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than or equal 90%. Thus the question arises: How an long lists of assoiationrules be redued in size?Approahes addressing the desribed issue provide users with mehanismsfor �ltering rules, for instane by user de�ned templates [4, 21℄, Boolean [26, 35℄or SQL-like [25℄ operators or by introduing further measures of \usefulness"[8℄; or they attempt to minimize the number of extrated rules a priori by usinginformation about taxonomies [17, 19, 34℄ or by applying statistial measures likePearson' s orrelation or the �2-test [10℄. All these approahes have in ommonthat they lose some information.Our approah, on the other hand, allows us to signi�antly redue the num-ber of rules without losing any information. We extrat only a subset of allassoiation rules, alled basis, from whih all other rules an be derived. Thisapproah is orthogonal to the ones mentioned above and an be ombined withthem.We make use of tehniques of Formal Conept Analysis (FCA). Formal Con-ept Analysis [41, 15℄ arose as a mathematial theory for the formalization ofthe onept of `onept' in the early 80ies and is nowadays onsidered as anAI theory. It has sine then grown to a tehnique for data analysis, informationretrieval, and knowledge representation with over 200 appliations, for analyzingight movements at Frankfurt Airport [20℄, for studying semantis of Germanspeeh-at verbs [16℄, for examining the medial nomenlature system SNOMED[33℄, for IT-seurity management [9℄, and for database marketing [18℄. FCA pro-vides a framework for KDD, espeially for oneptual lustering and assoiationrules. A broad disussion of the role of Formal Conept Analysis in data analysis,deision support, and KDD is provided in [18℄ and [36℄.We use results of Duquenne and Guigues ([12℄, f. also [15℄) and Luxenburger[22, 23℄. The former have studied bases (i. e., minimal non-redundant sets ofrules from whih all other rules an be derived) for assoiation rules with 100%on�dene, and the latter assoiation rules with less than 100% on�dene, butneither of them onsidered the support of the rules. We adopt their results toassoiation rules (where both the support and the on�dene are onsidered) andprovide algorithms for omputing the new bases by using ieberg onept latties[39℄. We follow an approah in two steps. In the �rst step, we ompute the iebergonept lattie for the given parameters. It onsists of all FCA onepts whoseextents exeed the user-de�ned minimum support. In the seond step, we derivethe bases for the assoiation rules. In this paper, we fous on the seond step.For the �rst step, we refer to the Pasal [6℄ and Titani [38℄ algorithms.This two-step approah has two advantages ompared to the lassial two-step approah [2℄ (whih omputes all frequent itemsets as intermediate result,and not only those whih are intents of frequent FCA onepts):1. It allows to determine bases for non-redundant assoiation rules and thus toprune redundany.2. It speeds up the omputation, espeially for strongly orrelated data or whenthe minimum support is low.



In [5℄, we have presented another pair of bases, whih provide rules withminimal anteedents and maximal onsequents. Compared to the results pre-sented here, they have the disadvantage of a higher total number of rules. Forthe approximate rules, M. Zaki has presented similar results in [44℄. However,he does not provide inferene rules for support and on�dene derivation, doesnot disuss minimality of his results, and does not provide algorithms for theomputation of the bases.The remainder of this paper is as follows. After having realled some baside�nitions in Setion 2, we introdue two bases for assoiation rules in Setion 3:the Duquenne-Guigues basis for exat assoiation rules (i. e., for all rules with a100% on�dene), and the Luxenburger basis for approximate assoiation rules(i. e., with a on�dene < 100%). In Setion 4, algorithms are given whih om-pute the two bases. We onlude the paper with the presentation of experimentalresults (Setion 5) and a disussion of future work (Setion 6).2 Formal Conept Analysis and the Assoiation RuleFrameworkIn this setion, we briey reall the basi notions of Formal Conept Analysis[41, 15℄ and the assoiation rule problem [1℄. For a more extensive introdutioninto Formal Conept Analysis refer to [15℄.De�nition 1. A formal ontext is a triple K := (G;M;R) where G and M aresets and R � G�M is a binary relation. A data mining ontext (or dataset) isa formal ontext where G and M are �nite sets. Its elements are alled objetsand items, respetively. (o; i) 2 R is read as \objet o is related to item i".For O � G, we de�ne f(O) := fi 2M j 8o 2 O: (o; i) 2 Rg; and for I �M ,we de�ne dually g(I) := fo 2 G j 8i 2 I : (o; i) 2 Rg. A formal onept is a pair(O; I) 2 P(G) � P(M) with f(O) = I and g(I) = O. O is alled extent andI is alled intent of the onept. The set of all onepts of a formal ontext Ktogether with the partial order (O1; I1) � (O2; I2) :() O1 � O2 (() I2 � I1)is a omplete lattie, alled onept lattie of K .In this setting, we all eah subset of M also itemset, and eah intent Ialso losed itemset (sine it satis�es the equation I = f(g(I))). For two loseditemsets I1 and I2, we note I1 � I2 if I1 � I2 and if there does not exist a loseditemset I3 with I1 � I3 � I2.2In the following, we will use the omposed funtion h := f Æ g:P(M) ! P(M)whih is a losure operator on M (i. e., it is extensive, monotonous, and idem-potent). The related losure system (i. e., the set of all I �M with h(I) = I) isexatly the set of the intents of all onepts of the ontext.De�nition 2. Let I � M , and let minsupp, minonf 2 [0; 1℄. The supportount of the itemset I in K is supp(I) := jg(I)jjGj . I is said to be frequent ifsupp(I) �minsupp. The set of all frequent itemsets of a ontext is denoted FI.2 We write X � Y if and only if X � Y and X 6= Y .
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Exat rule Supp Approximate rule Supp Conf Approximate rule Supp Conf Approximate rule Supp ConfABC ! E 0.4 BCE ! A 0.4 2/3 C ! ABE 0.4 2/4 C ! BE 0.4 3/4ABE ! C 0.4 AC ! BE 0.4 2/3 E ! ABC 0.4 2/4 E ! BC 0.6 3/4ACE ! B 0.4 BE ! AC 0.4 2/4 A ! BC 0.4 2/3 A ! B 0.4 2/3AB ! CE 0.4 CE ! AB 0.4 2/3 B ! AC 0.4 2/4 B ! A 0.4 2/4AE ! BC 0.4 AC ! B 0.4 2/3 C ! AB 0.4 2/4 C ! A 0.6 3/4AB ! C 0.4 BC ! A 0.4 2/3 A ! BE 0.4 2/3 A ! E 0.4 2/3AB ! E 0.4 BE ! A 0.4 2/4 B ! AE 0.4 2/4 E ! A 0.4 2/4AE ! B 0.4 AC ! E 0.4 2/3 E ! AB 0.4 2/4 C ! B 0.6 3/4AE ! C 0.4 CE ! A 0.4 2/3 A ! CE 0.4 2/3 C ! E 0.6 3/4BC ! E 0.6 BE ! C 0.6 3/4 C ! AE 0.4 2/4 E ! C 0.6 3/4CE ! B 0.6 A ! BCE 0.4 2/3 E ! AC 0.4 2/4 ; ! E 0.8 4/5A ! C 0.6 B ! ACE 0.4 2/4 B ! CE 0.6 3/4 ; ! BE 0.8 4/5B ! E 0.8 ; ! C 0.8 4/5 ; ! AC 0.6 3/5 ; ! BC 0.6 3/5E ! B 0.8 ; ! A 0.6 3/5 ; ! B 0.8 4/5 ; ! CE 0.6 3/5; ! BCE 0.6 3/5Fig. 1. The example data mining ontext K and its onept lattie. The table showsall assoiation rules that hold in K for minsupp = 0.4 and minonf = 1/2.An assoiation rule is a pair of itemsets I1 and I2, denoted I1 ! I2, whereI2 6= ;. I1 and I2 are alled anteedent and onsequent of the rule, respetively.The support and on�dene of an assoiation rule r := I1 ! I2 are de�nedas follows: supp(r) := jg(I1[I2)jjGj , onf(r) := supp(I1[I2)supp(I1) . If onf(r)=1, then r isalled exat assoiation rule (or impliation), otherwise r is alled approximateassoiation rule.An assoiation rule r holds in the ontext if supp(r) � minsupp and onf(r) �minonf. The set of all assoiation rules holding in K for given minsupp andminonf is denoted AR.Remark 1. The de�nition of assoiation rules often inludes the additional on-dition I1\ I2 = ;. This ondition helps pruning rules whih are obviously redun-dant, as I1 ! I2 and I1 ! I2nI1 have same support and same on�dene. In thispaper, we omit the ondition, in order to simplify de�nitions. When disussingthe algorithms, however, we will use the ondition sine it saves memory.The assoiation rule framework has �rst been formulated in terms of FormalConept Analysis independently in [28℄, [37℄, and [42℄. [28℄ provided also the �rstalgorithm (named Close) based on this approah.Example 1. An example data mining ontext K onsisting of �ve objets (iden-ti�ed by their OID) and �ve items is given in Figure 1 together with its oneptlattie. The assoiation rules holding for minsupp = 0.4 and minonf = 1/2 areshown in the lower table.In the line diagram, the name of an objet g is always attahed to the noderepresenting the smallest onept with g in its extent; dually, the name of anattribute m is always attahed to the node representing the largest onept with



m in its intent. This allows us to read the ontext relation from the diagrambeause an objet g has an attribute m if and only if there is an asendingpath from the node labeled by g to the node labeled by m. The extent of aonept onsists of all objets whose labels are below in the diagram, and theintent onsists of all attributes attahed to onepts above in the hierarhy. Forexample, the onept labeled by `A' has f1; 3; 5g as extent, and fA;Cg as intent.An example for an exat rule (impliation) whih holds in the ontext isfA;Bg ! fC;Eg. It an also be read diretly in the line diagram: the largestonept having both A and B in its intent is the one labeled by 3 and 5, andit is below or equal to (here the latter is the ase) the largest onept havingboth C and E in its intent. This impliation an be derived from two simplerimpliations, namely fAg ! fCg and fBg ! fEg. The aim of the frequentDuquenne-Guigues-basis whih we introdue in the next setion is to provideonly a minimal, non-redundant set of impliations to the user. That basis willinlude the two simpler impliations.At the end of this setion, we give some simple fats about assoiation rules.We will refer to them later as derivation rules.Lemma 1. Rules 1 and 2 hold for � 2 fonf; suppg.1. �(X ! Y ) = �(X ! Y n Z), for all Z � X �M , Y �M .2. �(h(X)! h(Y )) = �(X ! Y ), for all X;Y �M .3. onf(X ! Y ) = p ^ onf(Y ! Z) = q =) onf(X ! Z) = p � q,for all frequent onept intents X � Y � Z.3'. supp(X ! Z) = supp(Y ! Z), for all X;Y � Z.4. onf(X ! X) = 1, for all X �M .Proof. The proofs for the on�dene are given in [23℄.1. supp(X ! Y ) = supp(X ! Y n Z) follows from X [ Y = X [ (Y n Z) andthe de�nition of the support ount.2. supp(h(X) ! h(Y )) = supp(X ! Y ) follows from g(h(X) [ h(Y )) =g(h(X))\g(h(Y )) = g(f(g(X)))\g(f(g(Y ))) = g(X)\g(Y ) = g(X [Y ) byusing the fats g(f(g(X))) = g(X) and g(X [ Y ) = g(X) \ g(Y ) providedin [15℄.3'. supp(X ! Z) = jg(X[Z)jjGj = jg(Z)jjGj = jg(Y [Z)jjGj = supp(Y ! Z) 23 Bases for Assoiation RulesIn this setion, we reall the de�nition of ieberg onept latties and show thatone an derive all frequent itemsets and assoiation rules from them. Then weharaterize the Duquenne-Guigues basis for exat assoiation rules and theLuxenburger basis for approximate assoiation rules and show that all otherassoiation rules an be derived from these two bases.
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0.8Fig. 2. Frequent losed itemsets extrated from K for minsupp = 0.4.De�nition 3. A onept (O; I) is alled frequent onept if supp(I) (= jOjjGj ) �minsupp. The set of all frequent onepts is alled ieberg onept lattie. Anitemset I is alled frequent intent (or frequent losed itemset) if it is intent ofa frequent onept (i. e., its support is at least minsupp). The set of all frequentlosed itemsets in K is denoted FC.Example 2. The frequent losed itemsets in the ontext K for minsupp=0.4 arepresented in Figure 2 together with the semi-lattie of all frequent onepts. Boththe table and the diagram provide the same information. Note that, in general,the set of frequent onepts is not a lattie, but only a semi-lattie (onsider e. g.minsupp= 0:5 in the example).Lemma 2 ([31℄). i) The support of an itemset I is equal to the support of thesmallest losed itemset ontaining I, i. e., supp(I) = supp(h(I)).ii) The set of maximal frequent itemsets fI 2 FI j �I 02FI : I � I 0g is iden-tial to the set of maximal frequent losed itemsets fI 2 FC j �I 02FC: I � I 0g.The next theorem shows that the set of frequent losed itemsets with theirsupport is a small olletion of frequent itemsets from whih all frequent itemsetswith their support and all assoiation rules an be derived. I. e., it is a ondensedrepresentation in the sense of Mannila and Toivonen [24℄. This theorem followsfrom Lemma 2.Theorem 1. All frequent itemsets and their support, as well as all assoiationrules holding in the dataset, their support, and their on�dene an be derivedfrom the set FC of frequent losed itemsets with their support.3.1 Duquenne-Guigues Basis for Exat Assoiation RulesNext we present the Duquenne-Guigues basis for exat assoiation rules. It isbased on the following losure operator.Theorem 2. The set FI[fMg is a losure system on M , and its related losureoperator � is given by I := h(I) if supp(I) �minsupp and I := M else.Proof. The set of all frequent itemsets together with M is a losure system, aswell as the set of all onept intents. Hene FI [fMg is, as intersetion of thosetwo losure systems, also a losure system. The proof of the fat that � is theorresponding losure operator is straightforward. 2



Our basis adopts the results of [12℄ to the assoiation rule framework, whereadditionally the support of the rules has to be onsidered.De�nition 4. An itemset I �M in K is a � {pseudo-losed itemset (or pseudo-losed itemset for short) 3 if I 6= I and for all pseudo-losed itemsets J withJ � I, we have J � I. The set of all frequent pseudo-losed itemsets in K isdenoted FP, the set of all infrequent pseudo-losed itemsets is denoted IP. Inthe (unlikely) ase that all itemsets are frequent exept the whole set M , we letIP := fMg (in order to distinguish this situation from the one where all itemsetsare frequent).The Duquenne-Guigues basis for exat assoiation rules (or frequent Du-quenne-Guigues basis) is de�ned as the tuple FDG := (L; IP ) with L := fI1 !h(I1) j I1 2 FPg and IP as de�ned above.Theorem 3. From the Duquenne-Guigues basis for exat assoiation rules onean derive all exat assoiation rules holding in the dataset by applying the fol-lowing rules. Rules ii) to iv) an be applied to L as long as they do not ontra-dit (i).i) If there exists I 2 IP with I � I1 [ I2, then I1 ! I2 does not hold (beauseits support is too low).ii) X ! X holds.iii) If X ! Z holds, then also X [ Y ! Z.iv) If X ! Y and Y [ Z !W hold, then also X [ Z !W .Proof. We only sketh the proof here, whih applies results of [12℄ (see also [15℄).One has to hek that L [ fI!M j I 2 IPg is the Duquenne-Guigues-basis (inthe traditional sense, f. to [12, 15℄) of the losure system FC [ fMg. Rule (i)reets the impliations of the form I !M . 2The Duquenne-Guigues basis for exat assoiation rules is not only minimal withrespet to set inlusion, but also minimal with respet to the number of rules inL plus the number of elements in IP , sine there an be no omplete set withfewer rules than there are frequent pseudo-losed itemsets [12, 15℄. Observe that,although it is possible to derive all exat assoiation rules from the Duquenne-Guigues basis, it is not possible in general to determine their support.4Example 3. The set of frequent pseudo-losed itemsets of K for minsupp=0:4and minonf=1=2 is FP = ffAg; fBg; fEgg, the set of infrequent pseudo-loseditemsets is IP = ffDgg. The Duquenne-Guigues basis is presented in Figure 3.3 We do not onsider pseudo-losed itemsets with respet to other losure operatorsthan � (espeially not with respet to h) in this paper.4 Even if the support for all rules in the basis is known. With the knowledge about allfrequent losed itemsets and their support however, this is possible (see Theorem 1).



3.2 Luxenburger Basis for Approximate Assoiation RulesIn [22, 23℄, M. Luxenburger disusses bases for partial impliations. A partialimpliation is an assoiation rule where the support is not onsidered. He ob-served that it is suÆient to onsider rules between onept intents only, sineonf(X ! Y ) = onf(h(X) ! h(Y )). However, his derivation proess does notonly onsist of dedution rules whih an be applied in a straightforward manner,but it requires to solve a system of linear equations.In the KDD proess, however, we have to onsider the trade-o� between theamount of information presented to the user, and the degree of its expliitness.The appearane of the system of linear equations indiates that Luxenburger'sresults are in favor for a minimal amount of information presented, and againsta higher degree of expliitness. As one of the requirements to KDD is that theresults should be \ultimately understandable" [13℄, we want to emphasize moreon the expliitness of the results. Therefore we restrit now the expressivenessof the derivation proess. This fores the assoiation rules presented to the userto be more expliit.5In the sequel, we onsider the derivation rules given in Lemma 1. We presenta basis for the approximate assoiation rules for these derivation rules.De�nition 5. The Luxenburger basis for approximate assoiation rules is givenby LB := f(r; supp(r); onf(r)) j r = I1 ! I2, I1; I2 2 FC, I1 � I2, onf(r) �minonf , supp(I2) � minsuppg .Theorem 4. From the Luxenburger basis LB for approximate assoiation rulesone an derive all assoiation rules holding in the dataset together with theirsupport and their on�dene by using the rules given in Lemma 1. Furthermore,LB is minimal (with respet to set inlusion) with this property.Proof. In order to determine if an assoiation rule r := I ! J holds in a on-text (and for determining its support and its on�dene) one an onsider therule I 0 ! J 0 with I 0 := h(I) and J 0 := h(I [ J) whih has (by Rules 1 &2) the same support and the same on�dene. If I 0 = J 0, then onf (r) = 1and supp(r) =supp(I 0). If I 0 6= J 0, then exists a path of approximate rules,i. e., there are frequent losed itemsets I1; : : : ; In with Ii ! Ii+1 2 LB andI 0 = I1 and In = J 0. Support and on�dene of r an now be determined bysupp(r) = supp(In) (Rule 3') and onf (r) = �n�1i=1 onf (Ii ! Ii+1) (Rule 3).Now we show the minimality of LB. Let r := I ! J 2 LB. We show thatthe on�dene of r annot be derived from LB n frg by applying the rules ofLemma 2. Rule 1 annot be applied forward sine J already ontains I . It annotbe applied bakward beause of I � J . Rule 2 annot be applied forward sineI = h(I) and J = h(J). It annot be applied bakward as LB ontains only ruleswith losed anteedent and losed onsequent. Rule 3 annot be applied sinethere is no K �M with I ! K 2 LB n frg and K ! J 2 LB n frg (beause ofI � J). Rule 4 annot be applied sine I 6= J . 25 Note that in the KDD setting the user will never atually perform longer series ofinferene steps.
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Fig. 3. Duquenne-Guigues and Luxenburger bases for minsupp=0.4 and minonf=1/2.Remark 2. A basis in the sense of [23℄ is a maximal spanning tree of our basis(when onsidered as undireted graph) ontaining at most one rule with M asonlusion.6Example 4. The Luxenburger basis for approximate assoiation rules of K forminsupp=0.4 and minonf=1/2 is also presented in Figure 3. It provides thesame information as the list in Figure 1, but in a more ondensed form. TheLuxenburger basis is visualized in the line diagram in Figure 3: From its de�ni-tion it is lear, that eah approximate rule in the basis orresponds to (at most)7one edge in the diagram. The edge is labeled by the on�dene of the rule (as afration), and its lower vertie is labeled by its support (as a rational). Implia-tions (exat rules) an be read in the diagram in the standard way desribed inSetion 2.As example for the proof of Theorem 4, let us hek if fBg ! fAg holdsin the ontext for minsupp=0.4 and minonf=1/2. We have I := fBg andJ := fAg. The smallest frequent losed itemset ontaining B is I 0 := fB;Egand the smallest one ontaining A and B is J 0 := fA;B;C;Eg. In the diagram,I 0 and J 0 are always represented by the largest onepts whih are below allattributes in I and I[J , resp. Between the two onepts we �nd the path I1 := I 0,I2 := fB;C;Eg, and I3 := J 0. Hene supp(B ! A) =supp(J 0) = 0:4 �minsuppand onf (B ! A) = onf (I1 ! I2)�onf (I2 ! I3) = 3=4 � 2=3 = 2=4 �minonf,whih means that the rule holds.4 Algorithms for Computing the BasesThe algorithms presented in this paper assume that the ieberg onept lattie isalready omputed. There are several algorithms for omputing ieberg onept6 The seond ondition is negligible in KDD, as it follows diretly from minsupp> 0%.7 In general, there may be edges whih do not represent any rule in the Luxenburgerbasis. Consider for instane minonf=7/10. In this ase, the two lowest edges wouldnot stand for a valid approximate rule, and would hene not be labelled.



Algorithm 1 Generating the Duquenne-Guigues basis with Gen-FDG.1) L  fg;2) if (FC0 = fg) then FP0  ;;3) else FP0  fg;4) for (i 1; i � k; i++) do begin5) FPi  FIi n FCi;6) forall L 2 FPi do begin7) pseudo true;8) forall P 2 FPj with j < i do begin9) if (P � L) and (P .losure 6� L)10) then do begin11) pseudo false;12) FPi  FPi n fLg;13) endif14) end15) if (pseudo = true) then L.losure  min�(fC 2 FCj>i j L � Cg);16) end17) end18) forall P 2 Sni=1 FPi do L  L [ fP ! (P .losurenP )g;19) IP  ;;20) forall L 2MI do IP  IP [ fL�-losure(I)g;21) IP  min� IP ;latties: the algorithm Close for strongly orrelated data [31℄, the algorithm A-Close for weakly orrelated data [30℄, the algorithms CLOSET [32℄, ChARM [43℄,and Titani [38, 39℄. The algorithm Pasal [6℄ omputes all (losed and non-losed) frequent itemsets, but an be upgraded to determine also their losureswith almost no additional omputation time by using the fat that, for I �M ,h(I) = I [ fm 2M n I j supp(I) = supp(I [ fmg)g :When the ieberg onept lattie is omputed, then the Duquenne{Guigues basisand �nally the Luxenburger basis are omputed.4.1 Generating the Duquenne-Guigues basis for Exat AssoiationRules with Gen-FDGIn this setion, we present an algorithm that determines the Duquenne{Guiguesbasis using the ieberg onept lattie. This algorithm (whih has not beenpresented before) implements De�nition 4. As it needs to know the losure offrequent itemsets, it is best applied after an algorithm like Pasal with themodi�ation mentioned above, ChARM, or CLOSET.The pseudo-ode is given in Algorithm 1. The algorithm takes as input thesets FIi, 1� i� k, ontaining the frequent itemsets and their support, and thesets FCi; 0� i� k, ontaining the frequent losed itemsets and their support.It �rst omputes the frequent pseudo-losed itemsets iteratively (steps 2 to 17).In steps 2 and 3, the empty set is examined. (It must be either a losed or a



Algorithm 2 Funtion L�-losure reads X and returns its L�-losure L�(X).1) Y  X;2) for (i 1; i = n; i ++) do i.used false;3) repeat4) hanged  false;5) If Subsets(IP; Y ) 6= ; then begin Y  M ; hanged true end6) else for (i 1; i � n; i ++) do7) if Xi � Y then begin Y  Y [ Yi; hanged true end8) until not hanged;9) return Ypseudo-losed itemset by de�nition.) The loop from step 4 to 17 is a diret imple-mentation of De�nition 4 for the frequent pseudo-losed itemsets. The frequentpseudo-losed i-itemsets, their losure and their support are stored in FPi. Theyare used to generate the set L of impliations of the Duquenne-Guigues basis forexat assoiation rules DG (step 18).The set of infrequent pseudo-losed itemsets is determined in steps 19 to 21using the funtion L�-losure (Algorithm 2). This funtion uses the fat that, fora given losure system, the set of all losed or pseudo-losed sets forms again alosure system [14℄. Hene one an generate all losed sets and pseudo-losed setsiteratively by using the orresponding losure operator L�-losure(Z) := S1i=0 Ziwith Z0 := Z and Zi+1 := Zi [ SfY jX!Y 2 L; X � Zig [14℄. The set L ofimpliations has the form L = fX1 ! Y1; : : : ; Xn ! Yng.4.2 Generating the Luxenburger Basis for Approximate AssoiationRules with Gen-LBThe pseudo-ode generating the Luxenburger basis for approximate assoiationrules is presented in Algorithm 3. The algorithm takes as input the sets FCi,0� i�k, ontaining the frequent losed itemsets and their support. The outputof the algorithm is the Luxenburger basis for approximate assoiation rules LB.The algorithm iteratively onsiders all frequent losed itemsets L 2 FCifor 2 � i � k. It determines whih frequent losed itemsets L0 2 Sj<i FCjare overed by L and generates assoiation rules of the form L0 ! L n L0 thathave suÆient on�dene. During the ith iteration, eah itemset L in FCi isonsidered (steps 3 to 13). For eah set FCj , 1� j < i, a set Sj ontaining allfrequent losed j-itemsets in FCj that are subsets of L is reated (step 4). Then,all these subsets of L are onsidered in dereasing order of their sizes (steps 5to 12). For eah of these subsets L0 2 Sj , the on�dene of the approximateassoiation rule r := L0 ! L n L0 is omputed (step 7). If the on�dene of r issuÆient, r is inserted into LB (step 9) and all subsets L00 of L0 are removedfrom Sl, for l < j (step 10). At the end of the algorithm, the set LB ontainsall rules of the Luxenburger basis for approximate assoiation rules. The proofof the orretness of the algorithm is given in [27℄.



Algorithm 3 Generating the Luxenburger basis with Gen-LB.1) LB  fg;2) for (i 2; i � k; i++) do begin3) forall L 2 FCi do begin4) for (j  0; J < i; j ++) do Sj  Subsets(FCj; L);5) for (j  i� 1; J � 1; j ��) do begin6) forall L0 2 Sj do begin7) onf  L.support /L0.support;8) if (onf � minonf)9) then LB  LB [ f(L0 ! (L n L0); L.support, onf)g;10) for (l j; l � 1; l ��) do Sl  Sl n Subsets(Sl; L0);11) end12) end13) end14) end5 Experimental ResultsWe have preformed several experiments on syntheti and real data. The har-ateristis of the datasets used in the experiments are given in Table 1. Thesedatasets are the T10I4D100K syntheti dataset that mimis market basket data,8the C20D10K and the C73D10K ensus datasets from the PUMS sample �le,9and the Mushrooms dataset desribing mushroom harateristis.10 In all ex-periments, we attempted to hoose signi�ant minimum support and on�denethreshold values. We varied these thresholds and, for eah ouple of values, weanalyzed rules extrated in the bases.Table 1. Datasets.Name Number of objets Average size of objets Number of itemsT10I4D100K 100,000 10 1,000Mushrooms 8,416 23 127C20D10K 10,000 20 386C73D10K 10,000 73 2,177Number of Rules. Table 2 ompares the size of the Duquenne-Guigues basis forexat rules with the number of all exat assoiation rules, and the size of theLuxenburger basis for approximate rules with the number of all approximaterules. In the ase of weakly orrelated data (T10I4D100K), no exat rule isgenerated. The reason is that in suh data all frequent itemsets are frequent8 http://www.almaden.ibm.om/s/quest/syndata.html9 ftp://ftp2..ukans.edu/pub/ippr/ensus/pums/pums90ks.zip10 ftp://ftp.is.ui.edu/~merz/mldb.tar.Z



Table 2. Number of exat and approximate assoiation rules ompared with the num-ber of rules in the Duquenne-Guigues and Luxenburger bases.Dataset Exat D.-G. Approximate Luxenburger(Minsupp) rules basis Minonf rules basis90% 16,269 3,511T10I4D100K 0 0 70% 20,419 4,004(0.5%) 50% 21,686 4,19130% 22,952 4,51990% 12,911 563Mushrooms 7,476 69 70% 37,671 968(30%) 50% 56,703 1,16930% 71,412 1,26090% 36,012 1,379C20D10K 2,277 11 70% 89,601 1,948(50%) 50% 116,791 1,94830% 116,791 1,94895% 1,606,726 4,052C73D10K 52,035 15 90% 2,053,896 4,089(90%) 85% 2,053,936 4,08980% 2,053,936 4,089losed itemsets. However, the Luxenburger basis is relatively small ompared tothe number of all rules, sine only immediate neighbors with respet to the subsetorder (and not arbitrary pairs of sets) are onsidered. In the ase of stronglyorrelated data (Mushrooms, C20D10K and C73D10K), the ratio between thesize of the bases to the number of all rules whih hold is muh smaller than inthe weekly orrelated ase, beause here only few of the frequent itemsets arelosed and have to be onsidered.Relative Performane. Our experiments also show that in all ases the exeutiontime of Gen-FDG and Gen-LB are insigni�antly small ompared to those of theomputation of the ieberg onept lattie, sine both algorithms need not aessthe database. We an onlude that without additional omputation time (om-pared to other approahes, like e. g. Apriori) our approah not only omputesall frequent losed itemsets but also the two bases desribed in Setion 2.6 OutlookIn this paper, we introdued bases whih signi�antly redue the number of asso-iation rules presented to the user without losing any information; and providedalgorithms for omputing them. This work is urrently extended in di�erentdiretions:Integrating redution methods. Templates, as de�ned in [4, 21℄, an diretlybe used for extrating all assoiation rules mathing some user spei�ed patterns
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