝑠𝑠𝑏𝑏3_𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡. This new best leader 𝑔𝑔𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡′  is used to substitute the previous global best 

solution, 𝑔𝑔𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡, if it has a better fitness score. Otherwise, it replaces the worst particle in 

the swarm. The devised sub-dimension based search mechanism is able to overcome 

premature convergence to further enhance 𝑔𝑔𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡. The performance analysis of this sub-



 

 

dimension based search operation is provided in Section 4.4.1. 

 

3.2.2 The Second Proposed PSO Model 

In the proposed strategies in Section 3.2.1.1, partial circle, sine, and helix waveforms are 

used for the generation of descending and ascending acceleration coefficients, i.e. the 

upper right quarters of the circle and sine contours and top half of the helix waveform. In 

this section, we propose another alternative PSO algorithm by using these three entire 

waveforms for the generation of both coefficients to increase search diversity. In addition, 

instead of generating descending and ascending coefficients, we produce random 

coefficients in this new PSO model by simulating hovering flight behaviours of 

hummingbirds around attraction. This alternative strategy for dynamic coefficient 

generation provides multiple positive and negative value choices in each iteration for each 

coefficient generation, therefore having more search diversity and more possibilities in 

attaining global optima. The sub-dimension based search as those in ACPSO is also 

subsequently conducted to further enhance 𝑔𝑔𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡. The pseudo-codes of this alternative 

PSO model with random coefficients, denoted as RCPSO, are provided in Algorithm 3. 

 

As indicated in Algorithm 3, dynamic random coefficients generated by the entire circle, 

sine and helix waveforms are used to guide the three subswarm-based searches, 

respectively. In comparison with Algorithm 1, both positive and negative random 

coefficients are used to enable exploration of a wider search space, therefore increasing 

the chances of finding global optima. 

 

Algorithm 3: Pseudo-Codes of Proposed RCPSO 

1. Start 

2. Initialize a particle swarm randomly; 

3. Evaluate each particle using the fitness/objective function 𝑓𝑓(𝑥𝑥); 

4. Sort the swarm based on fitness values and identify 𝑔𝑔𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡; 
5. While (Stopping criterion is not satisfied) 

{ 

6. Identify the second and third swarm leaders with comparable 

fitness scores but remote in positions to 𝑔𝑔𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡; 
7. Randomly divide the swarm into three subswarms with each 

subswarm led by each leader; 

8. While (!Stagnation) 

9. {  //use each strategy to lead each subswarm-based search 



 

 

10.    For each particle in subswarm 1 do 

11. { Generate 𝑗𝑗 (e.g. 60) values using Eqn. (8); 

12. Randomly select 10 values from the generated 60 

values to assign both coefficients, respectively; 

13. Generate 10 offspring particles using Eqn. (1)-(2) with 

the above randomly assigned coefficients; 

14. Select the best offspring among the 10 new solutions to 

replace the current particle 𝑥𝑥𝑖𝑖 if it is fitter than 𝑥𝑥𝑖𝑖 ; 
15. Update personal best of 𝑥𝑥𝑖𝑖 and the subswarm leader; 

16. } 

17. Repeat lines 10-16 for subswarm 2 but generate 𝑗𝑗 (e.g. 60) 

values using Eqn. (9); 

18. Repeat lines 10-16 for subswarm 3 but generate 𝑗𝑗 (e.g. 60) 

values using Eqn. (10)-(12); 

19. Compare three subswarm leaders and store the best 

subswarm leader; 

20.   }Until (stagnation detected) 

21.  Combine the three subswarms and update 𝑔𝑔𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡;   
22. Conduct sub-dimension based search as shown in lines 17-23 

in ACPSO to further enhance 𝑔𝑔𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡; 
23. }Until (Stagnate several times and no improvement found) 

24. Output 𝑔𝑔𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡; 
25. End 

 

3.2.2.1 Dynamic random acceleration coefficients 

As mentioned earlier, we employ both positive and negative random coefficients in 

RCPSO to increase exploration. Equation (8) illustrates the circle-based dynamic 

coefficient generation as the alternative velocity updating strategy for subswarm 1. Instead 

of using descending and ascending coefficients, both positive and negative random values 

from the circle contour are used for coefficient generation. 

 𝑦𝑦1′ =  √𝑟𝑟𝑟𝑟𝑑𝑑𝑖𝑖𝑟𝑟𝑟𝑟′2 − 𝑘𝑘′2       𝑘𝑘′ ∈ [−2.5, 2.5]                                (8) 

 

In each iteration, Equation (8) is used to produce 𝑗𝑗 random values for each particle. These 𝑗𝑗 random values are generated in a way to have a reasonable coverage of the full circle 

contour. For instance, any newly generated random value needs to be different enough to 

any previously generated ones, otherwise it is abandoned. Based on trial and error, we 

employ 𝑗𝑗=60 randomly generated values, instead of other numbers (e.g. 100), as the pool 

for coefficient generation, since these values show sufficient variations and have a 

reasonable coverage of the entire circle waveform. Then, in each iteration, we randomly 



 

 

select 10 out of 60 randomly generated values, and assign each of the 10 selected values to 

both coefficients, respectively. These 10 values, therefore, show sufficient differences to 

one another, and allow reasonable exploitation of the entire circle waveform to ensure the 

adoption of search parameters with appropriate diversity and variation. In this way, the 

search operation is accorded with enhanced capabilities in global exploration, as compared 

with using 10 randomly generated coefficients directly. The same method is also applied 

to random coefficient generation using the sine and helix waveforms. 

 

As mentioned above, we assign each of the above selected 10 values among the 60 

randomly generated ones to both coefficients, respectively. The fitness scores of all 10 

newly generated solutions are subsequently calculated. The best offspring among these 

newly generated solutions is used to replace the current particle if it is fitter than the 

current particle. Otherwise, the current particle is reserved and passed on to the next 

generation.  

 

Similarly, Equation (9) defines the alternative sine-based dynamic parameter generation 

for velocity updating in subswarm 2. Random positive and negative values are generated 

using the sine waveform for both coefficients. 

 𝑦𝑦2′ =  2.5 ∗ sin(𝑙𝑙′)    𝑙𝑙′ ∈ [−𝜋𝜋,𝜋𝜋]                                         (9) 

 

In each iteration, the sine function defined in Equation (9) is used to produce 60 random 

positive and negative values for each particle. Similar to the circle-based random 

coefficient generation, these 60 values show sufficient variations, and have a reasonable 

coverage of the entire sine waveform. The proposed PSO model then randomly selects 10 

values from these 60 randomly generated ones to assign each coefficient respectively in 

each iteration. A set of 10 new solutions is therefore generated. The best offspring among 

these newly generated solutions is used to replace the current particle if it is fitter. 

Otherwise, we retain the current particle for the next generation. 

 

Moreover, the helix-based dynamic coefficient generation is used in subswarm 3 for 

velocity updating, as defined in Equations (10)-(12). Random coefficients using the helix 



 

 

waveform are generated, instead of descending and ascending ones.  

 𝑥𝑥′ = 0.0065 × 𝑡𝑡′ × cos(2 × 𝑡𝑡′)    𝑥𝑥′ ∈ [−2.522, 2.532]                       (10) 𝑦𝑦3′ = 0.0065 × 𝑡𝑡′ × sin(2 × 𝑡𝑡′)    𝑦𝑦3′ ∈ [−2.527, 2.517]                    (11) 𝑧𝑧′ = 𝑡𝑡′                                                            (12) 

where 𝑡𝑡′ ∈ [0, 389.5575]. In each iteration, Equation (11) is used to produce 60 random 

positive and negative values for each particle. Again, these 60 random values show 

adequate variations, and have a sufficient coverage of the entire helix contour. In addition, 

10 are randomly selected from these 60 values and assigned to both coefficients 

respectively in each iteration. Then, 10 new offspring solutions are generated. The best 

solution among these newly generated particles is used to replace the current particle if it 

is fitter. 

 

The above acceleration coefficient generation mechanism is also motivated by the clonal 

mutation processes and certain characteristics of the clonal selection theory where the 

antibodies with the highest affinities are cloned proportionally to their antigenic affinities 

and the attributes of these clones are subsequently mutated [23-27]. 

 

Moreover, in comparison with ACPSO, RCPSO employs random coefficients selected 

from the entire circle/sine/helix waveforms to guide the search process. Both positive and 

negative coefficients are used to diversify the search by providing hovering behaviours 

around both personal and global best solutions (i.e. attraction). With wider value choices 

for assigning both coefficients in each iteration, this enhanced PSO model increases search 

diversity, and has more discriminative capabilities for feature selection in lesion 

classification. 

 

Recommended by related studies [10, 11], the following fitness function is employed to 

evaluate each particle, 𝑝𝑝.  

 𝑓𝑓(𝑝𝑝) = 𝑤𝑤𝐺𝐺𝐺𝐺 × 𝐺𝐺𝐺𝐺𝑝𝑝 + 𝑤𝑤𝑓𝑓 × (𝑛𝑛𝑟𝑟𝑛𝑛𝑛𝑛𝑛𝑛𝑟𝑟_𝑓𝑓𝑛𝑛𝑟𝑟𝑡𝑡𝑟𝑟𝑟𝑟𝑛𝑛𝑝𝑝)−1                  (13) 

 



 

 

where 𝑤𝑤𝐺𝐺𝐺𝐺 and 𝑤𝑤𝑓𝑓 denote the weights for Geometric Mean (GM) and the number of 

selected features, respectively, with 𝑤𝑤𝑓𝑓= 1 − 𝑤𝑤𝐺𝐺𝐺𝐺. In this research, GM is used as the 

performance indicator, owing to its effectiveness in evaluating imbalanced data problems. 

In order to ensure a higher priority for classification performance over feature selection, a 

higher weight (e.g. 0.9) is assigned to 𝑤𝑤𝐺𝐺𝐺𝐺 in comparison with that (e.g. 0.1) of 𝑤𝑤𝑓𝑓 . 

 

As indicated in Equation (13), the proposed fitness function for feature selection is a 

maximization problem. This fitness function is selected since it minimizes the size of the 

selected feature subset while maximizing or maintaining the classification performance. 

 

The decision variables (i.e. the particles) are evaluated as follows. The search starts with a 

swarm of randomly initialized particles. In other words, each particle is initialized with a 

random position in the search space with each element of the particle representing the 

position in each dimension. In order to achieve subtle movement and avoid premature 

convergence, we employ a continuous value for each element during the search process. 

For the fitness evaluation of each particle, we convert the continuous value in each 

dimension into a binary value, i.e. 1 or 0, to indicate the selection of a particular feature or 

otherwise. In this way, each particle is used to represent a selected feature subset. This 

selected feature subset is subsequently used for model training. The trained model is then 

used to conduct lesion classification using 10-fold cross-validation for fitness score 

generation. The final set of features recommended by the global best solution is regarded 

as the most optimal feature subset, which is used to assess the model performance using 

the test data set.  

 

Moreover, in the fitness function shown in Equation (13), based on recommendations of 

related studies [10-12], we use a higher score (i.e. 0.9) as the weight associated with the 

classification performance as compared with that (i.e. 0.1) associated with the number of 

selected features, i.e., we assign a higher priority for classification performance over 

feature selection. This setting is in agreement with theoretical findings. When a higher 

weight is assigned to the classification performance, the search process is focused on 

increasing the classification capability of the model at the early stage. When the 

performance has reached a certain level of saturation, the search starts to focus on 



 

 

removing the redundant features to further improve the model fitness. On the contrary, 

when a higher weight (e.g. 0.9) is given to the number of selected features with a lower 

weight (e.g. 0.1) assigned to the classification performance, the model tends to reduce the 

number of features at the beginning of the iteration process without considering the 

importance of the features in terms of classification capability. Therefore, the current 

weight setting (0.9:0.1) for the classification performance and the number of selected 

features achieves a better trade-off to ensure that classification capability is considered as 

the top priority before removing redundant features, in an attempt to achieve the best 

feature selection outcome. 

 

3.3 Skin Lesion Classification 

After identifying the most discriminative features using both proposed PSO algorithms, 

adaptive ensemble classifiers are used for benign and malignant lesion classifications. A 

deep learning model with adaptive hyper-parameter tuning is also proposed.  

 

Table 1 The topology of the generated deep CNN model 
 

Layers Filter size No. of filters  Stride Padding 

conv1 3 64 1 1 

reluLayer - - - - 

maxPooling 2 - 2 0 

conv2 3 128 1 1 

reluLayer - - - - 

maxPooling 2 - 2 0 

conv3 3 256 1 1 

reluLayer - - - - 

maxPooling 2 - 2 0 

conv4 3 512 1 1 

reluLayer - - - - 

maxPooling 2 - 2 0 

conv5 3 512 1 1 

reluLayer - - - - 

maxPooling 2 - 2 0 

conv6 3 512 1 1 

reluLayer - - - - 

maxPooling 2 - 2 0 

fc1 - 4096 - - 

reluLayer - - - - 

fc2 - 3 - - 
 

 

We first introduce the ensemble models for lesion classification. The motivations of using 



 

 

ensemble models are as follows. Ensemble classifiers are able to yield more reliable 

results in comparison with those of single classifiers [28]. The diversity of the base 

classifiers has a great impact on the performance of an ensemble model. Therefore, we 

employ three base classifiers of the same model, but trained with different lesion features 

to increase diversity. Two types of base classifiers, i.e. KNN and SVM, have been 

employed for ensemble model generation. In short, two ensemble models with KNN and 

SVM as the base classifiers, respectively, are constructed for prediction. 

 

KNN and SVM are useful classification models that have been applied to a wide range of 

application domains [11, 12, 28]. KNN is a nonparametric classification method with an 

attractive property of computational simplicity, i.e., it does not require any parameter 

tuning process. On the other hand, SVM with a linear kernel has shown great robustness 

and capacities in solving diverse classification problems. The default parameter setting of 

the soft-margin constant, Co, has been employed for each SVM base classifier, in order to 

evaluate efficiency of the feature subsets identified by different search methods. The GM 

measure is adopted as the performance indicator, as it is frequently used for evaluation of 

imbalanced data sets. The GM measure is used for calculating both the fitness scores 

during the training process and the final classification results at the test stage, respectively. 

 

In this research, three different types of features, i.e. ABCD+GLRLM, LBP and HOG 

characteristics, have been extracted for each lesion image. Subsequently, feature selection 

is performed on each of these raw feature vectors. Three optimized feature subsets are 

then used for the construction of three base models, respectively. Each base model is 

dedicated to each feature type. A weighted majority voting mechanism is used to combine 

the results from each base classifier, in order to obtain the final classification outcome for 

each test image. We present the detailed evaluation results in Section 4. 

 

Secondly, a deep CNN model with 8 trainable layers (convolutional and fully connected 

layers) is employed for the classification of different lesion cases. Adaptive fine-tuning of 

the hyper-parameters of the above CNN model is conducted, such as the initial learning 

rate and L2Regularization (factor for L2 regularizer, i.e. weight decay), using the two 

proposed PSO models, owing to the importance of these hyper-parameters to the 



 

 

classification performance of deep CNNs. The former parameter is used to set the initial 

learning rate of the deep network, while the latter is used in the loss function to reduce 

overfitting. Their settings could affect the network performance significantly. As an 

example, a small initial learning rate may result in a longer training time, while a large 

learning rate may lead to a suboptimal result. The regularization coefficient also plays an 

important role in influencing the network weight decay in the loss function. Both factors 

require the search of the corresponding strength space to find an optimal value [29-32]. 

Therefore, we integrate the two proposed PSO models with the CNN architecture to 

automatically identify the two optimized hyper-parameters. Classification performance 

using the GM measure is employed as the fitness evaluation of the optimal hyper-

parameter selection in deep networks. The deep CNN model with the optimized hyper-

parameters identified by the proposed PSO models is also compared against those of other 

PSO variants and the network with default parameter settings. 

 

The details of the convolutional, pooling, and fully connected layers of the employed deep 

CNN model are provided in Table 1. The following training option is used for the deep 

CNN. The maximum number of epochs is 10, and the mini-batch size for each training 

iteration is 8. Moreover, the PH2 data set with three classes is employed for the evaluation 

of the proposed deep network. The network is trained from scratch for each set of the 

recommended hyper-parameters. The evaluation details are provided in Section 4. 

 

4. EVALUATION 

The proposed research is evaluated using two skin lesion data sets, i.e. Edinburgh 

Research and Innovation (Dermofit) [33] and the Dermatology Service of Hospital Pedro 

Hispano (PH2) [34] data sets. The Dermofit image library consists of a total of 1,300 skin 

lesion images with ten skin lesion types such as Actinic Keratosis and Malignant 

Melanoma. The PH2 database has a total of 200 lesion images with 80, 80, and 40 for 

common nevi, atypical nevi, and melanomas cases, respectively. The first experiment 

focuses on 2-class benign and malignant lesion classification, and employs a mixed data 

set with dermoscopic images of melanocytic lesions extracted from both Dermofit and 

PH2 databases. This mixed data set contains a total of 270 benign and 214 malignant 

images. Specifically, a set of 190 and 80 benign images is extracted from Dermofit and 



 

 

PH2, respectively, while a set of 174 and 40 malignant images is extracted from Dermofit 

and PH2 data sets, respectively. The second experiment performs 3-class (i.e. benign, 

atypical and melanoma) lesion classification using the PH2 data set. For both the mixed 

and PH2 data sets, we use the 80:20 ratio for the training and test, respectively. KNN and 

SVM based ensemble classifiers and a deep CNN model are used for skin lesion 

classification.  

 

Moreover, we implement 10 classical search methods and 11 state-of-the-art PSO variants 

for performance comparison, i.e. PSO, Bat Algorithm (BA), Cuckoo Search (CS), 

Dragonfly Algorithm (DA), Harmony Search (HS), Artificial Bee Colony (ABC), Flower 

Pollination Algorithm (FPA), Moth-Flame Optimization (MFO), bare-bones PSO 

(BBPSO), Cultural Algorithm (CA), ThBPSO [13], Genetic PSO (GPSO) [35], MPSO [4], 

GMPSO [10], F-BPSO [36], FS-BPSO [36], Enhanced Leader PSO (ELPSO) [37], PSO 

with multiple subpopulations (MFOPSO) [38], Autonomous Particles Groups for PSO 

(AGPSO) [39], Dynamic Neighbourhood Learning PSO (DNLPSO) [40], and BBPSOV 

[11]. 

 

4.1 Evaluation of the Mixed Data Set Using Ensemble Models 

First of all, we present the evaluation results using two ensemble classification models. 

Note that the proposed PSO-based feature selection is a wrapper method since we evaluate 

the quality (i.e. fitness) of each feature subset recommended by each particle at the 

training stage by involving a classification model. In other words, the proposed feature 

selection process using ACPSO or RCPSO involves interaction with classifiers to capture 

feature dependencies. Other feature selection processes incorporated with other search 

methods in our study are also wrapper-based methods where feature selection is guided by 

the fitness evaluation in correspondence with the classification model [41].  

 

The following experimental setting is employed for each method, i.e. image 

size=500×500, population=50, dimension=146 (ABCD+GLRLM)/236 (LBP)/324 (HOG), 

iterations=500, and runs=30. In order to ensure a fair comparison, the maximum number 

of fitness evaluations, i.e. population (50) × iterations (500), is used for each method. The 

experimental settings such as the population size (50) and the maximum number of 



 

 

iterations (500) are determined by trial-and-error with the intention to achieve a reasonable 

trade-off between performance and computational cost. The experimental settings in our 

study are also in agreement with the recommended settings reported in other related 

studies for discriminative feature selection [10, 11, 12, 28]. 

 

Specifically, classical methods such as PSO employ a maximum iteration number of 500 

as the stopping criterion whereas the proposed two PSO variants use fewer maximum 

iteration numbers (e.g. 125 for ACPSO and 40 for RCPSO) owing to additional fitness 

evaluations incurred in the proposed models for in-depth local lesion feature search. 

Moreover, two well-known filter methods are also used for comparison of feature 

selection, i.e. Minimum Redundancy and Maximum Relevance (mRMR) [42] and ReliefF 

[43]. Feature ranking is performed by both filter methods. Based on respective feature 

ranking, mRMR or ReliefF selects 100 ABCD+GLRLM, 150 LBP and 225 HOG features, 

respectively, for ensemble model generation. Each selected feature size is also similar to 

the average number of features obtained by all the wrapper-based methods for each feature 

type over 30 runs. A series of 30 runs has been conducted for mRMR, ReliefF and each 

search method. The detailed evaluation results for the ensemble models are provided in 

Table 2. We employ the mean GM performance over 30 runs as the main criterion for 

comparison. 

 

Tables 2-4 indicate the empirical and statistical Wilcoxon rank sum test results [11, 37] of 

each method for the mixed data set. The proposed ACPSO and RCPSO models achieve 

the highest mean GM scores for both ensemble models in comparison with those of other 

methods. Especially, RCPSO achieves the best GM performances of 99.66% and 99.54% 

using the SVM ensemble model for 10-fold and hold-out validations, respectively. The 

statistical results indicate that both proposed models show statistically significant 

superiority over other methods for nearly all test cases. The exception is for ThBPSO 

which yields similar results to those of ACPSO in combination with the SVM-based 

ensemble classifier for 10-fold validation. Moreover, owing to the fact that mRMR and 

ReliefF mainly focus on feature ranking and do not take feature interaction with the 

classifier into account [41], they achieve lower mean GM scores in comparison with those 

of all wrapper-based methods. 



 

 

 

Moreover, as shown in Figure 5, RCPSO selects the smallest feature subsets for each of 

the original feature vectors in comparison with those of other methods, while ACPSO 

shows a promising trade-off between computational efficiency and performance by 

selecting medium sizes of features. A similar observation is also obtained for the PH2 data 

set. 

 

 

Figure 5. The number of selected features of each method for the mixed data set 

 

Table 2 Mean classification results over 30 runs for each method for the mixed data set 

 
 Mean RCPSO ACPSO PSO BBPSO BA CA CS DA HS ABC FPA MFO 

ESEM KNN 10-fold 0.9579 0.9560 0.9336 0.9353 0.9362 0.9308 0.933 0.9404 0.9369 0.9381 0.9315 0.937 

Hold-out 0.9559 0.9541 0.9308 0.9323 0.9328 0.9276 0.9269 0.9332 0.9314 0.9367 0.9288 0.9319 

ESEM SVM 10-fold 0.9966 0.9955 0.9845 0.9864 0.9825 0.9842 0.9872 0.9863 0.9869 0.989 0.9832 0.9866 

Hold-out 0.9954 0.9949 0.9831 0.9848 0.9809 0.9825 0.9853 0.9841 0.9821 0.9865 0.9805 0.9825 
 

 Mean ThBPSO GPSO MPSO GMPSO F-BPSO FS-BPSO ELPSO MFOPSO AGPSO DNLPSO BBPSOV 

ESEM KNN 10-fold 0.9362 0.936 0.9322 0.9319 0.9439 0.94 0.9413 0.935 0.934 0.9352 0.9316 

Hold-out 0.9322 0.9301 0.9289 0.9283 0.9358 0.9341 0.9356 0.9311 0.9309 0.9279 0.9256 

ESEM SVM 10-fold 0.9905 0.9882 0.9866 0.9871 0.9892 0.9893 0.9891 0.9829 0.986 0.983 0.9884 

Hold-out 0.9869 0.9861 0.9856 0.9833 0.9874 0.9846 0.9857 0.9796 0.9832 0.9825 0.985 
 

  mRMR ReliefF 

ESEM KNN 10-fold 0.9082 0.9076 

 Hold-out 0.9088 0.9154 

ESEM SVM 10-fold 0.9212 0.9256 

 Hold-out 0.9243 0.9287 
 



 

 

Table 3 The Wilcoxon rank sum test results for the mixed data set for ACPSO 
 

 PSO BBPSO BA CA CS DA HS ABC FPA MFO 

ESEM KNN 10-Fold 1.20E-07 4.41E-07 7.97E-06 1.15E-07 1.10E-08 4.33E-05 3.06E-08 1.42E-05 1.65E-07 8.99E-08 
ESEM KNN Hold-out 1.26E-08 2.12E-07 4.03E-07 2.38E-09 5.56E-10 7.50E-11 7.37E-10 4.80E-07 1.75E-09 1.58E-07 
ESEM SVM 10-Fold 3.90E-05 1.36E-04 1.64E-05 1.48E-05 7.70E-04 2.42E-07 3.74E-04 3.45E-03 1.09E-05 9.79E-07 
ESEM SVM Hold-out 9.25E-06 6.42E-06 2.96E-08 8.35E-08 7.64E-06 1.43E-10 1.33E-07 6.88E-06 2.21E-08 5.92E-09 

 

 ThBPSO GPSO MPSO GMPSO F-BPSO FS-BPSO ELPSO MFOPSO AGPSO DNLPSO BBPSOV 

ESEM KNN 10-Fold 2.00E-08 3.77E-07 8.25E-08 8.82E-10 1.23E-03 2.77E-07 2.19E-05 8.99E-08 8.25E-08 1.42E-08 1.61E-09 
ESEM KNN Hold-out 3.39E-09 1.90E-08 4.38E-09 3.83E-10 3.91E-09 1.78E-07 1.17E-08 1.58E-07 4.38E-09 2.67E-10 8.65E-11 
ESEM SVM 10-Fold 5.38E-02 3.53E-03 1.21E-05 1.85E-05 2.57E-03 2.31E-02 2.96E-05 9.79E-07 1.21E-05 4.78E-06 8.55E-04 
ESEM SVM Hold-out 1.90E-04 3.13E-05 1.00E-07 1.00E-07 4.73E-04 8.48E-05 9.94E-09 5.92E-09 1.00E-07 2.00E-07 2.82E-06 

 

 mRMR ReliefF 

ESEM KNN 10-Fold 7.22E-06 1.07E-09 
ESEM KNN Hold-out 2.61E-10 1.43E-08 
ESEM SVM 10-Fold 8.79E-07 2.77E-05 
ESEM SVM Hold-out 1.49E-06 1.29E-09 

 

Table 4 The Wilcoxon rank sum test results for the mixed data set for RCPSO 

 

 

PSO BBPSO BA CA CS DA HS ABC FPA MFO 

ESEM KNN 10-Fold 6.24E-08 1.65E-07 7.94E-06 3.36E-07 5.73E-08 1.47E-05 3.63E-08 3.43E-06 2.77E-07 1.35E-07 
ESEM KNN Hold-out 2.41E-08 4.44E-07 7.40E-07 3.11E-09 2.09E-09 6.72E-10 5.54E-09 1.10E-06 4.98E-09 3.36E-07 
ESEM SVM 10-Fold 1.53E-05 5.44E-05 7.16E-06 8.03E-06 2.18E-04 3.00E-07 1.52E-04 8.68E-04 5.01E-06 6.98E-07 
ESEM SVM Hold-out 9.33E-06 8.32E-06 7.67E-08 1.95E-07 9.04E-06 1.49E-09 3.32E-07 1.10E-05 6.40E-08 1.59E-08 

 

 ThBPSO GPSO MPSO GMPSO F-BPSO FS-BPSO ELPSO MFOPSO AGPSO DNLPSO BBPSOV 

ESEM KNN 10-Fold 1.06E-07 2.00E-07 1.46E-07 6.76E-09 4.97E-04 1.02E-06 1.86E-05 1.35E-07 1.46E-07 9.02E-08 1.48E-08 
ESEM KNN Hold-out 1.55E-08 4.19E-08 7.67E-09 2.29E-09 5.05E-08 8.85E-07 6.98E-08 3.36E-07 7.67E-09 5.37E-10 2.62E-10 
ESEM SVM 10-Fold 1.29E-02 7.46E-04 5.72E-06 1.36E-05 1.08E-04 1.18E-03 2.06E-05 6.98E-07 5.72E-06 2.28E-06 2.62E-04 
ESEM SVM Hold-out 1.67E-04 3.23E-05 2.47E-07 2.47E-07 1.09E-04 3.59E-05 4.32E-08 1.59E-08 2.47E-07 3.64E-07 4.36E-06 

 
 mRMR ReliefF 

ESEM KNN 10-Fold 6.73E-06 7.04E-07 
ESEM KNN Hold-out 2.88E-08 2.31E-08 
ESEM SVM 10-Fold 7.04E-07 1.41E-04 
ESEM SVM Hold-out 3.50E-08 1.84E-04 

 

 

4.2 Evaluation of the PH2 Data Set Using Ensemble Models 

Evaluation is conducted for the 3-class lesion classification using the PH2 data set. The 

experimental setting of the above mixed data set is applied to this experiment, i.e. a total 

of population (50) × iterations (500) of function evaluations are used as the stopping 

criterion. Moreover, the two filter-based methods, i.e. mRMR and ReliefF, are also 

employed for comparison. Each method selects 100 ABCD+GLRLM, 150 LBP and 225 

HOG features, respectively, for performance comparison. Again each selected feature size 

is similar to the average number of features obtained by all the wrapper-based methods for 



 

 

each feature type over 30 runs. The empirical and the statistical test results are illustrated 

in Tables 5-7, respectively. RCPSO achieves the best mean GM performances of 97.79% 

and 97.54% in combination with the SVM-based ensemble for 10-fold and hold-out 

validations, respectively. The mean GM scores of both the proposed models show 

statistically significant improvements over those of other methods in nearly all test cases. 

The exception is for FS-BPSO, which achieves similar result distributions to those of 

ACPSO integrated with the KNN-based ensemble. For SVM-based ensemble model with 

10-fold cross-validation, ACPSO also shows similar mean GM results to those of CS, 

MPSO, FS-BPSO, AGPSO and BBPSOV respectively. Moreover, FS-BPSO obtains 

similar performances to those of RCPSO for KNN and SVM-based ensembles with hold-

out and 10-fold validations, respectively. Both proposed models also outperform the filter-

based methods, i.e. mRMR and ReliefF, with statistical significance. The empirical results 

indicate that ABCD+GLRLM features contribute to the ensemble classification results 

significantly for the PH2 data set, with HOG & LBP features boosting the ensemble 

performance greatly for the mixed data set.  

 

Table 5 Mean classification results over 30 runs for each method for the PH2 data set 

 

 Mean RCPSO ACPSO PSO BBPSO BA CA CS DA HS ABC FPA MFO 

ESEM KNN 10-fold 0.9742 0.9726 0.9397 0.9365 0.9407 0.936 0.9394 0.9363 0.9503 0.9385 0.9333 0.945 

 Hold-out 0.9732 0.9738 0.9521 0.9488 0.9534 0.9567 0.9528 0.9573 0.9646 0.954 0.9489 0.955 

ESEM SVM 10-fold 0.9779 0.9767 0.9618 0.9611 0.9465 0.9618 0.9662 0.9593 0.9613 0.9628 0.9503 0.9657 

 Hold-out 0.9754 0.9731 0.9472 0.9447 0.9355 0.9429 0.952 0.9409 0.9453 0.9486 0.9359 0.9532 
 

 Mean ThBPSO GPSO MPSO GMPSO F-BPSO FS-BPSO ELPSO MFOPSO AGPSO DNLPSO BBPSOV 

ESEM KNN 10-fold 0.9487 0.9456 0.9414 0.9377 0.939 0.953 0.9385 0.9367 0.9355 0.9471 0.9372 

 Hold-out 0.9618 0.9596 0.9556 0.9527 0.9607 0.9677 0.9559 0.9481 0.9493 0.9555 0.9539 

ESEM SVM 10-fold 0.9592 0.9634 0.9529 0.9577 0.9616 0.9646 0.9615 0.9581 0.9646 0.9604 0.9642 

 Hold-out 0.9505 0.9446 0.9478 0.9412 0.9435 0.9481 0.9432 0.9528 0.9524 0.9468 0.95 

 

  mRMR ReliefF 

ESEM KNN 10-fold 0.8908 0.9128 
 Hold-out 0.9029 0.9274 

ESEM SVM 10-fold 0.9108 0.9411 
 Hold-out 0.9182 0.9487 

 

Table 6 The Wilcoxon rank sum test results for the PH2 data set for ACPSO 

 
 

 PSO BBPSO BA CA CS DA HS ABC FPA MFO 

ESEM KNN 10-Fold 3.51E-07 8.95E-07 6.86E-08 4.37E-08 2.57E-07 4.85E-08 2.07E-05 2.17E-07 1.24E-07 5.89E-08 
ESEM KNN Hold-out 3.90E-07 2.62E-09 2.29E-10 2.56E-05 3.80E-07 3.11E-07 8.05E-04 6.92E-06 2.82E-09 1.54E-08 
ESEM SVM 10-Fold 4.69E-03 4.55E-03 1.46E-05 1.37E-02 9.58E-02 6.69E-04 5.28E-03 5.36E-03 4.96E-04 3.96E-04 
ESEM SVM Hold-out 5.49E-06 2.67E-06 3.38E-08 1.03E-07 5.69E-05 2.05E-08 1.97E-07 7.19E-06 5.29E-09 3.26E-05 



 

 

 

 ThBPSO GPSO MPSO GMPSO F-BPSO FS-BPSO ELPSO MFOPSO AGPSO DNLPSO BBPSOV 

ESEM KNN 10-Fold 1.70E-05 8.75E-07 1.87E-07 7.25E-09 2.29E-05 5.04E-02 2.56E-07 5.89E-08 1.87E-07 7.67E-07 4.16E-08 
ESEM KNN Hold-out 8.68E-04 2.91E-04 5.24E-11 1.39E-08 3.52E-03 6.69E-01 1.44E-09 1.54E-08 5.24E-11 1.60E-06 1.85E-09 
ESEM SVM 10-Fold 1.15E-03 9.51E-03 8.91E-02 2.42E-03 1.38E-02 9.72E-02 1.86E-02 3.96E-04 8.91E-02 3.86E-04 7.43E-02 
ESEM SVM Hold-out 1.93E-05 1.40E-07 2.36E-05 1.64E-07 1.17E-06 1.34E-05 1.36E-07 3.26E-05 2.36E-05 9.71E-07 1.84E-05 

 

 mRMR ReliefF 

ESEM KNN 10-Fold 3.96E-08 1.12E-05 
ESEM KNN Hold-out 7.80E-05 2.31E-08 
ESEM SVM 10-Fold 1.58E-04 1.84E-04 
ESEM SVM Hold-out 3.50E-08 2.31E-08 

 

Table 7 The Wilcoxon rank sum test results for the PH2 data set for RCPSO 

 

 PSO BBPSO BA CA CS DA HS ABC FPA MFO 

ESEM KNN 10-Fold 1.49E-06 2.19E-05 4.15E-08 1.23E-08 2.83E-06 4.39E-08 4.24E-04 2.24E-07 1.28E-06 3.66E-08 
ESEM KNN Hold-out 1.13E-06 1.42E-08 2.69E-09 5.40E-05 1.20E-06 1.36E-06 1.50E-03 1.62E-05 1.28E-08 6.69E-08 
ESEM SVM 10-Fold 4.31E-04 5.74E-04 5.93E-06 1.14E-03 1.16E-02 1.10E-04 6.95E-04 6.59E-04 5.18E-05 4.81E-05 
ESEM SVM Hold-out 5.47E-05 1.32E-05 1.27E-07 8.46E-07 7.49E-04 8.48E-08 2.76E-06 6.58E-05 1.95E-08 1.31E-04 

 

 ThBPSO GPSO MPSO GMPSO F-BPSO FS-BPSO ELPSO MFOPSO AGPSO DNLPSO BBPSOV 

ESEM KNN 10-Fold 1.51E-05 5.60E-06 8.32E-07 1.69E-09 5.31E-06 3.49E-02 9.62E-07 3.66E-08 8.32E-07 1.87E-06 3.86E-08 
ESEM KNN Hold-out 1.29E-03 4.74E-04 4.24E-10 6.66E-08 2.77E-03 3.93E-01 1.44E-08 6.69E-08 4.24E-10 4.85E-06 1.49E-08 
ESEM SVM 10-Fold 9.33E-05 1.09E-03 1.09E-02 1.54E-04 7.15E-03 5.69E-02 1.79E-03 4.81E-05 1.09E-02 6.01E-05 1.15E-02 
ESEM SVM Hold-out 4.70E-04 9.04E-07 3.01E-04 1.84E-06 2.91E-07 1.39E-05 6.53E-07 1.31E-04 3.01E-04 5.61E-06 1.80E-04 

 
 mRMR ReliefF 

ESEM KNN 10-Fold 6.15E-05 2.69E-05 
ESEM KNN Hold-out 5.42E-05 2.69E-05 
ESEM SVM 10-Fold 9.58E-04 5.69E-05 
ESEM SVM Hold-out 1.58E-05 5.69E-05 

 

4.3 Evaluation Using the Deep CNN Model 

We also apply both proposed PSO models to adaptive fine-tuning of the learning rate and 

the regularization coefficient of CNNs to further ascertain its efficiency. The optimal 

settings of the two hyper-parameters usually rely on the training set and the network 

structure. The proposed PSO models are capable of identifying optimal network hyper-

parameters for diverse network and training set-up. The PH2 data set is used in this 

experiment. The training, validation, and test ratios are 60:20:20. All the images are re-

sized to 200×200. These resolutions are selected owing to the best trade-off between 

efficiency and performance. The network is trained from scratch for each set of the 

recommended hyper-parameters. We train and validate the CNN model using the training 

and validation sets, respectively. The optimal hyper-parameters identified in the training 

stage are used for test set evaluation.  

 



 

 

A total of 30 successive runs are conducted for the training, validation, and test processes 

with the following experimental settings, i.e. population=15, dimension=2, and 

iterations=10. Except for ThBPSO, F-BPSO and FS-BPSO which are dedicated to feature 

selection problems, we employ all other methods for hyper-parameter fine-tuning in deep 

CNNs. The same number of function evaluations, i.e. population (15) × iterations (10), is 

used for each method to ensure a fair comparison. As indicated in Tables 8-10, both 

proposed PSO models show statistically significant improvements over nearly all other 

methods, except for FPA, MFO and BBPSOV which achieve similar results to those of the 

proposed models. In addition, the proposed models outperform the network with the 

default setting provided by MATLAB, i.e. the learning rate = 0.01 and L2Regularization = 

0.0001, statistically.  

 

Table 8 Mean classification results over 30 runs for CNN hyper-parameter fine-tuning 

using the PH2 data set 

 

 RCPSO ACPSO PSO BBPSO BA CA CS DA HS ABC FPA MFO 

Mean 0.8945 0.8926 0.8214 0.8458 0.8327 0.8589 0.8240 0.7848 0.8371 0.8153 0.8491 0.8197 
 

 GPSO MPSO GMPSO ELPSO MFOPSO AGPSO DNLPSO BBPSOV Default 

Mean 0.8225 0.8534 0.8501 0.8033 0.8295 0.8454 0.7968 0.8567 0.8480 
 

Table 9 The Wilcoxon rank sum test results for CNN hyper-parameter fine-tuning for 

ACPSO using the PH2 data set 

 
 PSO BBPSO BA CA CS DA HS ABC FPA MFO 

Wilcoxon 4.08E-04 2.17E-02 5.57E-03 6.42E-03 2.44E-02 4.91E-06 1.15E-03 2.29E-04 1.49E-01 1.31E-01 
 

 GPSO MPSO GMPSO ELPSO MFOPSO AGPSO DNLPSO BBPSOV Default 

Wilcoxon 1.99E-03 5.91E-03 5.44E-04 1.13E-04 5.58E-04 8.82E-03 5.60E-07 1.01E-01 2.62E-04 
 

Table 10 The Wilcoxon rank sum test results for CNN hyper-parameter fine-tuning for 

RCPSO using the PH2 data set 

 
 PSO BBPSO BA CA CS DA HS ABC FPA MFO 

Wilcoxon 5.98E-04 2.34E-02 5.97E-03 7.93E-03 1.87E-02 8.02E-06 1.83E-03 4.40E-04 1.43E-01 1.07E-01 
 

 GPSO MPSO GMPSO ELPSO MFOPSO AGPSO DNLPSO BBPSOV Default 

Wilcoxon 2.09E-03 5.23E-03 8.19E-04 1.62E-04 9.52E-04 1.05E-02 6.36E-07 1.08E-01 4.60E-04 

 

 



 

 

Table 11 shows comparison with existing studies using the PH2 data set. Since different 

training and test sets and evaluation strategies have been used for the evaluation of each 

work, it serves as a rough performance indication. Our proposed SVM-based ensemble 

models combined with RCPSO-based feature selection are among the top performers, 

serving as superior alternatives for lesion classification. Although the deep CNN model 

employs a lower image resolution (200×200), a small experimental set-up and a lower 

training ratio, its performance is comparable to those of related studies using higher image 

resolutions [2, 44, 45, 47, 51]. 

 

Table 11 Comparison with related work using the PH2 data set 

 

Studies Methodology Types Strategy Results 

Adjed et al. [2] Wavelet and Curvelet 

Transforms+LBP+SVM 

3 random 

sampling 

0.8607 

Barata et al. [44] Colour Constancy + Bag-of-

Features + K-means + SVM 

3 10-fold 0.8430 

Alfed et al. [45] Colour Histograms + Colour 

Moments + HOG + Codebook 

Generation + SVM/AdaBoost 

3 5-fold 0.8800 

Waheed et al. [46] Colour (HSV)+ Gray-Level Co-

occurrence Matrix + SVM 

3 3-fold 0.9600 

Marques et al. 

[47] 

Texture + Colour (RGB, HSV, 

L*a*b) 

3 N/A 0.7910 

Bi et al. [48] Multistage Fully Convolutional 

Networks 

3 N/A 0.9066 

Eltayef et al. [49] Properties of Pigment Network + 

Neural Networks 

3 N/A 0.9000 

Pennisi et al. [50] Artefact Removal + Skin 

Detection + Lesion Segmentation 

& Binary Mask + AdaBoost 

3 N/A 0.9360 

Barata et al. [16] Global Methods 3 N/A 0.96 (SE) 0.80 (SP) 

Barata et al. [16] Local Features + The Bag-of-

Features Classifier 

3 N/A 1.00 (SE) 

0.75 (SP) 

Barata et al. [51] Lesion or Pigment Ratio + 

Boosting Algorithm 

3 10-fold 0.8620 

This research ABCD+GLRLM/LBP/HOG + 

RCPSO-based Feature Selection 

+ SVM-based Ensemble 

Classifier 

3 10-fold 

Hold-out 
0.9779 

0.9754 

 

4.4 Evaluation Using UCI and Other Image Data Sets 

To further evaluate the model efficiency, we employ a blood cancer microscopic image 

data set, i.e. ALL-IDB2 [52-53] and two UCI data sets [54], i.e. breast cancer and epileptic 

seizure, for evaluation. Specifically, the two UCI data sets are used to assess the model 



 

 

efficiency for discriminative feature selection while the ALL-IDB2 microscopic image 

data set is used to evaluate the model capability in optimal hyper-parameter identification 

of deep networks. 

 

4.4.1 Evaluation Using the UCI Data Sets for Feature Selection 

We first employ the two UCI data sets, i.e. breast cancer and epileptic seizure [54], for 

feature selection. Specifically, the breast cancer data set comprises 569 samples, 32 

features, and 2 target classes, i.e. positive and negative. The epileptic seizure data set 

includes a total of 11,500 samples with 179 features. It contains 5 target classes, namely 

eyes open, eyes closed, recording the EEG activity from the healthy brain area, recording 

the EEG activity from the area where the tumor is located, and recording seizure activity. 

Owing to the large sample size in this seizure data set, we randomly select a subset of 

6000 instances for evaluation. An aspect ratio of 80:20 is used as the training and test split 

for both UCI data sets for discriminative feature selection.  

 

The experimental setting of the aforementioned ensemble lesion classification is also 

applied to this experiment, i.e. a total of population (50) × iterations (500) of function 

evaluations are used as the stopping criterion. In other words, all the methods terminate 

when the maximum number of function evaluations is reached, in order to ensure a fair 

comparison. A set of 30 runs has been conducted by each method for each data set. The 

two filter-based methods, mRMR and ReliefF, are also employed for performance 

comparison. We employ 22 and 60 numbers of features for both filter-based methods for 

the breast cancer and epileptic seizure data sets, respectively, which are similar to the 

average numbers of selected features by the wrapper-based methods over 30 runs for both 

data sets. 

 

Tables 12-14 depict the empirical and Wilcoxon rank sum test results for the breast cancer 

data set. The proposed RCPSO and ACPSO models outperform, with statistical 

significance results, all 21 baseline wrapper-based methods over 30 runs in discriminative 

feature selection. They also outperform, again with statistical significance results, the two 

filter-based methods, i.e. mRMR and ReliefF. RCPSO yields the best GM scores, i.e. 

98.70% and 98.73%, in combination with the SVM-based ensemble classifier for 10-fold 



 

 

and hold-out validations, respectively. 

 

Table 12 Mean classification results over 30 runs for each method for the breast cancer 

data set 
 

 Mean RCPSO ACPSO PSO BBPSO BA CA CS DA HS ABC FPA MFO 

ESEM KNN 10-fold 0.9678 0.9676 0.9600 0.9582 0.9583 0.9588 0.9583 0.9598 0.9592 0.9597 0.9606 0.9582 

 Hold-out 0.9691 0.9688 0.9647 0.9622 0.9620 0.9629 0.9623 0.9634 0.9635 0.9633 0.9642 0.9622 

ESEM SVM 10-fold 0.9870 0.9864 0.9795 0.9795 0.9769 0.9767 0.9784 0.9794 0.9841 0.9785 0.9785 0.9795 

 Hold-out 0.9873 0.9856 0.9816 0.9816 0.9793 0.9795 0.9808 0.9818 0.9805 0.9808 0.9805 0.9816 

 

 Mean ThBPSO GPSO MPSO GMPSO F-BPSO FS-BPSO ELPSO MFOPSO AGPSO DNLPSO BBPSOV 

ESEM KNN 10-fold 0.9603 0.9592 0.9606 0.9592 0.9620 0.9565 0.9601 0.9584 0.9605 0.9440 0.9591 

 Hold-out 0.9635 0.9630 0.9639 0.9630 0.9615 0.9635 0.9634 0.9628 0.9610 0.9484 0.9628 

ESEM SVM 10-fold 0.9810 0.9796 0.9776 0.9811 0.9789 0.9766 0.9778 0.9802 0.9775 0.9760 0.9784 

 Hold-out 0.9833 0.9818 0.9798 0.9831 0.9815 0.9825 0.9800 0.9823 0.9785 0.9780 0.9805 

 
 Mean mRMR ReliefF 

ESEM KNN 10-fold 0.9598 0.9603 

 Hold-out 0.9610 0.9623 

ESEM SVM 10-fold 0.9784 0.9803 

 Hold-out 0.9793 0.9812 

 

Table 13 The Wilcoxon rank sum test results for the breast cancer data set for ACPSO 
 

 PSO BBPSO BA CA CS DA HS ABC FPA MFO 

ESEM KNN 10-Fold 4.75E-07 6.70E-07 4.90E-07 4.50E-07 1.45E-07 9.60E-07 7.16E-07 7.97E-07 2.46E-06 5.30E-07 
ESEM KNN Hold-out 3.27E-04 6.32E-05 9.65E-06 5.86E-04 5.09E-06 3.85E-04 1.24E-05 1.06E-05 4.80E-03 6.29E-05 
ESEM SVM 10-fold 3.58E-07 4.45E-08 2.73E-08 6.06E-07 2.64E-07 1.39E-06 5.55E-05 1.38E-08 4.34E-06 5.83E-07 
ESEM SVM Hold-out 4.73E-06 4.02E-06 9.72E-07 3.65E-07 4.76E-07 1.36E-04 2.09E-02 4.79E-07 4.61E-07 3.96E-06 

 

 ThBPSO GPSO MPSO GMPSO F-BPSO FS-BPSO ELPSO MFOPSO AGPSO DNLPSO BBPSOV 

ESEM KNN 10-fold 3.00E-07 2.76E-07 1.61E-04 2.97E-07 2.47E-07 6.88E-07 5.24E-07 9.49E-07 2.85E-06 1.07E-07 1.72E-07 
ESEM KNN Hold-out 1.27E-05 8.28E-06 3.18E-02 8.96E-06 6.99E-06 2.29E-05 1.89E-03 6.91E-06 7.71E-06 2.84E-07 8.83E-06 
ESEM SVM 10-fold 3.20E-07 4.52E-08 6.47E-07 4.40E-07 2.48E-07 9.75E-07 6.14E-07 9.02E-07 6.18E-07 9.36E-07 9.18E-07 
ESEM SVM Hold-out 1.31E-03 5.88E-05 9.87E-07 6.19E-04 3.88E-07 1.51E-03 3.51E-08 5.62E-05 2.60E-07 1.63E-07 5.53E-07 

 

 mRMR ReliefF 

ESEM KNN 10-Fold 3.00E-07 1.45E-07 
ESEM KNN Hold-out 1.06E-05 6.32E-05 
ESEM SVM 10-fold 6.06E-07 4.40E-07 
ESEM SVM Hold-out 5.88E-05 1.24E-05 

 

Table 14 The Wilcoxon rank sum test results for the breast cancer data set for RCPSO 
 

 PSO BBPSO BA CA CS DA HS ABC FPA MFO 

ESEM KNN 10-fold 4.11E-07 4.41E-08 1.60E-09 1.60E-07 4.26E-09 2.26E-08 7.34E-11 2.63E-10 2.09E-06 4.41E-08 
ESEM KNN Hold-out 3.27E-03 6.26E-05 8.84E-06 5.85E-04 4.91E-06 3.85E-04 1.22E-05 1.00E-05 4.80E-03 6.26E-05 
ESEM SVM 10-fold 6.87E-08 1.44E-08 4.22E-10 2.79E-11 4.20E-08 4.94E-07 5.49E-05 3.61E-09 3.36E-06 1.44E-08 
ESEM SVM Hold-out 3.80E-06 3.80E-06 7.25E-09 2.37E-08 1.79E-07 1.35E-04 2.09E-02 1.79E-07 1.98E-07 3.80E-06 



 

 

 

 ThBPSO GPSO MPSO GMPSO F-BPSO FS-BPSO ELPSO MFOPSO AGPSO DNLPSO BBPSOV 

ESEM KNN 10-fold 8.43E-10 9.97E-11 1.61E-04 4.92E-10 8.33E-09 5.41E-09 1.12E-07 1.01E-10 2.29E-06 2.90E-11 6.91E-11 
ESEM KNN Hold-out 1.22E-05 8.08E-06 3.18E-02 8.08E-06 6.84E-06 2.22E-05 1.89E-03 6.36E-06 7.64E-06 1.23E-11 8.08E-06 
ESEM SVM 10-fold 1.90E-07 2.86E-08 1.97E-09 7.59E-08 1.55E-08 4.94E-07 1.42E-08 2.85E-08 1.67E-09 3.33E-10 1.60E-07 
ESEM SVM Hold-out 1.31E-03 5.80E-05 2.35E-07 6.18E-04 3.80E-07 1.51E-03 5.36E-09 5.59E-05 6.45E-08 3.34E-11 5.88E-08 

 

 mRMR ReliefF 

ESEM KNN 10-Fold 5.41E-09 1.01E-10 
ESEM KNN Hold-out 8.84E-06 8.08E-06 
ESEM SVM 10-fold 4.94E-07 7.59E-08 
ESEM SVM Hold-out 2.35E-07 1.79E-07 

 

For the epileptic seizure data set, Tables 15-17 present the experimental and statistical test 

results. RCPSO reveals the best GM performance, i.e. 95.78% and 95.92%, in 

combination with the SVM-based ensemble classifier for 10-fold and hold-out validations, 

respectively, over 30 runs. Both ACPSO and RCPSO models show statistically significant 

superiority over mRMR, ReliefF, and 21 search methods, except that RCPSO shows 

similar result distributions to those of AGPSO for the SVM-based ensemble model with 

10-fold validation over 30 runs. 

 

Table 15 Mean classification results over 30 runs for each method for the epileptic seizure 

data set 

 

 Mean RCPSO ACPSO PSO BBPSO BA CA CS DA HS ABC FPA MFO 

ESEM KNN 10-fold 0.8259 0.8262 0.8061 0.8041 0.8014 0.8077 0.8033 0.7996 0.8026 0.8013 0.8030 0.8041 

 Hold-out 0.8298 0.8277 0.8114 0.8095 0.8074 0.8131 0.8092 0.8052 0.8085 0.8069 0.8085 0.8095 

ESEM SVM 10-fold 0.9578 0.9573 0.9380 0.9364 0.9394 0.9385 0.9401 0.9370 0.9374 0.9376 0.9376 0.9364 

 Hold-out 0.9592 0.9589 0.9395 0.9378 0.9408 0.9398 0.9413 0.9383 0.9388 0.9388 0.9389 0.9378 

 

 Mean ThBPSO GPSO MPSO GMPSO F-BPSO FS-BPSO ELPSO MFOPSO AGPSO DNLPSO BBPSOV 

ESEM KNN 10-fold 0.8024 0.8030 0.8003 0.7997 0.8090 0.7961 0.8046 0.7983 0.8105 0.8033 0.8015 

 Hold-out 0.8082 0.8085 0.8058 0.8054 0.8130 0.8025 0.8104 0.8040 0.8135 0.8089 0.8068 

ESEM SVM 10-fold 0.9382 0.9401 0.9353 0.9357 0.9410 0.9352 0.9375 0.9375 0.9425 0.9375 0.9399 

 Hold-out 0.9395 0.9414 0.9367 0.9370 0.9425 0.9365 0.9388 0.9389 0.9433 0.9388 0.9411 

 

 Mean mRMR ReliefF 

ESEM KNN 10-fold 0.8192 0.8119 

 Hold-out 0.8199 0.8137 

ESEM SVM 10-fold 0.9364 0.9388 

 Hold-out 0.9387 0.9393 

 

 



 

 

Table 16 The Wilcoxon rank sum test results for the epileptic seizure data set for ACPSO 

 

 PSO BBPSO BA CA CS DA HS ABC FPA MFO 

ESEM KNN 10-fold 3.74E-05 1.00E-04 3.50E-06 3.63E-04 2.88E-06 6.24E-07 7.60E-06 6.02E-06 6.58E-06 1.03E-04 
ESEM KNN Hold-out 6.08E-05 3.34E-04 3.81E-06 7.54E-04 8.30E-06 2.28E-06 2.53E-06 2.74E-06 3.68E-06 3.41E-04 
ESEM SVM 10-fold 1.23E-05 2.97E-06 3.10E-04 1.22E-06 2.18E-04 1.95E-06 6.36E-06 8.56E-06 4.95E-07 7.34E-06 
ESEM SVM Hold-out 5.18E-05 3.63E-06 8.77E-04 9.52E-06 5.93E-04 4.96E-06 8.81E-06 7.55E-06 5.14E-07 5.55E-06 

 

 ThBPSO GPSO MPSO GMPSO F-BPSO FS-BPSO ELPSO MFOPSO AGPSO DNLPSO BBPSOV 

ESEM KNN 10-fold 8.04E-06 9.47E-06 9.92E-06 1.98E-06 2.28E-05 7.48E-06 8.09E-06 2.99E-06 2.85E-04 6.56E-05 1.52E-05 
ESEM KNN Hold-out 2.32E-05 2.39E-06 3.54E-06 8.10E-06 3.03E-04 6.16E-06 1.34E-05 1.39E-06 5.59E-05 9.16E-05 1.21E-05 
ESEM SVM 10-fold 1.22E-06 4.12E-06 7.59E-06 3.62E-06 2.13E-02 2.03E-06 4.54E-06 4.30E-06 3.98E-02 6.64E-06 6.34E-07 
ESEM SVM Hold-out 4.62E-06 2.62E-06 9.74E-06 9.04E-06 4.10E-02 8.35E-06 5.50E-06 2.49E-06 2.13E-02 2.94E-06 7.97E-06 

 

 mRMR ReliefF 

ESEM KNN 10-fold 9.92E-06 2.18E-04 
ESEM KNN Hold-out 2.62E-06 6.08E-05 
ESEM SVM 10-fold 3.50E-06 4.96E-06 
ESEM SVM Hold-out 2.32E-05 2.53E-06 

 

Table 17 The Wilcoxon rank sum test results for the epileptic seizure data set for RCPSO 

 
 PSO BBPSO BA CA CS DA HS ABC FPA MFO 

ESEM KNN 10-fold 2.77E-05 9.79E-05 2.38E-07 3.56E-04 2.68E-06 5.46E-09 1.73E-07 6.05E-07 7.04E-07 9.79E-05 
ESEM KNN Hold-out 5.38E-05 3.33E-04 4.16E-07 7.48E-04 5.53E-06 1.39E-08 3.33E-07 6.88E-07 9.05E-07 3.33E-04 
ESEM SVM 10-fold 6.74E-06 4.44E-07 3.01E-04 3.08E-08 2.13E-04 6.01E-08 1.55E-09 1.41E-09 2.03E-07 4.44E-07 
ESEM SVM Hold-out 4.66E-05 2.65E-06 8.69E-04 2.04E-07 5.88E-04 7.76E-08 8.68E-10 6.39E-09 3.10E-07 2.65E-06 

 

 ThBPSO GPSO MPSO GMPSO F-BPSO FS-BPSO ELPSO MFOPSO AGPSO DNLPSO BBPSOV 

ESEM KNN 10-fold 3.57E-06 4.31E-08 2.03E-07 9.06E-08 1.73E-05 2.15E-10 1.61E-06 3.35E-08 2.77E-04 5.61E-05 6.74E-06 
ESEM KNN Hold-out 1.95E-05 6.85E-07 1.29E-06 2.20E-06 3.01E-04 9.30E-10 3.75E-06 1.85E-07 5.38E-05 8.17E-05 1.01E-05 
ESEM SVM 10-fold 5.09E-08 1.36E-07 1.10E-08 1.07E-09 2.13E-02 3.02E-11 1.61E-06 2.03E-07 3.98E-01 1.70E-08 2.57E-07 
ESEM SVM Hold-out 4.90E-07 3.07E-07 5.01E-08 3.05E-09 4.10E-02 4.66E-11 3.84E-06 2.64E-07 2.13E-02 2.71E-08 6.76E-07 

 
 

 mRMR ReliefF 

ESEM KNN 10-fold 4.96E-06 2.97E-06 
ESEM KNN Hold-out 3.57E-06 1.36E-07 
ESEM SVM 10-fold 1.29E-06 1.23E-05 
ESEM SVM Hold-out 3.57E-06 2.20E-06 

 

Figure 6 illustrates the average numbers of selected features of each method for both 

breast cancer and seizure data sets over 30 runs. For the breast cancer data set, ACPSO, 

MPSO, and RCPSO select the smallest optimal feature subsets in comparison with those 

of other methods. For the seizure data set, MPSO, ThBPSO, GPSO and RCPSO obtain the 

smallest optimal feature subsets with the rest of the methods identifying comparatively 



 

 

larger feature subsets. In short, both proposed models achieve the best trade-off between 

classification performance and computational efficiency. They obtain smaller or 

comparable sizes of feature subsets in comparison with those of all the baseline methods 

for both UCI data sets, while maintaining competitive classification performance. 

 
Figure 6 The numbers of selected features of each method for the breast cancer and 

seizure data sets 
 

 

We subsequently conduct experiments to investigate the performance contribution of the 

proposed sub-dimension based search mechanism in the proposed ACPSO and RCPSO 

models. We compare the full versions of the proposed ACPSO and RCPSO models and 

both models without the sub-dimension based search operations but with all other 

proposed mechanisms embedded. All the four data sets are used for comparison, i.e. the 

mixed and PH2 skin lesion data sets and two UCI data sets. A series of 30 runs is 

conducted for each algorithm with each data set. Table 18 depicts the detailed evaluation 

results. As indicated in Table 18, the proposed sub-dimension based search strategy 

performs fine-tuning and local exploitation of the swarm particles to further enhance 𝑔𝑔𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡. Therefore, it shows sufficient capabilities in improving the feature selection 

outcomes consistently for all the evaluated scenarios using all the data sets. Specifically, 

for the PH2 data set, equipped with the sub-dimension based search mechanism, the 

proposed RCPSO model yields 1.27% and 1.09% improvements in comparison with the 



 

 

version without such operations for the KNN-based ensembles with 10-fold and hold-out 

validations, respectively. Similarly, equipped with sub-dimension based local exploitation, 

ACPSO also yields 1.18% and 1.23% improvements in comparison with the version 

without such operations for the above test cases with the PH2 data set. Overall, ACPSO 

shows slightly more improvements than RCPSO with the inclusion of the sub-dimension 

strategy for 𝑔𝑔𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡 enhancement as compared with the versions without such procedures. In 

short, the proposed sub-dimension based search operation is able to produce enhanced 

capabilities in improving the feature selection results for all the test cases. 

 

Table 18 The mean evaluation results of the sub-dimension based search operation over 30 

runs 

 

   Mean RCPSO (1) RCPSO 

without 

sub_dimen 

(2) 

Increase 

b/w (1) 

and (2) 

ACPSO (3) ACPSO 

without 

sub_dimen 

(4) 

Increase 

b/w (3) 

and (4) 

Mixed KNN 10-fold 0.9579 0.9489 0.0090 0.9560 0.9478 0.0082 

  Hold-out 0.9559 0.9497 0.0062 0.9541 0.9458 0.0083 

 SVM 10-fold 0.9966 0.9933 0.0033 0.9955 0.9906 0.0049 

  Hold-out 0.9954 0.9935 0.0019 0.9949 0.9912 0.0037 

PH2 KNN 10-fold 0.9742 0.9615 0.0127 0.9726 0.9608 0.0118 

  Hold-out 0.9732 0.9623 0.0109 0.9738 0.9615 0.0123 

 SVM 10-fold 0.9779 0.9701 0.0078 0.9767 0.9698 0.0069 

  Hold-out 0.9754 0.9722 0.0032 0.9731 0.9699 0.0032 

Breast KNN 10-fold 0.9678 0.9666 0.0012 0.9676 0.9664 0.0012 

  Hold-out 0.9691 0.9686 0.0005 0.9688 0.9670 0.0018 

 SVM 10-fold 0.9870 0.9858 0.0012 0.9864 0.9857 0.0007 

  Hold-out 0.9873 0.9865 0.0008 0.9856 0.9843 0.0013 

Seizure KNN 10-fold 0.8259 0.825 0.0009 0.8262 0.8235 0.0027 

  Hold-out 0.8298 0.8279 0.0019 0.8277 0.8263 0.0014 

 SVM 10-fold 0.9578 0.9507 0.0071 0.9573 0.9498 0.0075 

  Hold-out 0.9592 0.9577 0.0015 0.9589 0.9556 0.0033 

Average       0.0044     0.0050 

 

 

4.4.2 Evaluation Using the ALL-IDB2 Data Set for Hyper-parameter Fine-tuning 

In order to further assess robustness of the proposed models, the ALL-IDB2 microscopic 

image data set [52] is employed for optimal hyper-parameter identification of deep 

networks. This data set has a total of 180 microscopic white blood cell sub-images with 

120 positive (i.e. acute lymphoblastic leukaemia) and 60 negative samples [52, 53]. An 

aspect ratio of 60-20-20 is employed for training, validation, and test evaluations. All the 

images are re-sized to 200×200. The same settings as those of CNN hyper-parameter fine-

tuning for the PH2 data set are adopted in this experiment, i.e. the maximum number of 



 

 

fitness evaluations=population (15) × iterations (10), and runs=30. The CNN network is 

trained from scratch for each set of the recommended hyper-parameters. Tables 19-21 

show the empirical and Wilcoxon rank sum test results over 30 runs. The proposed 

RCPSO and ACPSO models outperform, with statistical significance results, all the 

baseline methods in nearly all test cases in hyper-parameter fine-tuning. The exception is 

for BBPSOV, which shows similar results to those of ACPSO. 

 

Table 19 Mean classification results over 30 runs for CNN hyper-parameter fine-tuning 

using the ALL-IDB2 data set 

 

 RCPSO ACPSO PSO BBPSO BA CA CS DA HS ABC FPA MFO 

Mean 0.9113 0.8799 0.7679 0.7112 0.7520 0.7569 0.7962 0.7616 0.7616 0.7836 0.7537 0.7883 

 

 GPSO MPSO GMPSO ELPSO MFOPSO AGPSO DNLPSO BBPSOV default 

Mean 0.7395 0.8119 0.7710 0.7301 0.7128 0.6892 0.7474 0.8151 0.7477 

 

 

Table 20 The Wilcoxon rank sum test results for CNN hyper-parameter fine-tuning for 

ACPSO using the ALL-IDB2 data set 

 PSO BBPSO BA CA CS DA HS ABC FPA MFO 

Wilcoxon 3.65E-05 1.27E-05 1.92E-04 4.27E-04 3.43E-03 3.03E-03 1.62E-03 1.20E-02 2.57E-03 1.07E-02 

 

 GPSO MPSO GMPSO ELPSO MFOPSO AGPSO DNLPSO BBPSOV default 

Wilcoxon 2.52E-05 3.15E-02 1.02E-02 8.36E-05 4.07E-04 4.29E-06 5.21E-04 7.88E-02 8.69E-03 

 

 

Table 21 The Wilcoxon rank sum test results for CNN hyper-parameter fine-tuning for 

RCPSO using the ALL-IDB2 data set 

 
  PSO BBPSO BA CA CS DA HS ABC FPA MFO 

Wilcoxon 7.89E-07 1.67E-07 6.53E-06 5.24E-05 2.00E-05 1.65E-04 1.18E-04 5.61E-04 1.27E-04 3.52E-05 

 
 GPSO MPSO GMPSO ELPSO MFOPSO AGPSO DNLPSO BBPSOV default 

Wilcoxon 2.29E-07 9.67E-04 8.26E-04 3.82E-06 5.37E-06 1.46E-07 6.86E-06 1.50E-03 3.50E-05 

 

 

4.5 Computational Cost 

The computational costs for the proposed models and all the baseline methods for 



 

 

discriminative feature selection and optimal hyper-parameter identification of deep 

networks are summarized in Tables 22-23. 

 

Since all the methods use the same maximum number of function evaluations in each 

optimization task, i.e. feature selection and optimal hyper-parameter selection, at the 

training stage and since fitness evaluation is the most time-consuming component, all the 

methods have the same computational cost primarily for each optimization task. 

Nevertheless, owing to the differences of the internal search mechanisms in each search 

method, the computational cost of each search method varies slightly. 

 

The average training computational costs for discriminative feature selection pertaining to 

the skin lesion, breast cancer and seizure data sets over 30 runs are provided in Table 22. 

As illustrated in Table 22, the costs of the three computationally most efficient models for 

each data set are highlighted in bold. For the mixed skin lesion data set, FPA, ACPSO and 

BA yield the least computational costs, while RCPSO, PSO, CS, DA, GMPSO, MFOPSO, 

BBPSOV and MPSO produce medium computational costs, with the rest of the models 

depicting computationally expensive costs. For the PH2 data set, FPA, ACPSO and DA 

are computationally the most efficient methods. This is followed by BA, RCPSO, CS, and 

GMPSO, with the remaining methods showing comparatively higher computational costs. 

 

Table 22 The average training computational costs (in seconds) for discriminative feature 

selection over a series of 30 runs 

 
cost RCPSO ACPSO PSO BBPSO BA CA CS DA HS ABC FPA MFO 

Mixed 4431.38 4412.68 4482.48 4544.43 4416.49 4524.41 4467.68 4416.59 4555.87 4508.26 4406.30 4548.06 

PH2 3821.65 3808.58 3880.73 3935.38 3815.23 3923.22 3863.04 3809.33 3948.80 3906.03 3800.89 3946.44 

Breast 1912.39 1931.31 1982.12 2043.81 1916.40 2024.15 1966.81 1916.17 2055.60 2007.34 1905.31 2047.11 

Seizure 6722.81 6766.82 6946.64 7005.57 6891.09 6934.96 6762.72 6811.01 7363.88 6947.75 6858.62 6982.98 

 

 
cost ThBPSO GPSO MPSO GMPSO F-BPSO FS-BPSO ELPSO MFOPSO AGPSO DNLPSO BBPSOV 

Mixed 5673.82 4550.73 4493.38 4482.70 4600.50 4567.03 4591.98 4486.07 4583.58 4600.36 4486.99 

PH2 4562.87 3941.51 3888.44 3876.72 3993.51 3964.36 3991.91 3882.95 3979.46 3997.77 3879.59 

Breast 3872.92 2050.52 1992.57 1982.50 2099.55 2066.63 2091.52 1985.59 2082.64 2100.09 1986.58 

Seizure 8823.82 7026.52 6983.78 6957.73 7029.82 7037.60 7776.87 7287.87 6852.72 6783.82 6899.99 

 

 



 

 

For the breast cancer data set, FPA, RCPSO and DA yield the lowest training 

computational costs for discriminative feature selection. This is closely followed by BA, 

ACPSO and CS. For the seizure data set, RCPSO, CS and ACPSO are computationally the 

most optimal models, with the rest of the methods showing more expensive computational 

costs. In short, the proposed ACPSO and RCPSO models have better or comparable 

training computational costs as compared with those of most of the baseline methods in 

feature selection. 

 

Table 23 shows the average training computational costs for optimal hyper-parameter 

identification in deep CNNs for PH2 and ALL-IDB2 data sets over 30 runs. For both data 

sets, as shown in Table 23, HS, BBPSO and ACPSO have the most optimal training 

computational costs. RCPSO, PSO, DA, MFO, MPSO, and AGPSO show medium 

computational costs, with the remaining methods producing computationally expensive 

costs. Overall, ACPSO and RCPSO depict better or comparable training computational 

costs as compared with those of most of the baselines methods in optimal hyper-parameter 

selection. 

 

Table 23 The average training computational costs (in seconds) for hyper-parameter fine-

tuning in deep networks over a series of 30 runs 

cost RCPSO ACPSO PSO BBPSO BA CA CS DA HS ABC FPA MFO 

PH2 344.2298 187.2935 320.8068 146.913 420.2805 418.7278 369.0928 315.2647 141.5545 470.0163 421.0371 315.3719 

ALL 373.6267 296.3508 387.6023 207.8309 519.337 514.9375 496.0683 387.7138 173.7336 571.4474 514.0983 390.4159 

 

cost GPSO MPSO GMPSO ELPSO MFOPSO AGPSO DNLPSO BBPSOV 

PH2 427.4532 316.5954 392.3869 482.9665 426.0251 313.64 429.2886 420.9588 

ALL 519.5351 387.5924 473.3786 581.1205 516.6073 389.8353 513.4372 515.6972 

 

5. CONCLUSIONS 

In this research, we propose an intelligent skin lesion classification system. It consists of 

ABCD+GLRLM, LBP and HOG feature extraction, ACPSO and RCPSO feature 

selection, and deep and ensemble classifiers. The proposed ACPSO model employs both 

global search using adaptive decreasing and increasing acceleration coefficients as well as 

in-depth sub-dimension based local search mechanisms to attain global optima. The 

RCPSO model simulates mid-air hovering flight of hummingbirds, and uses the random 



 

 

coefficients generated by three non-linear functions to increase both intensification and 

diversification capabilities. 

 

Optimal hyper-parameter identification of a deep CNN network is performed using both 

proposed PSO models. The empirical results indicate efficiency of the proposed ACPSO 

and RCPSO algorithms for discriminative lesion feature selection and optimal hyper-

parameter identification in deep networks. Both ACPSO and RCPSO models outperform 

nearly all the classical methods and the state-of-the-art PSO variants, statistically. The 

CNN model with the identified best training configurations also outperforms the model 

with the default hyper-parameter settings provided by MATLAB, significantly. The 

experiments also indicate efficiency of different types of lesion features contributing to 

melanoma classification. To further evaluate model efficiency and flexibility, two UCI 

data sets (i.e. breast cancer and epileptic seizure) and the ALL-IDB2 microscopic image 

data set are also used for evaluation. The proposed models outperform all the baseline 

methods for feature selection and optimal hyper-parameter identification of deep networks 

in most of the test cases for these data sets, as ascertained by the empirical and statistical 

test results. 

 

In future work, other medical image data sets will be used to evaluate the proposed PSO 

models. Optimization of the deep network structures [55-57] will also be explored to 

further evaluate efficiency of the resulting models. 
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