
■ Today, approximately 10 percent of the world’s
population is over the age of 60; by 2050 this pro-
portion will have more than doubled. Moreover,
the greatest rate of increase is amongst the “oldest
old,” people aged 85 and over. While many older
adults remain healthy and productive, overall this
segment of the population is subject to physical
and cognitive impairment at higher rates than
younger people. This article surveys new technolo-
gies that incorporate artificial intelligence tech-
niques to support older adults and help them cope
with the changes of aging, in particular with cog-
nitive decline. 

We are in the midst of a profound de-
mographic shift, moving from a
world in which the majority of the

population is relatively young to one in which
a significant proportion of people are over the
age of 65. This change poses both a challenge
and an opportunity for the design of intelligent
technology. While many older adults will re-
main healthy and productive, overall this seg-
ment of the population is subject to physical
and cognitive impairment at higher rates than
younger people. It is important to keep in mind
that there is growth not just in the absolute
number of older adults, but also in the propor-
tion of the population that is over the age of
65; there will thus be fewer young people to
help older adults cope with the challenges of
aging. While human caregiving cannot and

will not be replaced, assistive technologies that
can supplement human caregiving have the
potential to improve the quality of life for both
older adults and their caregivers. In particular,
assistive technologies now being developed
may enable older adults to “age in place,” that
is, remain living in their homes for longer peri-
ods of time. A large body of research has shown
that older Americans prefer to maintain inde-
pendent households as long as possible
(Hareven 2001). Additionally, institutionaliza-
tion has an enormous financial cost, not only
for elders and their caregivers, but also for gov-
ernments. In the United States, the federal gov-
ernment, under the auspices of Medicaid and
Medicare, pays for nearly 60 percent of the na-
tion’s $132 billion annual nursing home bill
(CMS Statistics 2003), and similar expenses are
incurred throughout other nations. Thus tech-
nology that can help seniors live at home
longer provides a “win-win” effect, both im-
proving quality of life and potentially saving
enormous amounts of money. Other technolo-
gy can help those elders who are in assisted liv-
ing or skilled nursing care facilities maintain
more independence there. 

A range of artificial intelligence techniques
has been used in the design of advanced assis-
tive technologies. This article surveys these
technologies, focusing on systems that support
older adults who are grappling with cognitive
decline. 
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composition of a population. Popula-
tion pyramids include a sequence of
horizontal bars in which each bar rep-
resents the number of the people with-
in a particular age cohort; the number
of females within each cohort is
shown to the right or the center line,
while the number of males is shown to
the left. For example, figure 1 shows
the population pyramid for the United
States in 1950. The source of the term
population pyramid is clear from the fig-
ure, which has a pyramidal (or at least
triangular) form, illustrating the fact
that there tend to be relatively few
people in the oldest age cohorts, with
increasing numbers in successively
younger cohorts. 

As we begin the twenty-first centu-
ry, population pyramids have become
distinctly less pyramidal. Figure 2
shows the population pyramid for the
United States in 2000, while figure 3
shows the projected pyramid for 2030.
The change in demographics is imme-
diately clear: older adults make up an
increasingly greater proportion of the
population. In 2000, people aged 65
and older made up 12.3 percent of the
U.S. population, while by 2030, they
will constitute 19.2 percent, after
which growth is projected to level off
so that this cohort represents 20.0 per-
cent of the population in 2050. The
most rapid growth will occur within a
subgroup of this cohort—the so-called
“oldest old,” or people over the age of
80. Today this group makes up 3.2 per-
cent of the U.S. population, while by
2030 that number will increase to 5.0
percent, and by 2050, to 7.2 percent.
Similar trends can be found world-
wide, as illustrated in figure 4, which
presents data for typical, selected
countries. Although the shift is most
dramatic in the more industrialized re-
gions of the world, a significant
growth in the percentage of older
adults is expected in virtually every
country. 

A number of systems have been de-
veloped to help people compensate for
the physical and sensory deficits that
may accompany aging. Many of these
do not rely on computer technology,
for example liftchairs, which help peo-
ple rise from seats, and ergonomic
handles, which make it easier to open
doors. However, an increasing number

An Aging World 
To see just how dramatic the current demographic shift
is, it is useful to look at population pyramids: diagrams
traditionally used by demographers to visualize the
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Figure 1. Population Pyramid for the United States in 1950.

Source: U.S. Census Bureau 

80+
75-79
70-74
65-69
60-64
55-59
50-54
45-49
40-44
35-39
30-34
25-29
20-24
15-19
10-14
5-9
0-4

Male Female

Figure 2. Population Pyramid for the United States in 2000.

Source: U.S. Census Bureau 



of devices rely on AI and other ad-
vanced computer-based technologies.
Examples include text-to-speech sys-
tems for people with low vision; a dig-
ital programmable hearing aid that in-
corporates a rule-based AI system to
make real-time decisions among alter-
native signal-processing techniques
based on current conditions (Flynn
2004); and a jewelrylike device that al-
lows people with limited mobility to
control household appliances using
simple hand gestures (Starner et al.
2000). In addition, significant research
has been done to design obstacle-
avoiding wheelchairs (see, for exam-
ple, Yanco [2001] or Levine et al.
[1999]). 

Older adults can also be supported
with technology that helps alleviate
the social isolation that may stem
from mobility issues or from the need
to care full time for a seriously ill
spouse or partner. For example, inter-
actions between an older person and
her family members and friends can
be facilitated by elder-friendly email1

and devices such as Dude’s Magic Box
(Siio, Rowan, and Mynatt 2002), an in-
novative system that allows children
to interact with grandparents who are
far away by placing their toys or other
objects of interest into a box that pro-
jects a picture onto a touch-sensitive
screen at the grandparents’ home. 

In addition to sensory-motor and
psychosocial issues, a third area of
concern for an aging population is
cognitive decline. One widely cited
study done in 1989 found that 10 per-
cent of people over the age of 65 and
50 percent of those over 85 had
Alzheimer’s disease, probably the best-
known cause of severe cognitive im-
pairment in elders (Hebert et al. 2003).
A 2001 study that was restricted to
community-dwelling older adults—
that is, excluding those living in nurs-
ing homes and assisted-living facili-
ties—showed that 23.4 percent of the
people over 65 exhibited cognitive im-
pairment that was short of dementia
(CIND: cognitive impairment/no de-
mentia), while another 4.8 percent ex-
hibited full-fledged dementia. The
same study found that of those over
85, 38 percent exhibited CIND, while
27 percent exhibited dementia (Un-
verzagt et al. 2001). While the exact

rates of cognitive impairment reported differ
somewhat from study to study, there is no
question that cognitive impairment is a serious
problem for many older adults and that the
prevalence of this problem increases signifi-
cantly with age, the “oldest old” having a
much greater rate of cognitive impairment
than those in their late 60s and 70s. 

This article will focus on the use of AI tech-
niques in technology designed to support older
adults with cognitive impairment. It is not in-
tended to be a complete survey of the relevant
projects but will instead provide a description
of the major goals of this class of technology,
along with examples that illustrate the role of
AI for each class. LoPresti, Mihailidis, and
Kirsch (2004) provide a comprehensive survey,
including discussion of many relatively simple
devices that do not include AI techniques.
Haigh and Yanco (2002) and the proceedings of
a National Research Council workshop (Pew
and Hemel 2004) provide information about
technologies that support sensory-motor and
psychosocial as well as cognitive problems in
elders. Sixsmith (2002) gives a brief introduc-
tion to “telecare” for cognitively impaired older
people, including a description of some of the
ethical issues raised by this technology. Finally,
Czaja (1990) and Fisk et al. (2004) provide ex-
cellent discussions of human-factors concerns
in the design of technology for seniors. 
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continual observation of her performance of
routine activities. 

In all three cases, it is essential that the sys-
tem be able to observe and reason about the el-
der’s performance of daily activities.3 This is
probably most obvious in the case of assurance
systems, which must recognize whether some-
one has fallen, has eaten, has taken her medi-
cine, and so on. But, as we will see later on, the
ability to recognize the performance of routine
activities is also essential for compensation sys-
tems, so that they can provide useful assistance
that is tailored to the current needs of the user.
Similarly, assessment systems work by reason-
ing about how and when the user performs her
daily activities. 

Activity monitoring is currently a very active
research topic. Work has been done to use sen-
sors to recognize the execution status of partic-
ular types of activities, such as handwashing
(Mihailidis, Fernie, and Barbenel 2001), meal
preparation (Barger et al. 2002), and move-

Goals for Assistive 
Technology for Cognition 

Assistive technology can assist older people2

with cognitive impairment in one or more of
the following ways: (1) by providing assurance
that the elder is safe and is performing neces-
sary daily activities, and, if not, alerting a care-
giver; (2) by helping the elder compensate for
her impairment, assisting in the performance
of daily activities; and (3) by assessing the el-
der’s cognitive status. 

Assurance systems aim primarily at ensuring
safety and well-being and at reducing caregiver
burden, by tracking an elder’s behavior and
providing up-to-date status reports to a caregiv-
er. Compensation systems provide guidance to
people as they carry out their daily activities,
reminding them of what they need to do and
how to do it. Assessment systems attempt to in-
fer how well a person is doing—what her cur-
rent cognitive level of functioning is—based on
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ments around town (Liao, Fox, and Kautz
2004). Additionally, several projects have at-
tempted to do more general activity recogni-
tion, using radio frequency identification
(RFID) tags attached to household objects and
gloves (Philipose et al. 2004) or networks of het-
erogeneous sensors (Haigh et al. 2003, Glascock
and Kutzik 2000). Figure 5 illustrates the range
of sensor technologies that are being investigat-
ed for activity monitoring. As shown there, re-
searchers are exploring both environmental
sensors and biosensors. The former class in-
clude motion detectors and RFID readers that
determine a person’s location, contact switches
on cabinets and refrigerator doors that indicate
whether they have been opened, pressure sen-
sors that indicate whether a person is sitting in
a bed or chair, and thermometers that indicate
whether a stove has been turned on. Biosensors
are generally worn by a person to measure vital
signs such as heart rate and body temperature.
This range of sensors can be used to determine
where a person is and what household objects
she has used, as well as to get a general sense of
her activity level. This information can be used
to infer specific daily activities performed, and
in turn, that knowledge, perhaps combined
with biometric information, leads to a general
assessment of health and well-being. 

In general, Bayesian networks are the princi-
pal technology used for performing activity
recognition. A typical approach is that taken in
the PROACT system (Philipose et al. 2004),
which employs a dynamic Bayesian network
(DBN) that represents daily activities such as
making tea, washing, brushing teeth, and so
on. The user of PROACT wears a specially de-
signed glove that includes an RFID reader,
which can then sense household objects like
cups, toothbrushes, and socks that have RFID
tags affixed to them.4

Each activity type that PROACT is intended
to recognize is modeled as a linear series of
steps, and each step is then associated with the
objects involved and the probability of seeing
each such object. For example, making tea is
modeled as a three-stage activity, in which
there is high probability of using the tea kettle
in the first stage (in which water is boiled), a
high probability of using the box of tea bags in
the second stage (in which the tea is steeped),
and medium probability of using milk, sugar,
or lemon in the third step (in which flavoring
is added to the tea). The probabilities are in-
tended to capture three possible sources of er-
ror: sensor noise, objects that are unknown in
the model, and objects that are only optionally
used for each stage. Once the model has been
designed, it is converted into a DBN. PROACT

then treats information about objects used and
time elapsed as observed variables and treats
the current activity as a hidden variable, em-
ploying Bayes filtering techniques to derive a
probability distribution over possible current
activities. In preliminary testing with 14 differ-
ent activity types, 14 subjects, and 108 tagged
objects, PROACT demonstrated an average pre-
cision of 88 percent and average recall of 73
percent. 

Assurance Systems 
Examples of assurance systems include re-
search projects (Haigh et al. 2003, Kart et al.
2002, Chan et al. 1999, Ogawa et al. 2002), a
demonstration system being used in an elder-
care residential setting (Stanford 2002), and a
handful of commercially marketed products.
The typical architecture for an assurance sys-
tem is depicted in figure 6. These systems in-
clude sensors placed in the user’s home, com-
municating via a short-range protocol such as
X10 to a base station, which may in turn com-
municate wirelessly to a controller; the con-
troller then uses broadband or a “plain old
telephone system” (POTS) to send information
to a monitoring station or directly to the care-
giver. Caregivers can get status reports on a reg-
ular basis, typically by checking a web page,
and are also alerted to emergencies by phone,
pager, or email. 

In some cases, the sensor network used by an
assurance system is extremely simple, consist-
ing, say, of just contact switches on external
doorways, so that a caregiver can be immedi-
ately notified if a cognitively impaired elder
leaves her home: wandering is a significant
problem for people with certain types of cogni-
tive impairment. With these systems, very little
inference is actually required; instead, an alarm
is simply generated whenever the contact
switch is triggered. 

In other cases, the network may include a
wide range of sensors, which are continually
monitored both to recognize deviations from
normal trends that may indicate problems (for
example, failure to eat meals regularly, as deter-
mined by lack of motion in the kitchen) and to
detect emergencies that require immediate at-
tention (for example, falls, as indicated by ces-
sation of motion above a certain height). The
sophistication of the inference performed us-
ing the collected sensor data varies from system
to system. In some systems, only a loose con-
nection is established between the sensor sig-
nal and the activity being reported on: ma-
chine learning may be used to infer broad
patterns of sensor firings, which then serve as
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overall trends in the elder’s activity for the past
month. Future plans are to extend the system
so that when the caregiver touches one of the
icons, more detailed information is provided
about the elder’s activities that day: whether
she took her medicine, ate meals, and so on. 

Compensation Systems 
Where assurance systems monitor a person and
provide alarms and status reports, they do not
actually intervene and assist someone in ac-
complishing her daily activities. In contrast, a
second class of systems is designed precisely to
help an older adult compensate for any cogni-
tive impairment he or she has experienced.
These systems can help compensate for impair-
ment in the ability to navigate, to manage a
daily schedule, to complete a multistep task, to
recognize faces, and to locate objects. Examples
of systems providing the first three types of as-
sistance are discussed below. 

Navigational Support 
Several systems have been developed to help
older adults navigate successfully around their

the basis of establishing deviations from the
norm that constitute grounds for issuing a
warning. For example, the system may learn
that a particular user is generally active in the
kitchen between 7:30 and 8:15 AM, and may
then indicate a potential problem if no such ac-
tivity is detected one day. This contrasts with
the kind of fine-grained activity recognition
done by PROACT and related systems.

In addition to the question of how to deter-
mine what information to report, research has
addressed the question of exactly how to pre-
sent the information. One particularly interest-
ing approach is that of the Digital Family Por-
trait project (Mynatt et al. 2001). The
motivation behind this work is to have a con-
tinually up-to-date information display that is
unobtrusive and provides a balance between
the elder’s privacy and the caregiver’s need for
information. In this system, the adult child of
an elder keeps a picture of the elder in a digital
picture frame, which has a pattern of 28 attrac-
tive icons (for example, butterflies or trees). The
size of each icon provides a general sense of the
elder’s activity level on a given day; this way,
the caregiver can immediately get a sense of the
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Figure 5. Sensors for Activity Monitoring. 
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environments. Most of these systems aim to as-
sist people who can no longer safely find their
way around, because of either sensory difficul-
ties such as diminished vision or mobility im-
pairments that make walking difficult. A major
goal of these systems is obstacle avoidance. Less
work has been done on systems that provide
navigational support to people with cognitive
impairment, but one interesting example of
such a system is the intelligent mobility plat-
form (IMP) (Morris et al. 2003). IMP consists of
a standard commercial walker augmented with
a laser range-finder, a handheld computer pro-
viding a touchscreen interface for the user, an
active drive mechanism, and intelligent navi-
gation software. The goal of the IMP project
has been to design a device that can help a po-
tentially confused user find her way around a
setting, such as a large assisted-living facility, in
which she might otherwise become lost. 

During an installation phase, IMP is driven
through the user’s environment via joystick
and uses simultaneous localization and map-
ping (SLAM) technology (Leonard et al. 2002)
to create a map based on the readings obtained
by the laser range-finder. Individual regions of

the map such as the dining room, commons
room, exercise room, and the user’s bedroom
are then hand-labeled. Subsequently, the user
can select a destination from the on-board in-
terface, and IMP will plan a path from the
user’s current location to that destination,
guiding the user along that path by displaying
a large red arrow that points the way; as the
user moves along the path, the arrow shifts to
show where she should turn.

Although IMP was designed primarily to pro-
vide navigational guidance, a study was also
completed to determine whether the informa-
tion that IMP has about a person’s location
throughout the day is sufficient to support ac-
tivity recognition. The approach taken in-
volves constructing a hierarchical semi-Markov
model with three layers: a low-level positional
layer, which represents the person’s metric po-
sition (x, y, ?-coordinates); an intermediate
topological layer, which represents her location
in terms of the mapped regions (for example,
in the dining room); and a top-level activity
layer, which represents the activity in which
she is currently engaged (for example, eating
dinner). Model parameters are learned from la-
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Figure 6. Architecture of an Assurance System. 
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Autominder system (Pollack et al. 2003, Pollack
2002) has aimed at enhancing schedule man-
agement in several ways. Autominder provides
a useful example of the value of AI technolo-
gies in assistive technology, so we describe it in
some detail. 

Autominder. To understand how Automin-
der works, it is instructive to consider an exam-
ple of its interaction with a typical user: a for-
getful, 80-year-old diabetic woman we’ll call
Mrs. Jones, who is supposed to eat a meal or
snack every four hours, and who currently has
an infection that requires her to take antibi-
otics on a full stomach. With an alarm-clock-
like system, one would have to specify the ex-
act time at which Mrs. Jones had to take her
medicine. In contrast, using Autominder, Mrs.
Jones or her caregiver would simply specify
that she has to take her medicine within an
hour of eating breakfast and dinner. Once Au-
tominder recognizes that Mrs. Jones has eaten
breakfast, it will know to remind her to take her
medicine within the next hour, should she for-
get to do so. Similarly, rather than telling Auto-
minder that Mrs. Jones has to eat at, say 7 AM,
11 AM, 3 PM, and 7 AM, it would instead be given
the upper bound of four hours between meals
or snacks. If Autominder then recognizes that
Mrs. Jones has eaten lunch at 11:10, it will
know to remind her to eat again at 3:10—or
maybe a little earlier if her favorite TV show is
on from 3:00 to 3:30. 

To achieve this kind of behavior, Automin-
der must maintain an accurate and up-to-date
model of its user’s daily plan, monitor the exe-
cution of that plan, and decide about issuing
reminders accordingly. As depicted in figure 7,
Autominder’s architecture includes three main
components, one dedicated to each of these
tasks. The Plan Manager stores the user’s plan
of daily activities in the client plan, and is re-
sponsible for updating it and identifying and
resolving any potential conflicts in it. It is the
component of the system responsible for an-
swering the question “What is the user sup-
posed to do?” The second module, the Client
Modeler, uses information about the user’s ob-
served activities to track the execution of the
client plan, storing beliefs about the execution
status in the client model. The Client Modeler
addresses the question “What is the user do-
ing?” Finally, the third main module is a re-
minder-generation component called the Intel-
ligent Reminder Generator (IRG), which
reasons about any disparities between what the
user is supposed to do and what she is doing,
and makes decisions about whether and when
to issue reminders. The Intelligent Reminder
Generator answers the question “What actions

beled data, and Bayesian filtering is then used
to recognize activities from sensed location in-
formation. Preliminary results are very impres-
sive, although more extensive testing, with a
greater range of activities is required (Glover,
Thrun, and Matthews 2004). 

While IMP guides a person in an indoor facil-
ity, another recent system, called Opportunity
Knocks, has been designed to provide outdoor
navigational guidance to less severely impaired
people who may still be traveling around their
communities (Liao, Fox, and Kautz 2004). Op-
portunity Knocks, which is deployed on a cell
phone enhanced with a global positioning sys-
tem (GPS) chip and Bluetooth, learns its user’s
standard routes around town. Like IMP, it
makes use of a hierarchical probabilistic model
(a dynamic Bayesian network) to attempt to in-
fer where its user is currently traveling, and,
having done so, it can then detect whether the
user has made an error, for example, by getting
on the wrong bus. In that case, it alerts the user
to her error, by making a knocking sound—
hence the system’s name—and provides infor-
mation about how to get back to where the
user is supposed to be. The user can also man-
ually enter her destination and have the system
guide her there. 

Schedule Management 
A second type of compensation system helps
users who have suffered from memory decline
that makes them prone to forgetfulness about
routine daily activities. In particular, schedule-
management systems remind people when to
take their medicine, when to eat meals, when
to take care of personal hygiene, when to check
in with their adult children, and so on. Early
schedule-management systems used alarm
clocks, calendars, and buzzers (Harris 1978,
Jones and Adams 1979, Wilson and Moffat
1994), while later systems employed wireless
devices including pagers, cell phones, and
palmtop computers (Hersh and Treadgold
1994, Kim et al. 2000, Wilson et al. 1997). Re-
gardless of the delivery platform, these early
systems—like most commercially available re-
minder systems today—function like glorified
alarm clocks: they issue fixed reminders for ac-
tivities at prespecified times. Unfortunately,
this characteristic greatly limits their effective-
ness, because older adults, like younger ones,
do not live their lives according to unchanging
schedules. To be useful, schedule-management
systems need to be much more flexible. 

The PEAT system (Levinson 1997) was the
first system to use AI planning techniques to
introduce flexibility into a schedule-manage-
ment system. More recently, research on the
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should I (the Autominder system) take to en-
sure that the user successfully performs her dai-
ly activities?” 

Each of Autominder’s components makes
heavy use of AI technology. At the core of the
Plan Manager is a temporal constraint-satisfac-
tion processing engine, which performs dy-
namic reasoning about the times at which ac-
tivities are to be performed. (See sidebar.) Like
the other systems described above for monitor-
ing and recognizing an elder’s activities, Auto-
minder’s Client Modeler relies on Bayesian in-
ference techniques.5 In some regards, the most
interesting component of Autominder is the
Intelligent Reminder Generator. To decide
whether and when to issue a reminder, the IRG
must balance four goals: (1) ensuring that the
user is aware of planned activities; (2) achiev-
ing a high level of user and caregiver satisfac-
tion; (3) avoiding introducing inefficiency into
the user activities; and (4) avoiding making the
user overly reliant on the reminder system,

which would have the detrimental effect of de-
creasing, rather than increasing user indepen-
dence. 

It would be straightforward to generate re-
minders if only the first criterion were of con-
cern: one could simply issue a reminder for
every activity at its earliest possible start time,
perhaps repeating the reminder at regular inter-
vals if the activity is not performed. However,
such a policy might do a potentially poor job of
satisfying the other criteria. Two alternative ap-
proaches have thus been taken in Autominder
to producing reminders that achieve all four
goals. The first (McCarthy and Pollack 2002)
adopts a local-search approach based on the
planning-by-rewriting paradigm (Ambite and
Knoblock 2001). It begins by creating an initial
reminder plan that includes a reminder for
each activity in the user plan at its earliest pos-
sible start time and then performs local search,
using a set of plan rewrite rules to generate al-
ternative candidate reminding plans. For ex-
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To provide flexible, adaptive re-
minders to a user, the Autominder sys-
tem must maintain an up-to-date
model of the user’s plan. This is done
by the Plan Manager. The Plan Manag-
er, like most automated planning sys-
tems, models plans as 4-tuples, < S, O,
L, B >, where S are steps in the plans,
and O, L, and B are temporal ordering
constraints, causal links, and binding
constraints over those steps. However,
we have found that temporal con-
straints are particularly important in
providing schedule-management sup-
port, and so we augment the set of
temporal constraints allowed: specifi-
cally, we make use of the language of
disjunctive temporal problems (DTPs)
(Stergiou and Koubarakis 2000,
Tsamardinos and Pollack 2003). For-
mally, a DTP is a conjunctive set of dis-
junctive inequalities: each ordering
constraint has the form 

lb1 ≤ X1 – Y1 ≤ ub1 � . . . � lbn
≤ Xn – Yn ≤ ubn

where the Xi and Yi refer to the start or
end points of steps in the plan, and
the lower and upper bounds (lbi and
ubi) are real numbers. 

Figure A gives an example of four
DTP constraints representing a typical

morning routine for an elderly user: 
1. Mrs. Jones should breakfast be-
tween 7 and 8, reserving 20–30 min-
utes to eat. 

2. She should take her medicine
within an hour of eating. 

3. She should bathe after 7 AM, re-
serving 30–40 minute for this activity. 

4. She should finish breakfast and

her bath by 8:30 (perhaps because
someone is coming to pick her up to
drive her to the doctor). 

The graph in figure A includes two
nodes for each activity, one with sub-
script S to indicate its start, and one
with E to indicate its end. The allow-
able interval between any two activi-
ties is indicated by [l, u], denoting the
lower (upper) bounds on the interval
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Temporal Reasoning in 

Autominder’s Plan Manager 

[0,510]

[20,30] [0,60]

[420,480]

[30,40]

[0,510]

BthE

EatE MedSEatS

BthS

TR 

0 ≤ EatS – BthE ≤ ∞
or
0 ≤ BthS – EatE ≤ ∞

[420,∞]

Figure A. An Example Plan as a DTP in Autominder. 

rank is selected, and the process iterates, with
rewrite rules now being applied to the selected
plan. Iteration continues until either some re-
minder plan is judged to have quality exceed-
ing a prespecified threshold, or there is an in-
terrupt indicating that there has been a change
to the user plan or to the user model. In the lat-
ter case, the entire reminder plan generation
process is restarted. 

Although this approach has been satisfacto-
ry for the initial version of Autominder and is
what is being used in the current field testing,
it has three key limitations: 

First, it is very difficult to handcraft good
rules and evaluation functions. 

Second, partly as a consequence of the first

ample, one rewrite rule deletes reminders for
activities that have low importance and that
are seldom forgotten by the user. Another rule
shifts the time of a reminder for an activity to
its expected time, that is, the time by which
the user usually performs the activity. Yet an-
other rule spaces out reminders for activities
for the same type of action: for instance, in-
stead of issuing eight reminders in a row to
drink water, application of this rule would re-
sult in the reminders being spaced out through
the day. The newly generated reminder plans
are evaluated using a heuristic function that
takes into account factors such as the number
of reminders, their timing, and their relative
spacing. The reminder plan with the highest



limitation, the rules and evaluation function
that have been developed handle only a small
subset of the types of interface control ques-
tions that might be addressed. To date, reason-
ing is only done about which activities in the
client plan warrant reminders and, for those ac-
tivities, when to issue the reminders. Reason-
ing is not done about other types of interaction
with the client, for example, when to request
confirmation about whether she has in fact
completed some activity, nor about the best
means of issuing reminders: all the reminders
in the current version of Autominder are sim-
ple text strings. 

Third, and perhaps most importantly, the
IRG’s rules and evaluation functions are fixed:

they do not change over time. Yet, typically the
capabilities and needs of intended users of sys-
tems such as Autominder will change over
time. As an elder’s cognitive capacities dimin-
ish, she may require additional or more de-
tailed reminders. Even over shorter time spans,
a user’s needs may change, for instance, during
a period of illness. 

The second approach being investigated in
Autominder for intelligently generating re-
minders addresses these limitations. It uses re-
inforcement learning (RL) to induce an interac-
tion policy, a function from features of the
current state (for example, the time of day, the
timing of the previous interaction, the user’s
mood, and the actions she is supposed to per-
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in minutes. There is also a distin-
guished temporal reference point (TR),
which is associated with a fixed clock
time, midnight in our example; it is
used to establish absolute (clock-time)
constraints. In addition to the binary
constraints shown in the graph, there
is one additional constraint: 

5. Eating breakfast and bathing can-
not overlap. 

This final constraint is inherently dis-
junctive, and is represented as 

(0 ≤ EatS – BatheE ≤ ∞) 
� ( 0 ≤ BatheS – EatE ≤ ∞)

This example illustrates one reason
that disjunctive constraints are so im-
portant: they permit one to represent
nonoverlapping activities. However,
they are also useful for representing
activities that simply have disjunctive
temporal conditions associated with
them, such as watching the TV news
at either 6 or 11 PM. 

Once a user plan has been specified,
it is the job of Autominder’s Plan Man-
ager to update it in response to four
types of events: (1) the addition of a
new activity into the plan; (2) the
deletion or modification of an activity
already in the plan; (3) the observed
execution of an activity in the plan; or
(4) the passing of a critical time
boundary without an activity being
executed. In each case, new con-
straints are introduced into the client
plan and propagated using a highly ef-
ficient DTP solver (Tsamardinos and
Pollack 2003). As a very simple exam-

ple, suppose that Autominder is work-
ing with the client plan in figure A and
detects the end of breakfast at 8:00 AM.
At this point, a new execution con-
straint is added (note that 480 is the
number of minutes between midnight
[the TR] and 8 AM.):

(480 ≤ EatE – TR ≤ 480)

Then propagation in the network
representing the user’s plan results in
the set of constraints shown in figure
B, in which, for example, the amount
of time available for the user’s bath
and the time at which the medicine
must be taken, have been updated. 

The current version of Automin-
der’s Plan Manager makes use of the

DTP representation as described
above. However, a body of recent work
has extended DTPs and related for-
malisms so that they can include pref-
erences (Peintner and Pollack 2004;
Khatib et al. 2003; Rossi, Venable, and
Yorke-Smith 2004), temporal uncer-
tainty (Morris, Muscettola, and Vidal
2001), and causal uncertainty (Tsa-
mardinos, Vidal, and Pollack 2003).
Introducing these extensions into Au-
tominder’s Plan Manager should make
the system even more flexible and use-
ful. 

[0,510]

[20,30] [0,60]

[420,480]

[30,40]

[0,510]

BthE

EatE MedSEatS

BthS

TR 

0 ≤ EatS – BthE ≤ ∞
or
0 ≤ BthS – EatE ≤ ∞

[420,∞]

[480,540]

[480,480]

30

480

Figure B. The Plan in Figure A after Breakfast Ends.



recognizes a problem—for instance, that the
subject is using the towel before wetting her
hands—a prerecorded verbal prompt is provid-
ed. In a field test with 10 subjects with moder-
ate-to-severe dementia, COACH was shown to
increase by 25 percent the number of hand-
washing steps that subjects could complete suc-
cessfully without assistance from caregivers. 

Assessment Systems 
So far we have described assurance systems and
compensation systems. A third use for AI tech-
nology in the care of older adults with cogni-
tive impairment is to provide continual, natu-
ralistic assessment of their cognitive status.
Several studies have shown that cognitive im-
pairment frequently remains undiagnosed for
substantial periods of time (Boise, Neal, and
Kaye 2004; Ross et al. 1997; Callahan, Hendrie,
and Tierney 1995), an unfortunate situation
since there exist a range of medical and behav-
ioral means of helping cognitively impaired pa-
tients, as well as social support services for their
families. Currently, most cognitive assessment
is done in the clinical setting, when a person
visits her physician. This means that
assessment is only done infrequently and on
the basis of limited information: it is quite pos-
sible that the person is having a particularly
“good” or “bad” day when she happens to have
a doctor’s appointment. Additionally, the very
fact that the assessment is being done outside
of the person’s normal living environment may
bias the assessment, for instance if the person
finds the doctor’s visit to be stressful. 

Several researchers have thus begun to ex-
plore the possibility of using sensor-based
monitoring, combined with sophisticated
analysis algorithms, to assess a person’s level of
functioning as she goes about her routine activ-
ities in her home. An example is Wired Inde-
pendence Square, a project in which sensors
are placed in a kitchen and used to collect tim-
ing data while a patient at risk for cognitive im-
pairment performs a task such as making tea
(Carter and Rosen 1999). The hypothesis, as yet
unconfirmed, is that objective data such as this
will be shown to correlate with assessments
made with standard diagnostic batteries such
as the Assessment of Motor and Process Skills
(AMPS), a tool used by occupational therapists
to measure the quality of a person’s perfor-
mance of activities of daily living. Although
the initial version of this system was installed
in an in-hospital setting—a kitchen used by oc-
cupational therapists for observation and as-
sessment of patients at the National Rehabilita-
tion Hospital—the researchers hope to move to

form) to interface actions, including if and
when to issue a reminder to perform a certain
activity. Although this approach has so far only
been tested in simulation, initial results show
that it is possible to learn strategies that can
personalize to an individual user and adapt to
both short- and long-term changes in her
needs and preferences (Rudary, Singh, and Pol-
lack 2004). 

Autominder has been deployed in prototype
form on three platforms: a mobile robot, the
IMP intelligent walker described above, and a
handheld computer (a personal digital assis-
tant) that communicates wirelessly with a base
station. The mobile robot, which is named
Pearl and is depicted in figure 8, includes a dif-
ferential drive system, two on-board comput-
ers, laser range-finders, sonar sensors, micro-
phones for speech recognition, speakers for
speech synthesis, a touch-sensitive graphics
display, a custom-designed actuated head unit,
and stereo camera systems (Pineau et al.
2003).6

Preliminary field tests of Autominder have
been conducted with both older adults and pa-
tients with traumatic brain injury, but system-
atic studies of its effectiveness have not yet
been completed. 

Activity-Guidance Systems 
Where schedule-management systems provide
a user with prompts to perform multiple activ-
ities during the course of her day, activity-guid-
ance systems are geared towards providing re-
minders about consecutive steps in individual
activities. As such, these systems tend to be
aimed at people with more severe cognitive im-
pairment. 

An example is COACH (Mihailidis, Fernie,
and Barbenel 2001), a system designed to assist
a person with severe dementia who has difficul-
ty remembering the proper sequence of every-
day activities or how to use the tools that are
part of those activities. The current version of
COACH assists a person with handwashing;
this task was chosen because studies have
shown that caregivers of dementia patients
find that providing assistance with bathroom
activities is one of their most stressful tasks.
The COACH system uses a video camera to ob-
serve the user as she attempts to wash her
hands. The video image is processed to identify
the two-dimensional (x, y) coordinates of a
tracking bracelet worn by the subject, and a
plan-recognition algorithm is then invoked to
determine what step in the activity the subject
is attempting (for example, turning on the wa-
ter, using soap, drying hands). If the system
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Courtesy Carnegie Mellon University Robotics Institute. 

Figure 8. “Pearl” the Robot.



systems are still largely emerging. Research
challenges abound, and in designing technolo-
gy to support an aging population, there are
compelling reasons to employ a number of dif-
ferent AI technologies, including plan genera-
tion and execution monitoring, reasoning un-
der uncertainty, machine learning, natural
language processing, and robotics and machine
vision. Additional challenges will require col-
laboration with colleagues having expertise in
sensor-network architectures, privacy and secu-
rity, and human-machine interaction. The
comedienne Lucille Ball is said to have re-
marked, “The secret to staying young is to live
honestly, eat slowly, and lie about your age.”
With continued research, we can perhaps add a
fourth injunction: “use AI technology.” 
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Notes
1. Generations on Line, www.generationsonline. com.

2. And others; although this paper concentrates on
technology for older adults, this same technology
can also be useful for younger people with cognitive
impairment, including people with mental retarda-
tion and victims of traumatic brain injury. 

3. The disability literature classifies certain
fundamental activities such as eating, dressing, and
bathing as activities of daily living (ADLs) while oth-
er, somewhat more complicated activities such as
preparing meals, light housework, and paying bills
are classified as instrumental activities of daily living
(IADLs). Additional categories for classification are
sometimes also introduced. In this article, we will
simply refer to “daily” or “routine” activities to refer
to the variety of things that a person must do to func-
tion autonomously in her home.

4. In the current prototype, the glove is somewhat awk-
ward; it would need to be redesigned for an actually de-
ployed system, but it suffices for a proof of concept. 

5. In the versions of Autominder that we have been
testing in the field to date, we have not employed
sensors, instead relying on the user to tap a screen to
indicate that she has completed an activity. This is
obviously just a temporary approach; we are current-
ly investigating sensor-based activity-recognition al-
gorithms in the laboratory and aim to develop a ver-

installations within individual homes in the
near future. 

A related project attempts to measure cogni-
tive performance by monitoring a person as
she interacts with her home computer (Jimi-
son, Pavel, and Pavel 2003). In initial studies,
each user was monitored as she played an
adapted version of the FreeCell solitaire game;
this was selected both because interviews with
older adults showed that they enjoyed this ac-
tivity and because it is one that incorporates as-
pects of cognition such as short-term memory
and strategic planning that are directly relevant
to the performance of activities of daily living.
Each time the user played FreeCell, her perfor-
mance was compared to a standard established
by an automated solver. Analysis was then
done to track the user’s relative performance
over time; the goal is to identify declines in per-
formance that may be indicative of more gen-
eral cognitive decline. 

In this latter project, one can already see the
use of AI technology in the automated solver
that determines the optimal solution to each
FreeCell game. However, in both this and the
preceding project, as well as in other efforts to
do continual, naturalistic assessment, one can
envision a larger and more central role for AI
techniques: specifically, in the use of machine-
learning methods to induce a person’s normal
level of functioning and to identify changes
from that norm. 

Conclusion 
Interest in intelligent assistive technology for
older adults is growing rapidly. Within the past
five to eight years, research groups investigat-
ing the use of AI techniques for such technolo-
gy have formed at more than a dozen different
universities and industrial research laborato-
ries. Workshops have been held at major AI
conferences as well as at gerontology confer-
ences (Haigh 2002; Rogers et al. 2002; Spry
Foundation 2003; Gerontological Society
2003); the National Research Council spon-
sored a workshop resulting in a book on this
topic (Pew and Hemel 2004); an online infor-
mation clearinghouse has been created (Center
for Aging Services Technology—CAST)7; and
the United States Senate Special Committee has
held a hearing on the assistive technology for
elders (U. S. Senate 2004). 

This article has provided a survey of intelli-
gent technology to support elders with cogni-
tive decline. Assurance systems are already
available as commercial products; compensa-
tion systems mainly exist as research proto-
types; and ideas about developing assessment
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sion of Autominder that fully integrates
sensor networks in the near future.

6. Pearl was designed and built at Carnegie
Mellon University by Sebastian Thrun and
his students.

7. Center for Aging Services Technology
(CAST), www.agingtech.org/. 
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