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Abstract—Recently, along with several technological 

advancements in Cyber-Physical Systems (CPS), the revolution of 

Industry 4.0 has brought in an emerging concept named Digital 

Twin (DT), which shows it potential to break the barrier between 

the physical and cyber space in smart manufacturing. However, it 

is still difficult to analyze and estimate the real-time structural 

and environmental parameters in terms of their dynamic changes 

in digital twinning, especially when facing detection tasks of 

multiple small objects from a large-scale scene with complex 

contexts in modern manufacturing environments. In this study, 

we focus on a small object detection model for DT (SOD-DT), 

aiming to realize the dynamic synchronization between a physical 

manufacturing system and its virtual representation.  Three 

significant elements, including equipment, product, and operator, 

are considered as the basic environmental parameters to 

represent and estimate the dynamic characteristics and real-time 

changes in building a generic DT system of smart manufacturing 

workshop. A hybrid deep neural network model based on the 

integration of MobileNetv2, YOLOv4, and Openpose, is 

constructed to identify the real-time status from physical 

manufacturing environment to virtual space. A learning 

algorithm is then developed to realize the efficient multi-type 

small object detection based on the feature integration and fusion 

from both shallow and deep layers, in order to facilitate the 

modeling, monitoring, and optimizing of the whole manufacturing 

process in DT system. Experiments and evaluations conducted in 

 
Xiaokang Zhou is with the Faculty of Data Science, Shiga University, 

Hikone 522-8522, Japan, and also with the RIKEN Center for Advanced 

Intelligence Project, RIKEN, Tokyo 103-0027, Japan (e-mail: 

zhou@biwako.shiga-u.ac.jp).  

Xuesong Xu (corresponding author) is with the Base of International 

Science and Technology Innovation and Cooperation on Big Data Technology 

and Management, Hunan University of Technology and Business, Changsha 

410205, China (e-mail: xuxs@hutb.edu.cn). 

Wei Liang (corresponding author) is with the Base of International Science 

and Technology Innovation and Cooperation on Big Data Technology and 

Management, Hunan University of Technology and Business, Changsha 

410205, China (e-mail: weiliang@csu.edu.cn). 

Zhi Zeng is with the Base of International Science and Technology 

Innovation and Cooperation on Big Data Technology and Management, Hunan 

University of Technology and Business, Changsha 410205, China (e-mail: 

zhizeng416416@163.com). 

Shohei Shimizu is with the Faculty of Data Science, Shiga University, 

Hikone 522-8522, Japan, and also with the RIKEN Center for Advanced 

Intelligence Project, RIKEN, Tokyo 103-0027, Japan (e-mail: 

shohei-shimizu@biwako.shiga-u.ac.jp). 

Laurence T. Yang is with the Department of Computer Science, St. Francis 

Xavier University, Antigonish, NS B2G 2W5, Canada (e-mail: 

ltyang@stfx.ca). 

Qun Jin is with the Faculty of Human Sciences, Waseda University, 

Tokorozawa 359-1192, Japan (e-mail: jin@waseda.jp). 

three different use cases demonstrate the effectiveness and 

usefulness of our proposed method, which can achieve a higher 

detection accuracy for DT in smart manufacturing. 
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I. INTRODUCTION 

owadays, the rapid developments of Cyber-Physical 

Systems (CPS) and Internet of Things (IoT) in Industry 

4.0 [1] have enabled an emerging virtual representation 

technology, called Digital Twin (DT), which acts as a bridge to 

create high connection, integration, and cooperation between 

the physical and virtual world. Coupled with AI techniques and 

big data analytics, DT becomes a significant way to realize the 

rapid analysis and real-time decision-making not only for smart 

manufacturing [2, 3], but also in modern industrial automation 

and control systems [4]. More importantly, as the digitalization 

of machinery and production systems becomes the basis of 

smart manufacturing, DT is viewed as the biggest technology 

trend and most promising technological direction for realizing 

real-time monitoring, diagnosis, prognosis, and maintenance in 

Industry 4.0 [5]. 

DT equipped with CPS is characterized as a strong 

interlinkage between the real world and its digital 

representation for smart manufacturing [6]. In this paradigm, 

DT is defined as a digital simulation model that can collect data 
from the physical space, and trigger actions on the physical 

equipment simultaneously. In 2003, Michael Grieves first 

presented the innovative concept of DT on product life-cycle 

management. Recently, with the development of industrial IoT 

and AI technologies, DT becomes a new idea of tangible assets 

in industrial CPS, which results in a typical simulation process 

by making use of quantifiable model, soft simulation, and 

production data. Differing from traditional notions of digital 

modeling and simulation, DT has been identified as not only an 
efficient way for virtual duplication of a physical system, but 

also a key innovation in real-time visualization. Researches 

have shown evidences [7] that combining DT and CPS in a 

computational collaboration system could efficiently assist 

people to better understand the manufacturing process, and add 

resilience during an evidence-based decision-making process. 

It is said that DT is playing an increasingly significant role for 
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the next generation of digitalized industry, and will become the 

building blocks of future smart factories. However, it’s still a 
challenging issue when dealing with the interoperability, 

dependability, sustainability, reliability, security, and 

predictability for the cyber-physical integration in smart 

manufacturing [8, 9]. 

Previous research works usually built DT models using 

product, equipment, or service data. However, in addition to 

sensors, interfaces, controllers, and communications, work 

staffs and their behaviors should be viewed as significant 

elements to simulate and evaluate the virtual environment in 

smart manufacturing. In some high-risk workshops with 

complex mechanical and electrical production, the high density 

of personnel may cause safety hazards, and thus calls for strict 

requirements on the distribution of personnel in different areas. 

Human workers need to be recognized as an important kind of 

available manufacturing resources, and even an essential factor 

in terms of the real-time structural and environmental 

parameters of a physical asset [10], when building a DT model 

to predict, estimate, and analyze the dynamic changes for 

optimizations of the whole manufacturing process. 

Accordingly, when human factors are involved in the virtual 

models to monitor and evaluate dynamic changes of machining 

conditions and manufacturing resources, it becomes a typical 

problem of small object detection because the image of workers 

are relatively small in some large workshops. Due to the 

different postures, expressions, and illuminations, a robust 

model is necessary to distinguish the background and staff 

accurately and quickly. Particularly, DT based on workers’ 
postures and behaviors may focus on the macro and micro 

levels respectively. At the macro level, staffs can be viewed as 

the particle of movement, which ignores the details such as the 

body, and focuses more on people with the workshop location, 

distribution and activity track information. At the micro level, 

the body movements, including personal postures and 

behavioral characteristics in relative fixed position such as 

production stations, are taken into account. Therefore, an 

efficient fusion mechanism needs to be designed to seamlessly 

integrate the collected multi-dimensional sensing data for 

dynamic evaluations during digital twinning. A smart strategy 

is necessary to enhance the DT model with deep learning 

schemes, to learn more precise features during simulations [11], 

which may achieve better real-time monitoring, controlling, 

optimization, and rapid prediction with high-level control 

functions and data exchange modules. 

To improve the smart manufacturing based on a better 

integration of cyber and physical space, we aim to realize a DT 

enabled dynamic synchronization for physical objects during 

manufacturing processes under large-scale scenes. This task 

requires the real-time recognition for multiple objects with 

different positions and sizes and then virtually represents them 

in DT. Conventional machine learning models can hardly 

tackle this situation, especially for small objects from a 

large-scale scene with complex contexts. Therefore, a small 

object detection model for DT (SOD-DT), aiming at capturing 

the precise environmental features and real-time changes from 

physical space to virtual space, is proposed to overcome the 

shortcomings of conventional approaches. Specifically, a 

hybrid deep neural network is constructed to accurately identify 

the real-time status of three important targets, namely 

equipment, product, and operator, as the basic environmental 

parameters in building a generic DT system of smart 

manufacturing workshop, which can efficiently support the 

surveillance of equipment positioning, personnel distribution, 

and product trajectory based on digital twinning. The main 

contribution of this study is concluded as follows. 

i) A framework of intelligent small object detection for DT is 

designed, in which the equipment, product, and operator are 

considered as three basic environmental parameters in DT 

to analyze and estimate the dynamic characteristics and 

real-time changes from physical manufacturing space to 

virtual space. 

ii) A hybrid neural network model is constructed based on a 

combination of advantages of MobileNetv2, YOLOv4, and 

Openpose, in which the depthwise separable convolutions 

of MobileNetv2 are integrated into YOLOv4 (this part is 

later referred to as a newly structured network called 

YOLOv4-M2) and replaces the original CSPDarknet53, to 

improve the feature extraction and further benefit the static 

small object detections (e.g., equipment, product), while the 

Openpose is improved for long-distance human posture 

recognition based on newly generated feature maps from 

the integrated YOLOv4-M2, instead of the original 

VGG-19. 

iii) An efficient learning algorithm is developed for multi-type 

small object detection based on the feature integration and 

fusion from both shallow and deep layers, which can be 

used to model, monitor, and optimize the whole smart 

manufacturing process in DT system. 

The rest of this article is organized as follows. Section II 

presents a review of the latest literatures related to this study. In 

Section III, a framework of intelligent small object detection is 

introduced. The implementation of the proposed model and the 

object detection algorithm are discussed in Section IV. In 

Section V, we address the experiment and evaluation results 

using a real-world dataset. In Section VI, we conclude this 

study and give a promising perspective on future research.  

II. RELATED WORK 

In this section, several related issues, including DT 

technology in CPS, and machine learning used in object 

detections, are reviewed respectively. 

A. DT Technology in CPS 

DT is becoming an important technology when mapping 

physical space to cyber space in DT enhanced human-machine 

interface, so as to optimize the decision-making ability of 

production management or smart manufacturing [12]. The CPS 

interface can be used for data insertion and data visualization 

during digital twinning in a data-driven way [13]. Based on DT 

enhanced simulations in CPS, environment factors and human 

behaviors can be effectively regulated during the 

manufacturing process. In addition, due to the high 

self-awareness in CPS, human abilities and behaviors have 
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become key factors when modeling the intelligent system based 

on DT technology. For example, Zhou et al. [14] presented a 

human-cyber-physical system by integrating human behaviors 

in intelligent manufacturing, which was considered as a 

new-generation of digital manufacturing with three main 

factors: human, network and physical system. IoT sensors and 

cameras were used to design an IoT-based DT for energy 

efficient CPS [15], which could improve the work efficiency 

based on human knowledge management, transfer and 

application in smart manufacturing. 

Generally, one important step in DT is to create a virtual 

model to truly reproduce the geometry, attributes, behaviors 

and rules of physical entities. Dai et al. [16] proposed a DT 

network which combined the DT with industrial IoT network 

for the modeling of network topology. They developed a deep 

reinforcement learning mechanism to deal with the 

computation offloading and resource allocation problem. 

Schluse et al. [17] focused on experimental DTs, which were 

used in virtual testbeds for simulations of hybrid application 

scenarios. Cai et al. [18] discussed the development of virtual 

machine tools based on DTs. They aimed to utilize the 

manufacturing data and sensory data to model the 

machine-specific features, which might benefit the diagnosis 

and prognosis in cyber-physical manufacturing. Leng et al. [19] 

utilized the DT technology to handle the security issue in 

industrial IoT environments. They built a blockchain-based 

manufacturing framework, in which a DT model was employed 

to synchronize the physical and cyber systems. However, 

recent researches have few considerations on characteristics of 

multiple objects in terms of their real-time changes during the 

whole manufacturing process, especially when dealing with the 

multi-source, heterogeneity, large-scale, and high-noise scenes 

of DT in industrial CPS. Data collected from multiple sensors 

may need to be efficiently fused, to improve the robustness and 

reliability, and enhance the model expansibility for DT.  

B. Machine Learning for Object Detection 

The emergence of machine learning technology, such as 

CNN, has greatly improved the performance of object detection. 

For example, Wu et al. [20] introduced a so-called 

funnel-structured cascade detection framework, in which 

distributed classifiers were built to extract shape-indexed 

features for multi-view face detection. Jang et al. [21] built a 

task-specific architecture to handle the face-related 

classification based on single shot learning analysis. They used 

the fully convolutional neural network with two parallel 

branches to facilitate detections of multiple objects with 

different sizes.  Building deeper and more efficient learning 

models is a primary trend to solve detection tasks of multiple 

objects. Ren et al. [22] integrated a region proposal network 

with Faster R-CNN, to improve the detection of high-quality 

region based on full-image convolutional features. Zhu et al. 

[23] proposed a multiple classification method based on 

unsupervised learning. They designed an integrated framework, 

which could realize the object localization, class discovery, and 

detector training simultaneously. Tang et al. [24] considered 

visual and semantic similarities into a weakly supervised 

learning process, which could improve the detection 

performance based on the highlight of category-specific 

differences. Shen et al. [25] introduced a two-stage leaning 

model based on the fully convolutional neural network for 

multi-task learning. They used two scale-associated side 

outputs in each stage of neural network, to improve the 

efficiency in extracting skeleton pixels based on multiple scales. 

Han et al. [26] presented a specific Bayesian-based framework 

for geospatial object detection, in which a weakly supervised 

learning model was constructed to identify the high-level 

features from spatial and structural information. Sangineto et al. 

[27] focused on the design of a training protocol based on 

self-paced learning. They considered the reliability between 

different subsets of data during the training process, and used 

the fully-supervised Faster R-CNN architecture to build the 

deep network based classifier for weakly supervised object 

detection.  

III. FRAMEWORK OF SMALL OBJECT DETECTION FOR DT 

In this section, we first introduce two important issues on 

real-time target recognition in a DT scenario for smart 

manufacturing workshop. The basic framework for intelligent 

small object detection in digital twinning is then discussed with 

two core network modules. 

A. Problem Scenario 

DT builds a complex system with mutual mapping, timely 

interaction, and efficient collaboration among human, machine, 

and environment between physical and virtual space to achieve 

an on-demand response. It needs to precisely describe the 

proximity of digital models and physical entities. Thus, three 

important elements: the equipment, product, and operator, are 

considered as the basic environmental parameters in terms of 

their dynamic characteristics and real-time changes, to feed 

back to the virtual space through various sensors, in order to 

model, evaluate, and optimize the whole manufacturing process 

during digital twinning. As shown in Fig. 1, the equipment, 

workpieces, and operators are included in the digital twinning 

of a smart workshop floor assembly line. Video or picture 

sequences captured through surveillance cameras are utilized to 

provide high-fidelity information to quickly detect and 

recognize these targets for DT. Specifically, the following two 

issues on real-time target recognition in practical applications 

are focused on, to enhance the accuracy of simulation and 

prediction results in DT system. 

i) Multi-type small object detection. In practical 

manufacturing scenarios, due to the different spatial 

dimensions of the site, cameras are usually installed in the 

farther and higher parts of the workshop, to capture the 

structural and environmental information of all the targets 

for DT. Objects in the image are about 10 to 30 pixels, 

which can be viewed as a typical detection problem of 

small targets with multiple types. 

ii) Long-distance human posture recognition. As one 

significant dynamic environmental parameter in digital 

twinning, the operator’s behavior is highly autonomous 

and uncertain. Due to the different angles and distances of 
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cameras, operators’ whole-body features are usually 

unavailable. Traditional algorithms based on key points of 

human skeleton are prone to be difficult for existing 

virtual entity models to objectively depict the physical 

objects.  
 

 
Fig. 1. Digital Twinning for Smart Manufacturing Workshop Assembly Line 

 

Summarily, when the target pixel is too small and the feature 

information is sparse, most of the current convolution 

operations of deep learning are performed in regions with low 

target expectations, which often leads to a large waste of 

computational resources and low execution efficiency. This 

kind of images of small targets have few features after 

multi-layer convolution processing, which becomes extremely 

difficult to meet the needs of detection and regression, 

especially when handling changes in ambient light and smoke 

from a complex background environment. Therefore, it is 

necessary to improve the robustness of the detection algorithm, 

and realize the mapping and interaction between physical and 

digital space within an acceptable time in digital twinning. 

B. Framework of Small Object Detection in Digital Twinning 

 

 
Fig. 2. Framework of Intelligent Small Object Detection in Digital Twinning 

 

Specifically, the proposed SOD-DT first integrates the 

depthwise separable convolution network of MobileNetv2 into 

YOLOv4 and replaces the original CSPDarknet53, which can 

provide the rich semantic information for the prediction layer. 

The fusion of shallow and deep features is then used to increase 

the accuracy of small target detection. In particular, the human 

region is extracted as the input for the Openpose-based posture 

recognition, which may better detect the operators’ actions by 

removing the background interference. 

As the basic framework shown in Fig. 2, generally, we 

mainly focus on two specific modules to realize the intelligent 

small object detection in digital twinning. First, the depthwise 

separable convolutions of MobileNetv2 are integrated into 

YOLOv4, as a newly structured network called YOLOv4-M2, 

for feature extraction in SOD-DT, which is also used for static 

small object detections (e.g., equipment, product) in digital 

twinning. Operations based on depthwise separable 

convolutions are improved using smaller convolutions to 

reduce the number of operations and parameters. Furthermore, 

the generated feature map of YOLOv4 is extended based on the 

integration of different feature samplings, to facilitate the 

prediction of small objects. Second, parts of features extracted 

from YOLOv4-M2 are further fused as input of the Openpose 

network, which replaces the original VGG-19, so as to save the 

computing resource and alleviate the gradient disappearance 

and performance degradation in too deep convolutions. Thus, 

the improved Openpose network based on feature fusion from 

shallow and deep layers in the integrated YOLOv4-M2, can 

reduce the unnecessary background noises, and focus on 

learning precise human skeleton features to enhance the 

detection accuracy in long-distance human posture recognition 

for DT. 

IV. MECHANISM OF INTELLIGENT OBJECT DETECTION IN 

DIGITAL TWINING 

In this section, we discuss the detailed mechanism and 

implementation of the proposed SOD-DT, including the hybrid 

neural network architecture, feature fusion based on the 

integrated YOLOv4-M2, long-distance human posture 

recognition, and multi-type object detection algorithm. 

A. Integration of YOLOv4 and MobileNetv2 for Feature 

Fusion and Extraction 

YOLOv4 for object detection is mainly divided into two 

parts: feature extraction and target prediction. The feature 

extraction is mainly conducted by the CSPDarknet53 network, 

in which features represented in each convolution layer are 

different. The shallow layer contains a large amount of detailed 

information, such as shapes, textures, and boundaries, which is 

easily lost after too many convolution and pooling operations. 

Contrastively, the feature map generated in the deep layer is in 

smaller size but contains rich semantic information. To 

improve the accuracy and real-time performance for small 

object detection, we integrate the MobileNetv2 and YOLOv4 

as a new YOLOv4-M2 network in the following way: i) Using 

the depthwise separable convolution network of MobileNetv2 

to replace CSPDarknet53 in YOLOv4 for feature extraction, 

which can efficiently reduce the computational cost; ii) 

Selecting convolution layers: Conv3-3, Conv4-3, and Conv7 

into a new layer with the same channel and pixel, which 

realizes feature fusion of detail features from the shallow layer 

and semantic features from the deep layer. 
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TABLE 1. INPUT AND OUTPUT OF CONVOLUTIONS   

Layer Input Convolution Output 𝐿𝑦𝑟𝑒𝑥𝑝 𝐻 × 𝑊 × 𝐷 1 × 1 𝐻 × 𝑊 × 𝑡 ∗ 𝐷 𝐿𝑦𝑟𝑑𝑒𝑝 𝐻 × 𝑊 × 𝑡 ∗ 𝐷 𝐾 × 𝐾, 𝑠𝑡𝑟𝑖𝑑𝑒 = 𝑆 
𝐻𝑠 × 𝑊𝑠 × 𝑡 ∗ 𝐷 𝐿𝑦𝑟𝑝𝑟𝑜 

𝐻𝑆 × 𝑊𝑆 × 𝑡 ∗ 𝐷  1 × 1 
𝐻𝑆 × 𝑊𝑆 × 𝑁 

 

In details, the depthwise separable convolution network for 

feature extraction, which is employed to reduce network 

parameters and convolution operations, is designed with three 

basic layers. The first layer is the expansion layer 𝐿𝑦𝑟𝑒𝑥𝑝. A 

1×1 convolution is used to expand the number of channels in 

the input data. The second layer is the depthwise convolution 

layer 𝐿𝑦𝑟𝑑𝑒𝑝. A 3×3 convolution without pooling layer is used 

to filter the inputs from the first layer. The third layer is the 

projection layer 𝐿𝑦𝑟𝑝𝑟𝑜. A 1×1 convolution is used to project 

the high-dimensional data into the low-dimensional one. In 

addition, the Linear activation function is used to alleviate the 

information loss or even corruption instead of the original 

ReLU in the first and second layer. 

Table 1 shows the detailed design of input and output in each 

layer. The input size in the first layer is 𝐻 × 𝑊, and the number 

of input channels is 𝐷, while the number of output channels in 

the third layer is 𝑁. The size of the convolution kernel in the 

second layer is 𝐾, and the stride is 𝑆. The expansion factor is 𝑡 (0 <  𝑡 <  1). For example, when we set 𝐾 = 3, and 𝐷 = 𝑁, 

the time complexity of this convolution operation can be eight 

or nine times less than that of the standard convolution. 
 

 
Fig 3. Integrated Neural Network Architecture for SOD-DT 

 

The detailed structure of the newly designed YOLOv4-M2 is 

shown in Fig. 3, in which the MobileNetv2 part is used for 

feature extraction, while the YOLOv4 part is used for object 

detection. Specifically, the resolution of input data is resized to 

320×320, and transformed to a 10 × 10 × 1024 feature map, as 

the input of YOLOv4 to enhance the further static small target 

predictions. 

Before conducting feature fusion based on the mentioned 

three convolution layers, Conv3-3, which is located in the 

shallow layer of YOLOv4-M2, needs to reduce the size, but 

expand the perceptual field of feature map with key information. 

The dilated convolution is employed for downsampling during 

this process, which can be described as follows. 𝑆𝑖𝑛 = 1𝑙 [𝑆𝑜𝑢𝑡 + 2𝛼 − 𝑟(𝑘 − 1)] + 1               (1) 

where 𝛼 is the value of fill pixels, 𝑟 is the dilation rate, 𝑙 is the 

step length, 𝑘 is the size of convolution kernel. 𝑆𝑜𝑢𝑡 is the size 

of the output feature map, and 𝑆𝑖𝑛 is the size of the input feature 

map. 

Furthermore, feature channels in Conv4-3 and Conv7 need to 

be compressed respectively so as to reduce the number of 

parameters and further improve the real-time detection 

performance. Given an input feature map, which size is 𝐻 ×  𝑊 ×  𝐷 , the detailed compression operation can be 

described as follows. 

                       𝐶𝑑 = 1𝐻∗𝑊 ∑ ∑ 𝐸𝑑ℎ𝑤𝑊𝑤=1𝐻ℎ=1                          (2) 

where 𝐶𝑑 indicates the output of the compression operation in 

the d-th channel, 𝐸𝑑ℎ𝑤 is the pixel in the h-th row and w-th 

column of the d-th channel.  

After the compression, the activation function used in each 

channel can be improved and described as follows. 

                       𝛷 = 𝜎(𝑀1(ℒ(𝑀2(𝑧))))                              (3) 

where 𝑧 is the output after the compression, 𝑀1(∗), 𝑀2(∗) are 

the functions of fully connected layers, ℒ indicates the Linear 

function, and 𝜎 indicates the Sigmoid function.  

Based on these, the operation of weight re-assignment for 

each channel can be described as follows. 
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                   𝑊(𝑤𝑐𝑜𝑛𝑣, 𝐹𝑐𝑜𝑛𝑣) =  𝑤𝑐𝑜𝑛𝑣 ∙ 𝐹𝑐𝑜𝑛𝑣                   (4) 

where 𝑤𝑐𝑜𝑛𝑣 is the original weight. 𝐹𝑐𝑜𝑛𝑣 indicates the feature 

map after the compression. 𝑊(∗) indicates the operation of 

channel-wise multiplication. 

TABLE 2. RESULTS OF FEATURE MAP FUSION  

 Sizes of Feature Map Number of Channels 

Conv3-3 Downsampling: 40× 40 →20× 20 256 

Conv4-3 keep as: 20× 20 512 → 256 

Conv7 Upsampling: 10× 10 →20× 20 1024 → 256 

 

Table 2 shows the results of feature map fusion of Conv3-3, 

Conv4-3 and Conv7 in terms of their sizes and numbers of 

channels. It is noted that the upsampling in Conv7 is conducted 

based on the standard deconvolution in YOLOv4. Following 

this way, the extracted feature maps of Conv3-3, Conv4-3, and 

Conv7 can be seamlessly stitched together as one new feature 

map, which will be further utilized to enhance the dynamic 

small target prediction based on long-distance human posture 

recognition. 

B. Long-Distance Human Posture Recognition 

The Openpose can be viewed as a parallel convolutional 

network model, in which one convolutional network works for 

locating the key points of the human body, while another one is 

responsible for connecting the candidate key points to form a 

limb [28]. In addition, the VGG-19 network is used in the 

original Openpose to extract the features, then feeds them into 

the parallel convolutional networks, which usually suffers 

gradient disappearance and performance degradation issues as 

the number of convolutions increases. Accordingly, as 

discussed above, a new feature map 𝑓𝑛𝑒𝑤 based on the fusion of 

Conv3-3, Conv4-3, and Conv7 from YOLOv4-M2, is utilized 

as the extracted features to input into Openpose instead of the 

original VGG-19, which may efficiently enhance the nonlinear 

fitting ability of the network, and further improve the accuracy 

in long-distance recognition. 

As shown in Fig. 3, the whole learning scheme in Openpose 

can be viewed as a “two-branch and multi-stage CNN”. At 
Stage 1, Branch 1 produces a set of confidence maps 𝑆1 based 
on the input 𝑓𝑛𝑒𝑤, which is used to describe the detected human 
joints, while Branch 2 produces a set of so-called part affinity 
fields 𝐿1, which is used to assemble the connected joints to 
predict the human skeleton. In the following each Stage t, the 
input will consist of three parts as: the original 𝑓𝑛𝑒𝑤, and 𝑆𝑡−1, 𝐿𝑡−1  from the previous stage. Predictions from the two 
branches: 𝑆𝑡  and 𝐿𝑡 , along with 𝑓𝑛𝑒𝑤 , will be associated 
together for the next stage and finally refine the human posture 
recognition. During this process, 𝑓𝑛𝑒𝑤 , integrating the 
advantages from the shallow and deep layers, can be further 
refined to emphasize the skeleton features from the complex 
large-scale scenes, so as to benefit the long-distance posture 
recognition in digital twinning. 

C. Multi-Type Object Detection Algorithm 

The detailed algorithm for multi-type object detection is 

illustrated in Algorithm 1. 

 
 

Algorithm 1. Multi-Type Object Detection 

Input: Frame set 𝑃 = {𝑝𝑖 |𝑖 = 1, 2, … , 𝑛}  
Output: Prediction result set 𝑄 = {𝑞𝑖} 

1: Initialize convolution kernel  𝑘 = 3, 𝑄 = ∅; 
2: for each frame 𝑝𝑖 ∈ 𝑃 do:  
3:     Initialize predict result 𝑞𝑖 = ∅ for 𝑝𝑖; 
4:     Resize 𝑝𝑖 to the regular pixel 320×320; 
5:     Extract the feature 𝑓𝑖 using  𝐿𝑦𝑟𝑒𝑥𝑝, 𝐿𝑦𝑟𝑑𝑒𝑝, and 𝐿𝑦𝑟𝑝𝑟𝑜 with 𝑘; 
6:     for 𝑗 = 1 to 3 do: 
7:          Send 𝑓𝑖 to YOLOv4 to generate Predict 𝑃𝑟𝑒𝑖𝑗; 
8:          𝑞𝑖 = 𝑞𝑖 ∪ 𝑃𝑟𝑒𝑖𝑗; 
9:     end for 

10:   Transform Conv3-3 to size 20×20 by Eq. (1); 
11:   Compress channels in Conv4-3 to size 256 by Eq. (2); 
12:   Transform Conv7 to size 20×20 by Eq. (1) and  

compress its channels to size 256 by Eq. (2); 
13:   Re-activate each channel by Eq. (3);  
14:   Re-assign weights for each channel by Eq. (4);  
15:   Generate the new feature 𝑓𝑛𝑒𝑤𝑖 as input for Openpose; 
16:   Use Openpose to generate Predict 𝑃𝑟𝑒𝑖4; 
17:   𝑞𝑖 = 𝑞𝑖 ∪ 𝑃𝑟𝑒𝑖4; 
18:   𝑄 = 𝑄 ∪ 𝑞𝑖; 
19: end for 

20: return 𝑄; 
 

According to Fig. 3, to realize the multi-type small object 

detection in digital twinning, we first resize the resolution of 

input data to 320×320 and feed it into MobileNetv2 for feature 

extraction. Given an input frame set 𝑃 = {𝑝𝑖 |𝑖 = 1, 2, … , 𝑛}, 

for each 𝑝𝑖, a 10×10 feature map can be generated after the 

depthwise separable convolutions, which is further employed 

for Predict 𝑃𝑟𝑒𝑖1. We then use the upsampling of the 10×10 

feature map to generate a 20×20 feature map, and integrate it 

with a 20×20 feature map from the previous convolution, which 

is further employed for Predict 𝑃𝑟𝑒𝑖2. Likewise, we use the 

upsampling of the 20×20 feature map to generate a 30×30 

feature map, and integrate it with a 30×30 feature map from the 

previous convolution, which is further employed for Predict 𝑃𝑟𝑒𝑖3. Accordingly, the comprehensive results integrated based 

on Predict 𝑃𝑟𝑒𝑖1, 𝑃𝑟𝑒𝑖2, and 𝑃𝑟𝑒𝑖3 using YOLOv4, are utilized 

for detections of static small objects (e.g., equipment and 

product) from large-scale scenes in digital twinning. 

Meanwhile, as a result of feature fusion from the shallow and 

deep layers in the integrated YOLOv4-M2, a newly generated 

feature map 𝑓𝑛𝑒𝑤𝑖  based on the integration of convolution 

layers: Conv3-3, Conv4-3, and Conv7, is used as input for the 

parallel convolutional network in Openpose. Predict 𝑃𝑟𝑒𝑖4 is 

utilized to improve the long-distance human posture 

recognition, which can enhance the detection of dynamic small 

objects (e.g., operators) from complex manufacturing 

environments in digital twinning. 

V. EXPERIMENT AND ANALYSIS 

In this section, we evaluate the performance of the proposed 

model and method for object detection in digital twinning based 

on three different use cases, comparing with several baseline 

learning algorithms. 
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A. Data Set 

A real surveillance video dataset was utilized to conduct the 

evaluation experiment, in which each kind of object samples 

have nearly 5000 images. We divided the labeled data into 3000 

images for training and 2000 images for testing. The size of 

training images is 320×320×3. All experiments have run on a 

server of Intel Xeon E2288@3.4GHz CPU, 64GB RAM, 

NVidia GeForce GTX 1080 Ti GPU, Linux, Python 3.7, 

TensorFlow r2.0. 

Three well-known machine learning algorithms, namely, 

Faster R-CNN, YOLOv3 and SSD, are employed as the 

baseline methods for performance comparisons. Four widely 

used metrics, including Precision, Recall, F1, and Accuracy, 

are employed and calculated for evaluations, according to 

whether the actual objects have been correctly recognized or 

not. 

B. Learning Performance Comparison 

Fig. 4 shows the training efficiency of our proposed 

SOD-DT comparing with the three baseline methods. X-axis 

indicates the number of iterations, and Y-axis indicates values 

of error rate. 

We iterated 400 times to demonstrate the training process. 

Basically, the error rates of all the four methods decline sharply 

in the first 50 iterations, and become relatively stable after 150 

iterations. Benefitting from the integrated neural network for 

feature learning and fusion, the proposed SOD-DT obviously 

outperforms the other three methods, and its error rate 

fluctuates smoothly after 100 iterations. 
 

 
Fig.4. Training Process Comparisons of Different Methods 

 

We then demonstrate the performances of four methods in 

three different cases, considering the distance between the 

camera and target in real manufacturing environments, i.e., 

Distance: 8-10m, Distance: 15-20m, and Distance: 8-10m in a 

blurry environment. The results based on Precision-Recall 

curves are shown in Fig. 5. 

 

   
(a) Distance: 8-10m  (b) Distance: 15-20m  (c) Distance: 8-10m in a blurry environment 

Fig.5. Comparison Performance Based on Precision-Recall Curves 

 

Fig. 5(a)-(c) shows the performances of four methods in 

distance between 8-10m, 15-20m, and 8-10m in a blurry 

environment, respectively. It is noted that the camera distance 

in Fig. 5(c) is as the same as Fig. 5(a), but the light intensity is 

reduced by 30% to blur the overall environment in the 

experiment. In general, our SOD-DT performs better than the 

other three methods in all three cases. Performances of all the 

four methods basically achieve the same level when the 

detection distance is relatively close to the object as shown in 

Fig. 5(a). According to Fig. 5(b) and Fig. 5(c), although the 

performances of all the four methods degrade in both cases of 

15-20m and 8-10m blurry environment, due to the longer 

camera distance, lower resolution image, and even worse 

manufacturing environment, our SOD-DT degrades slightly 

and obviously outperforms the other three methods. This result 

indicates that our method for small object detection is more 

suitable to tackle the complex scene in DT system, because 

these scenes may usually result in a certain loss of information 

of target’s features, and drop down the detection performances 

of conventional learning models.  

C. Object Detection Efficiency for DT 

We go further to evaluate the practical applicability of the 

proposed method in some real manufacturing scenes. Table 3 

shows the comparison results in terms of mAP (Mean Average 

Precision), Accuracy, F1, FPS (Frames Per Second) and ADT 

(Average Detection Time). Both the cases of detection distance 

in 8-10m and 15-20m are applied in the comparison evaluation. 

According to the results in 8-10m, the proposed SOD-DT 

takes an average detection time of 13.9ms with mAP at 78.2% 

and Accuracy at 91.8%, while Faster R-CNN, YOLOv3, and 

SSD take 33.6ms, 24.6ms and 36.4ms, respectively, but result 

in relatively lower mAP and Accuracy. Additionally, when the 

distance increases to 15-20m, although the average detection 
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time of the SOD-DT increases to 29.5ms, and mAP and 

Accuracy decreases to 67.1% and 84.2%, respectively, the 

performance is even better than the other three methods in both 

detection efficiency and accuracy. 

TABLE 3. OBJECT DETECTION PERFORMANCE COMPARISONS BASED ON DIFFERENT METRICS.  

Distance Between 
Target and Camera 

Methods 
Mean Average Precision 

(mAP) (%) 
Accuracy 

(%) F1 (%) Frames Per Second 
(FPS) 

Average Detection 
Time (ADT) (ms) 

8-10m Faster R-CNN 64.3 74.4 68.3 32 33.6 

YOLOv3 71.1 83.4 73.5 44 24.6 

SSD 67.7 78.2 71.2 31 36.4 

SOD-DT 78.2 91.8 78.9 69 13.9 

15-20m Faster R-CNN 53.7 67.4 62.1 18 58.2 

YOLOv3 53.8 72.1 64.7 24 53.8 

SSD 52.2 71.9 64.8 21 54.1 

SOD-DT 67.1 84.2 72.3 47 29.5 

 

Furthermore, we investigate the performance on real-time 

status detection of the four methods based on FPS. As shown in 

Table 3, when the detected target is around 8-10m away from 

the camera, the proposed SOD-DT improves FPS by 115.6% 

compared with Faster R-CNN, 56.8% compared with YOLOv3, 

and 122.6% compared with SSD. When the distance increases 

to 15-20m, the results of FPS for all the methods decrease due 

to the fact that targets become smaller in a relatively more 

complex environment. It is observed that FPS of Faster R-CNN 

decreases by 43.8%, YOLOV3 decreases by 45.5%, SSD 

decreases by 32.3%, and only our SOD-DT decrease by 31.9%. 

These results indicate that our proposed method can efficiently 

handle a real-time detection scenario for DT. 

 

    
Object Detection Results in 8-10m Distance 

    
Object Detection Results in 15-20m Distance 

    
Object Detection Results in Blurry Environment 

(a) Faster R-CNN (b) YOLOv3 (c) SSD (d) SOD-DT 

Fig.6. Comparisons on Object Detection for DT Among Different Cases 

 

Finally, Fig. 6 demonstrates the small object detection 

evaluation based on the three use cases in a real DT 

manufacturing environment, in which the objects are mainly 

composed of equipment devices, products, and human 

operators. Scores demonstrated in Fig.6 indicate that fusion of 

multi-level features based on our hybrid deep neural network 

can effectively improve the capability of small object detection 

in complex DT applications. 

VI. CONCLUSION 

In this paper, to facilitate the modeling and cooperation 

between a physical manufacturing system and its virtual 

representation, we investigated the small object detection 

problem in the complex and large-scale scene of smart 

manufacturing for DT. 

A framework of SOD-DT was presented to identify, analyze, 

and estimate the dynamic changes and real-time status of three 

important elements: equipment, product, and operator in 

physical manufacturing space, which could be employed to 

describe the basic environmental parameters in building a 

generic DT system of smart manufacturing workshop. A hybrid 

deep learning model was constructed based on a seamless 

integration of three neural networks, including MobileNetv2, 

YOLOv4, and Openpose. Specifically, the depthwise separable 

convolutions of MobileNetv2 were integrated into YOLOv4 to 

improve the feature extraction instead of the original 

CSPDarknet53, which was further utilized to enhance the static 

small object detections (e.g., equipment and product). The 
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feature map generated from the integrated YOLOv4-M2, 

instead of the original VGG-19 of Openpose, was then used as 

input for the parallel convolutional network in Openpose, to 

enhance the long-distance human posture recognition. Finally, 

an efficient learning algorithm was developed to realize the 

multi-type small object detection based on the integration and 

fusion of different feature samplings from shallow and deep 

layers, which could benefit the modeling, monitoring, and 

optimizing of the whole manufacturing process in DT system. 

Experiments and evaluations conducted in three different use 

cases demonstrated that our proposed SOD-DT were more 

suitable to cope with the complex situation in large-scale scenes 

for DT system, comparing with three baseline learning 

algorithms. 

In the future, we will further investigate more deep learning 

schemes to enhance the detection accuracy of multiple objects. 

More evaluations in different manufacturing scenes will be 

conducted to improve the model and algorithm with better 

efficiency. 
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