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ABSTRACT Considering that the speed control system of the suspended permanent magnetic maglev

train is more complicated and the parameters are more unstable than those of other trains, the traditional

speed-tracking algorithm has large tracking errors, frequent controller output changes, high energy con-

sumption, and decreasing the passengers’ riding comfort. To improve the shortcomings of the traditional

automatic train operation (ATO) control algorithm, this paper proposes a predictive fuzzy proportional-

integral-derivative control algorithm with weights (WM-F-PID). The main contribution of this work is to

propose a cascaded predictive fuzzy PID (F-PID) control algorithm architecture with weights and use an

improved steepest descent method to calculate online the weight of the F-PID controller input occupied by

the predictive controller output. Compared with the proportional-integral-derivative (PID), F-PID, model

predictive control (MPC), and simple cascade predictive fuzzy PID (M-F-PID) control algorithms, this

control algorithm effectively improves train tracking accuracy and comfort and reduces train energy

consumption and stopping errors.

INDEX TERMS Suspended permanent magnetic maglev train, WM-F-PID control algorithm, online

optimization algorithm, speed-tracking.

I. INTRODUCTION

In recent years, the research on the automatic train operation

(ATO) technology has also yielded outstanding achieve-

ment together with the advances in computer and sen-

sor technologies. ATO for suspended permanent magnetic

maglev trains involves a series of technologies such as train

speed curve optimization and speed curve tracking, among

which speed curve tracking is a key step of ATO techno-

logy [1]–[4]. Speed-tracking tracks the expected speed of the

train by controlling the traction or braking force of the train.

Accurately tracking the ideal speed curve is beneficial to not

only improving the parking accuracy of the train but also

The associate editor coordinating the review of this manuscript and

approving it for publication was Huaqing Li .

helps to improve the passengers’ riding comfort and reduce

the energy consumption of the train. [5]–[7].

To date, extensive research has been conducted on

ATO speed-tracking control [8]–[10]. Most of the early

speed-tracking controllers were developed based on classical

control theory. For example, the PID control algorithm has

been widely used due to its simple structure and easy imple-

mentation [11]. However, once the PID controller parameters

are determined, they cannot be changed in real-time. When

the train operation is severely disturbed, the deviation of

the system will increase, which is not conducive to saving

energy in the train control system, improving passengers’

riding comfort, or extending service life. To overcome the

disadvantage of not being able to adjust the parameters of the

PID control algorithm in real-time, [12] and [13] proposed a
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train speed-tracking control algorithm that combines PID and

a fuzzy control algorithm, which can adjust the parameters

of PID controller in real-time according to external distur-

bances. To improve the robustness of the fuzzy PID control

algorithm, Yang et al. [14] proposed a multimodal fuzzy

PID control algorithm. With the development of intelligent

control algorithms, a series of intelligent control algorithms

has been proposed [15]–[23]. However, these methods rely

on the instantaneous state response of the system and can-

not predict the future behavior of the system, and perform

poorly on systems with large time delays. For this reason,

predictive control has become an attractive control algorithm.

For instance, [24]–[26] proposed a fuzzy predictive control

algorithm, which can effectively improve the passengers’

riding comfort. To reduce large tracking error shortcomings,

Liu, Wang, and others used the method of online adjust-

ment of the predictive control softness factor to effectively

improve the accuracy of train speed-tracking [27], [28]. Chu,

Yu et al. used the gray prediction GM (1, 1) model to

design a train speed-tracking controller, which also effec-

tively improved the speed-tracking accuracy [29]. In recent

years, with improvements in computer performance, peo-

ple have conducted extensive research on the application

of Model Predictive Control (MPC) in auto-driving path

tracking and train operation optimization and have achieved

good results [30]–[32]. However, the calculation efficiency,

system response speed, and anti-interference ability of pure

predictive control algorithms in practical applications may

not be satisfactory.

In summary, when the speed control system input for a

suspended permanent magnet maglev train is only the ideal

speed, the output error of the speed controller is relatively

large due to the system time lag. When the speed control sys-

tem input for a suspended permanent magnet maglev train is

only the predicted speed, the slow response speed of the sys-

tem and the uncertainty of interference during operation will

also cause larger errors. Therefore, the train speed-tracking

controller input should not only include ideal speed infor-

mation but also consider future speed information from the

train. Compared with existing work, this paper proposes a

new train speed-tracking control architecture that contains

two layers of control algorithms: the first layer is a predictive

control algorithm, and the second layer is a fuzzy PID control

algorithm. The input for the fuzzy PID control algorithm

is a combination of predictive control algorithm output and

ideal input according to a specific weight. According to the

above analysis, the main work of this article is summarized

as follows:

1) To solve the problems of the inability of the current

train speed control algorithm to predict future behavior

and of the poor performance of the system time delay,

a WM-F-PID control algorithm is proposed. The con-

trol algorithm is composed of three main parts: a pre-

dictive control algorithm for the outer layer to make the

system include future speed information, and the fuzzy

PID feedback control of the inner layer to suppress

the uncertain interference and the online weight

solution.

2) To solve the problem of the weight of the predic-

tive controller output to the F-PID controller, a novel

on-line optimization algorithm of the steepest descent

method is proposed to improve the adaptability and

real-time performance of the controller on different

trains.

The rest of this paper is organized as follows. In Section II,

we establish a dynamic model for the train and four indexes

for performance evaluation. Section III presents aWM-F-PID

speed controller design for suspended permanent magnetic

maglev trains and an online optimization algorithm forweight

value. In Section IV, theWM-F-PID performance is analyzed

in detail by using field data collected in an actual speed-limit

section and compared with the function of PID, F-PID, MPC,

and simple cascade M-F-PID. Last, conclusions are provided

in Section V.

II. TRAIN CONTROL MODEL AND PROBLEM STATEMENT

In Subsection A, we briefly introduce the dynamic train

model, which can be roughly divided into traction, inertia,

and braking states in accordance with the different running

states of the train. Then, four model evaluation and robustness

indexes of the control system are considered and proposed

in Subsection B, given many uncertain factors in the train

control process.

A. TRAIN CONTROL MODEL

Although the train operating conditions are complex,

the focus of this article is on the control of the speed-tracking

of the train. Therefore, this article adopts the single-mass train

model [33]–[35]. Its force is shown in Figure 1.M is the total

weight of the train and passengers, g is the acceleration due

to gravity, F is the traction force of the train, Fw is the sum

of running resistance, N is the levitation force given to the

train by the permanent magnet rail, and θ is the gradient of

the train track. The model expression is as follows:


























ḋ = v =
∂d

∂t

d̈ = a =
∂v

∂t

a =
Fr

M

(1)

where d is the train displacement, v is the current speed of the

train, t is the running time, a is the acceleration of the train,

andFr is the resultant force of the train. Owing to the different

motion states of the train, Fr can be expressed as follows:











Fr = F − Fw − Fb

Fr = −Fw

Fr = −Fw − Fb

(2)

where Fb is the braking force of the train, and Fw is the

resistance of the train. Fw includes the following parts:
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FIGURE 1. Force condition of an urban rail train.

• Air resistance Fa

Fa =
1

2
CdρV

2Sc (3)

where Cd is the air-assist coefficient, ρ is the air density,

V is the air velocity relative to the train direction, and Sc
is the windward area of the train head.

• Slope resistance Fs
According to Figure 1, the slope resistance can be

expressed as:

Fs = Mg sin θ (4)

whereM is the total weight of the train and passengers, g

is the acceleration due to gravity, and θ is the gradient of

the train track. Given that θ is considerably small, sin θ

can be approximately equal to θ , then:

Fs = Mg sin θ ≈ Mgθ (5)

Fs can be positive (uphill), negative (downhill),and

Zero(no ramp).

• Curve resistance Fc

Fc =
600g

r
(6)

where r is the turning radius.
Based on the system identification theory of the least

square method [36], the equivalent transfer function of the

suspended permanent magnetic maglev train is as follows:

G(s) =
0.07128

(s+ 0.0954)(s+ 0.34)
(7)

B. PERFORMANCE EVALUATION INDEX OF CONTROLLER

Several quantitative performance indicators are set here to

evaluate the advantages and disadvantages of the method in

this paper intuitively and accurately. These indicators include

train energy consumptionW , energy consumption per unit of

quality Ep [16], passenger comfort Cr [37], parking error Eu,

and a number of train state changes Nc.

• Train energy consumption(W)

W =

∫ tr

0

Fv(t) dt =

∫ tr

0

M |a| v(t) dt (8)

where F is the traction force of the train, v(t) is the train

speed, and tr is the total running time, M is the total

weight of the train and passengers, a is the acceleration

of the train.

The train energy consumption can be approximately

discretized as follows:

W =

N
∑

i=1

M |ai| vi1t (9)

where i is the sampling time, ai is the acceleration of

ith sampling time, vi is the train speed, and 1t is the

sampling interval.

The quality of the same train also changes with passen-

gers getting on and off the train due to the different qual-

ity of different types of trains. To compare the energy

consumption of different types of trains, the energy con-

sumption per unit mass is defined as follows:

Ep =
W

M
=

∫ tr

0

|a| v(t) dt ≈

N
∑

i=1

|ai| vi1t (10)

• Passenger comfort(Cr )

Cr =
1

tr − 1

tr−1
∑

i=1

∣

∣

∣

∣

ai+1 − ai

1t

∣

∣

∣

∣

(11)

where tr is the total sampling time, ai is the acceleration

of ith sampling time, ai+1 is the acceleration of (i+ 1)th

sampling time,and 1t is the sampling interval.

• Parking error(Eu)

Eu = |Si − Sr | (12)

in the expression, Si is the distance between the train

stop lines specified between two stations, and Sr is the

distance between the actual train stop lines between two

stations.

• Number of train state changes(Nc)

The running process of the train mainly includes an

accelerated traction state, nonoperating inert state, con-

stant speed state, and braking state. The train control

system implements safe and efficient train operation by

switching back and forth among these operating states.

However, the frequent changes in the train running state

reduce the train control system service life, increase the

energy consumption of the train, and are not conducive

to the passengers’ riding comfort. Therefore, in this

paper, the number of changes in the train running state

is taken as a performance index to evaluate the qual-

ity of the train control system, which is expressed by

Nc here.

III. DESIGN OF SPEED CONTROLLER

In this section, we design a hybrid WM-F-PID cascade con-

troller, considering many uncertain factors in train operation,

and the schematic is shown in Figure 2. The inner layer

of the controller adopts the most widely used PID con-

troller. However, once the parameters of the PID controller
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FIGURE 2. The structure of WM-F-PID controller system.

FIGURE 3. Principle diagram of the F-PID controller.

are determined, they cannot be changed during operation.

When the system is subjected to various disturbances, its

stability decreases. To solve this problem, this paper intro-

duces fuzzy control and uses the driving experience to write

fuzzy control rules. Hence, when the train is subjected to

various disturbances in the running process, the parameters

of the PID controller are adjusted in real-time to improve

the robustness of the system. Given that the system has a

certain time lag, the input of the F-PID controller is the

lag state of the system, leading to deviations in the control

system. This paper introduces a predictive controller and uses

the predictive controller to predict the system state in the

next few sampling times, a certain weight combination of

the current and predicted states as the input of the control

system, and an online optimization algorithm to solve the

optimal weight value. As a result, the system has certain pre-

dictive information, and the effect of system lag is reduced.

The ideal speed curve of the train can be tracked accu-

rately during operation, and the robustness of the system is

improved.

A. DESIGN OF F-PID CONTROLLER

The structure of the F-PID controller of the train speed control

system is shown in Figure 3. The system input is the mixed

speed obtained by the combination of the predictive controller

and the ideal speed according to a certain weight. The feed-

back into the system is the real-time speed of the train. The

two-dimensional fuzzy controller adopts the form of two

inputs and three outputs, in which the inputs are the system

error e and the system error rate of change ec, and the out-

puts are 1Kp, 1Ki, and 1Kd , which are used to adjust the

parameters of the PID controller in real-time. The real-time

parameters of the controller can be expressed as Kp
′ = Kp +

1Kp, Ki
′ = Ki + 1Ki, and Kd

′ = Kd + 1Kd . e and ec are

defined as [−13, 13] in the fuzzy domain. In accordance with

the accuracy requirements, the fuzzy subset is divided into

seven grades [NB,NM ,NS,ZO,PS,PM ,PB ], which refer

to negative big, negative medium, negative small, zero, pos-

itive small, positive medium, and positive big, respectively.

The domains of 1Kp, 1Ki, and 1Kd are [−13, 13], [−5, 5],

and [−1, 1], respectively. The fuzzy subset is also graded

[NB,NM ,NS,ZO,PS,PM ,PB ]. The membership function

is a triangular membership function with high sensitivity,

the fuzzy reasoning is Mamdani reasoning, and the center of

gravity method is adopted in defuzzification. The fuzzy con-

trol rules are composed of the knowledge base summarized

by excellent drivers’ driving experience. The control rules of

the fuzzy controller output 1Kp, 1Ki, and 1Kd based on the

adjustment rules of the parameters of the PID controller are

shown in Tables 1-3.
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TABLE 1. Fuzzy rules of 1Kp.

TABLE 2. Fuzzy rules of 1Ki .

TABLE 3. Fuzzy rules of 1Kd .

From Figure 3, the transfer function of the F-PID control

system is as follows:

G∗(s) = G1(s) ∗ G(s)

=
Kd

′s2 + Kp
′s+ Ki

′

s
∗

0.07128

(s+ 0.0954)(s+ 0.34)

=
0.07128

(

Kd
′s2 + Kp

′s+ Ki
′
)

s(s+ 0.0954)(s+ 0.34)
(13)

where G(s) can be obtained from Formula 7, G1(s) is the

transfer function of the F-PID controller, and the state-space

expression of the system is:













































ẋ1

ẋ2

ẋ3






=







a11 a12 a13

a21 a23 a23

a31 a32 a33













x1

x2

x3







u =

[

1 1 1
]







x1

x2

x3







(14)

where a11 = a12 = a13 = −2.2Ki
′,

a21 = −0.2914Kp
′ + 3.0581Ki

′ + 0.0276Kd
′,

a21 = −0.2914Kp
′ + 3.0581Ki

′ + 0.0276Kd
′ + 0.954,

a21 = −0.2914Kp
′ + 3.0581Ki

′ + 0.0276Kd
′,

a31 = 0.2914Kp
′ − 0.8581Ki

′ − 0.989Kd
′,

a32 = 0.2914Kp
′ − 0.8581Ki

′ − 0.989Kd
′,

a33 = 0.2914Kp
′ − 0.8581Ki

′ − 0.989Kd
′ + 0.34.

B. PREDICTIVE CONTROL SYSTEM DESIGN

Predictive control mainly includes model prediction and

rolling optimization steps. Many predictive control methods

are available. In this study, the state-space prediction algo-

rithm is used. Compared with the traditional model prediction

algorithm, the state-space prediction algorithm does not need

to solve the Diophantine equation online, and it is more

concise in the single-input single-output equation.

1) STATE-SPACE PREDICTION MODEL

The basic ideas of predictive control are to predict future

dynamics of the system based on the established system

model, to obtain the local optimal solution of the system

by rolling the solution, and to apply the first element of

the solved solution to the controlled system. The state-space

control model of the system derives the state-space model

prediction equation. The equation is as follows:

{

ẋ (t) = Acx (t) + Bcu (t)

y (t) = Ccx (t)
(15)

where x (t) is the state variable of the system, u (t) is the

control input variable, and y (t) is the system output vari-

able, Ac,Bc, and Cc are coefficient matrices. The discretized

state-space model prediction equation is as follows:

{

△x (k + 1) = A△x (k) + B△u (k)

y (k) = C△x (k) + y (k − 1)
(16)

where A = eAcTs , B =
∫ Ts
0 eAcTs ∗ Bc, C = Cc, Ts is the

sampling time, △x (k) can be obtained as follows:

{

△x (k) = x (k) − x (k − 1)

△u (k) = u (k) − u (k − 1)
(17)

assuming that the control system predicts p steps forward,

the control time domain of the controller is c, and p > c.

When the value of p is relatively small, it cannot respond to

sudden changes in the reference input. When the value of

p is relatively large, the system’s response to disturbances

will slow down. Therefore, in general, the reasonable rec-

ommendation for selecting the number of prediction steps is

to have 20 to 30 samples covering the open-loop transient

system response, and the control step length is generally 10%-

20% of the prediction range. This article takes the number of

predicted steps as 20 and the number of control steps as 4.

The system predicts the incremental value of p steps at time
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k as follows:



































































































































































△x (k + 1|k) = A△x (k) + B△u (k)

△x (k + 2|k) = A△x (k + 1) + B△u (k + 1)

= A2△x (k) + AB△u (k)

+B△u (k + 1)

△x (k + 3|k) = A△x (k + 2) + B△u (k + 2)

= A3△x (k) + A2B△u (k)

+AB△u (k + 1) + B△u (k + 2)
...

△x (k + c|k) = A△x (k + c− 1) + B△u (k + c− 1)

= Ac△x (k) + Ac−1B△u (k)

+Ac−2B△u (k + 1) + · · ·

+AB△u (k + c− 2)

+B△u (k + c− 1)
...

△x (k + p|k) = A△x (k + p− 1) + B△u (k + p− 1)

= Ap△x (k) + Ap−1B△u (k)

+Ap−2B△u (k + 1) + · · ·

+Ap−cB△u (k + c− 1)

(18)

Similarly, the system predicts that the output of step p at

time k is:























































































































































































y (k + 1|k) = C△x (k + 1|k) + y (k)

= CA△x (k) + CB△u (k) + y (k)

y (k + 2|k) = C△x (k + 2|k) + y (k + 1|k)

=

(

CA2 + CA
)

△x (k)

+ (CAB+ CB)△u (k)

+CB△u (k + 1) + y (k)
...

y (k + c|k) = C△x (k + c|k) + y (k + c− 1|k)

=

c
∑

i=1

CAi△x (k) +

c
∑

i=1

CAi−1B△u (k)

+

c−1
∑

i=1

CAi−1B△u (k + 1) + · · ·

+CB△u (k + c− 1) + y (k)
...

y (k + p|k) = C△x (k + p|k) + y (k + p− 1|k)

=

p
∑

i=1

CAi△x (k) +

p
∑

i=1

CAi−1B△u (k)

+

p−1
∑

i=1

CAi−1B△u (k + 1) + · · ·

+

p−c+1
∑

i=1

CAi−1B△u (k + c− 1) + y (k)

(19)

Expression of the above derivation results in a matrix:

Y (k + 1|k) = ϕ△x (k) + γ y (k) + τ△U (k) (20)

where Y (k + 1|k) =







y (k + 1|k)
...

y (k + p|k)






, γ =







1
...

1







△U (k) =







△u (k)
...

△u (k + c− 1)






, ϕ =







CA
...

∑p
i=1 CA

i






, and

τ=























CB 0 0 · · · 0
∑2

i=1 CA
i−1B CB 0 · · · 0

...
...

...
...

...
∑c

i=1 CA
i−1B

∑c−1
i=1 CA

i−1B · · · · · · CB
...

...
...

...
...

∑p
i=1 CA

i−1B
∑p−1

i=1 CA
i−1B · · · · · ·

∑p−c+11
i=1 CAi−1B























.

2) ROLLING OPTIMIZATION

The output of the controlled train system is affected by

the control increment and the model dynamic coefficient. The

control increment of the system is obtained by solving the

optimization criterion function. For this paper, we hope that

the output of the prediction controller is close to the ideal

target speed curve. Then, the objective function expression

can be expressed as follows:

J(x (t), △U (k), c, p) = ‖µ1 (Y (k + 1|k)) − R (k + 1)‖2

+ ‖µ2△U‖2 (21)

in the formula, the weighted value matrix and the weighted

valuematrix with a control increment of the predictive control

output error of µ1 and µ2 systems can be either a constant

value or a time-varying matrix. For the convenience of calcu-

lation, the constant value matrix,R (k + 1) is the target output

of the system.

Therefore, the optimization problem of predictive control

can be expressed using the following formula:

min J(x (t), △U (k), c, p) (22)

Extreme value conditions are available, as shown below.

∂ (J(x (t), △U (k), c, p))

∂(△U (k))
= 0 (23)

Then, the local optimal solution at the k th moment can be

obtained as follows:

△U (k) =

(

τTµT
1 µ1 + µT

2 µ2

)−1
τTµT

1 µ1EP (k + 1|k)

(24)

in the formula, EP (k + 1|k) = R (k + 1) − ϕx (k) − γ y (k)

because the calculation of the formula is the local optimal

solution of the system obtained in the open-loop state at

time k . The system itself will be disturbed by many uncertain

factors; consequently, the solution obtained cannot meet the

requirements of tracking the target curve well. The system
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must introduce feedback. Then, the real-time control incre-

ment of the closed-loop system can be expressed as follows:

△u (k) =
[

1 0 · · · 0
]

∗ △U (k)

=
[

1 0 · · · 0
]

∗

(

τTµT
1 µ1 + µT

2 µ2

)−1
τTµT

1 µ1

∗EP (k + 1|k) (25)

The system rolling optimization can be expressed via the

following steps:

Rolling Optimization

1: Initialization: Set the predicted step number p and control

step number c, the initial value u (0) = 0, x (0) = 0.

2: When k > 0, you can get x(k), calculate y(k) and △x (k).

3: Calculate system error EP (k + 1|k).

4: Calculating the real-time control increment △u (k) of the

system by Formula 25.

5: Apply system control variable u (k) = u (k − 1) + △u (k)

to the system.

6: Get k + 1 at time x (k + 1), let k = k + 1, and return to

step 2

C. ONLINE OPTIMIZATION ALGORITHM DESIGN

In this subsection, we divide the input of the control system

into two parts, namely, the ideal and predictive speed curves,

to track the ideal speed curve. These curves are combined

in a certain proportion as the system input. An online opti-

mization algorithm of the improved steepest descent method

is proposed to solve the optimal weight of the two methods.

The objective optimization function is as follows:

min
m
e(m) =

∑

|u(Y ((k + 1)|k)m+ R(k + 1)(1 − m))

−R(k + 1)| (26)

where m is weighting coefficient, min
m
e(m) represents the

value of m when the error is the smallest. The smaller the

tracking error of the system, the better the tracking effect of

the controller. Therefore, when e(m) is the smallest, the con-

trol effect is the best. u(Y ((k + 1)|k)m + R(k + 1)(1 − m))

represents the actual speed of the suspended permanent mag-

netic maglev train in the k th sampling period. Y ((k + 1)|k)

and R(k + 1) represent the output of the predictive control

algorithm and expected speed of the suspended permanent

magnetic maglev train in the k th sampling period, respec-

tively. From Formula 26, the gradient ∇e (ma) of the system

can be solved. After obtaining the gradient of the system, this

study uses the improved steepest descent method to optimize

the value of the weight m online. The following formula

expresses the online optimization of m:

ma+1 = ma − σa∇e (ma) (27)

where σa is the updated step size. When ∇e (ma) ∗

∇e (ma + 1) > 0,the step size is doubled. In contrast, the step

size becomes half that of the original. The algorithm steps are

described as follows:

Online Optimization Algorithm

1: Select the initial pointm1 = 0.5. Given the search direction

allowable error e > 0, the initial step size σ1 = 0.1, the high-

est number of iterations w = 1000, and set a = 1.Where k is

the iteration algebra

2: if a ≤ w:

3: Calculate the search direction da = −∇e (ma).

4: if ‖da‖ ≤ e:

5: ma is the optimal solution, stop iterating and return to ma.

6: else:

7: if da ∗ da−1 > 0:

8: σa = ∗σa−1

9: else:

10: σa = 1
2

∗ σa−1

11: end if.

12: Calculate ma+1 = ma − σa ∗ ∇e (ma).

13: Calculate ‖da+1‖.

14: end if.

15: a = a+ 1, ‖da‖ = ‖da+1‖.

16: return to 3.

17: end if.

IV. EXPERIMENTAL SIMULATION ANALYSIS

Subsection A describes the structure of and data for the

WM-F-PID controller simulation platform. The performance

of the PID, F-PID, MPC, simple cascade M-F-PID and

WM-F-PID controllers is compared in Subsection B, and

the performance of the WM-F-PID controller is analyzed

in detail. The robustness of the system with complex

speed-limit is verified in Subsection C. In section D,

the robustness and sensitivity of the system are verified by

adding step disturbances and large-scale changes in system

parameters.

TABLE 4. Parameters of the medium and low speed maglev train.

A. SIMULATION PLATFORM AND DATA

The ATO speed-tracking control scenario for suspended per-

manent magnetic maglev trains from Jiangxi University of

Science and Technology is chosen as the experimental simu-

lation object. The train Operation and Suspension Diagram is

shown in Figure 4. The specific parameters of the medium

and low speed suspended permanent magnetic maglev train
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FIGURE 4. Operation and suspension diagram of permanent magnetic maglev train.

are shown in Table 4. A set of speed-tracking control simu-

lation platforms for suspended permanent magnetic maglev

trains is designed. The track information for a section of

the Jinan-Xuzhou high-speed railway is used to design the

ideal target speed curve of the train. The simulation plat-

form contains detailed train operation information, such as a

train running speed, acceleration, position, speed-limit, track

slope, and turning radius. The real-time speed of the train

is calculated by processing the unit through a photoelectric

speed sensor, Doppler speedmeasuring radar, and accelerom-

eter. The system redundancy can be increased to obtain more

accurate real-time train speed information by using various

speed sensors. The acceleration of the train is measured by

the accelerometer. At present, the positioning system of the

suspended permanent magnetic maglev train experimental

line consists of the cross-loop line, the on-board antenna

box, the carrier generator, and the address detection unit. The

carrier signal of 48 kHz generated by the carrier generator is

sent to the cross-loop line through the on-board antenna box,

and the address detection unit senses different phase changes

in the cross-loop line to obtain the train position information

through calculation. Information such as speed-limit, track

slope, and turning radius can be obtained according to the

line information.

A comprehensive experimental platform is established

in MATLAB/Simulink to evaluate the performance of the

WM-F-PID controller, as shown in Figure 5:

From Figure 5, the system includes four main modules.

Input module: This module mainly includes the offline and

online data for train operation. The offline data include

speed-limit data, ramp data, curve data, ideal-speed data,

and other information. The online data include the running

speed, location, and other information about the train. Control

module: Thismodule contains the control algorithm proposed

FIGURE 5. Simulation platform for WM-F-PID controller.

in this article and several other comparison algorithms, such

as the PID, F-PID, MPC, simple cascade MF-PID, and

WM-F-PID control algorithms. Train module: This module

contains three main operating states of the train, namely,

traction, inert, and deceleration states. Data display module:

This module mainly displays the train operation information,

including actual speed, running time, and running energy

consumption.

B. COMPARATIVE ANALYSIS WITH A SIMPLE SPEED-LIMIT

This subsection discusses the performance indexes of

the train WM-F-PID control algorithm under the stan-

dard speed-limit conditions and compares it with the PID,

F-PID, MPC, and simple cascade M-F-PID control
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FIGURE 6. Comparison of train speed-tracking under simple speed-limit.

FIGURE 7. Comparison of distance error under simple speed-limit.

algorithms to verify the effectiveness of the proposed con-

troller. The speed-time comparison curves of these control

algorithms are shown in Figure 6, and the distance error

comparison curves are shown in Figure 7.

As Figure 6 shows, the speed-time curves for the PID and

F-PID are very similar. The PID and F-PID algorithms have

larger overshoots and longer adjustment times. Although the

MPC effectively reduces the system adjustment time and
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FIGURE 8. Comparison of distance error under simple speed-limit.

overshoot, the tracking error of the system is relatively large

due to the slow response of the system. The simple cas-

caded M-F-PID control algorithm can further shorten the

system adjustment time, but the system overshoot is still

relatively large. In Figure 7, the displacement error of the

WM-F-PID control algorithm is much smaller than that of

the other four control algorithms, and the variation range of

the train displacement error is relatively small. The result

illustrates the good tracking effect of the algorithm from the

side. A comparison of the train acceleration error curves is

shown in Figure 8. PID and F-PID controller outputs switch

frequently. Although the switching frequency of the MPC

and simple cascade M-F-PID controllers has been reduced,

the acceleration error is still large. However, the output of the

WM-F-PID controller is stable and rapid, which means that

the WM-F-PID control algorithm helps to improve passen-

gers’ riding comfort, reduce train operation energy consump-

tion, and extend the life of train speed control systems.

The performance of the five controllers is calculated

using Equation 8-12, and the results are shown in Table 5.

The ideal controller parking error is zero. However, the actual

parking error is not zero. Therefore, the smaller the train

stopping error, the better the control effect of the controller.

The parking errors of PID and F-PID control algorithms are

relatively close. Both are less than 30 cm, which basically

TABLE 5. The performance comparison of the four controllers.

meets the requirements of parking accuracy. The parking

errors of MPC and simple cascade M-F-PID control algo-

rithms are higher than the specified accuracy requirements,

and the parking safety of trains cannot be guaranteed. The

parking error of the WM-F-PID control algorithm is only

3 cm, which not only meets the parking requirements of

ordinary platforms but also meets the parking requirements

of platforms with screen doors. The actual track inevitably

has ramps, tunnels, and curves. Therefore, the running state

of the train will change. If the operation state changes dra-

matically, the change will bring discomfort to passengers.

The smaller the comfort is, the more stable the change in

train operation state is, and the better the passenger experi-

ence is, as shown in Table 5. The degree of comfort of the

WM-F-PID control algorithm is much lower than that of the

other four control algorithms, and the riding experience of

passengers is improved. During the operation of a suspended
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FIGURE 9. Comparison of train speed-tracking under complex speed-limit.

permanent magnetic maglev train, traction and braking will

consume considerable energy.We are committed to designing

an optimal speed-tracking controller to reduce unnecessary

energy consumption, as shown in Table 5. Compared with

the PID, F-PID, MPC, and simple cascade M-F-PID control

algorithms, the WM-F-PID control algorithm reduces energy

consumption per unit mass by 18.6%, 13.8%, 3.9% and

7.8%, respectively, which ismore conducive to saving energy.

When the running status of the train changes, the controller

will continuously switch operations to reduce errors and

accurately track the ideal speed of the train. The fewer the

number of operational transitions is, the lower the energy con-

sumption of the train, the better passengers’ riding comfort,

and the longer the service life of the train operation system.

This condition is demonstrated in Table 5. The WM-F-PID

control algorithm can track the ideal train speed with only

a dozen adjustments. Compared with PID and F-PID, these

measures are reduced nearly 7 − fold , and compared with

MPC and simple cascade M-F-PID by 1.9 − fold and

1.2 − fold , respectively. In summary, the algorithm can not

only track the ideal speed accurately in real-time but can also

significantly improve the parking error, energy-saving, and

good passengers’ riding comfort.

C. COMPARATIVE ANALYSIS WITH A COMPLICATED

SPEED-LIMIT

Many uncertain factors, such as weather conditions, line

problems, equipment issues, and emergencies, occur in the

train operation process. The train dispatcher will temporarily

issue train speed-limit commands in accordance with dif-

ferent situations to ensure the safe and efficient operation

of the train. This section verifies the adaptability of the

controller under complex speed-limit conditions in emer-

gencies. A comparison of speed-time curves under complex

speed-limit conditions is shown in Figure 9, a comparison of

distance error curves is shown in Figure 10, and a comparison

of train acceleration error curves is shown in Figure 11. The

performance of the five controllers calculated using Formu-

las 8-12 is shown in Table 6.
Figures 9-11 and Table 6 show that the performance indi-

cators of PID and F-PID control algorithms basically result in

the safe operation of vehicles following complex speed-limit.

The MPC and simple cascaded M-F-PID control algorithms

are far superior to PID and F-PID in terms of passenger com-

fort, energy consumption, and switching frequency. How-

ever, the MPC control algorithm is inferior to several other

control algorithms in terms of real-time performance and
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FIGURE 10. Comparison of train distance error under complex speed-limit.

TABLE 6. The performance comparison of the four controllers.

parking error and cannot guarantee the safety of the train.

Compared with the MPC control algorithm, the simple cas-

caded M-F-PID control algorithm has better parking error

and lower switching frequency, but the parking error of the

simple cascaded M-F-PID control algorithm is still higher

than the parking error standard (the standard parking error

should be within 30 cm). In contrast, the control method pro-

posed in this paper is significantly better than the other four

control algorithms in terms of real-time performance, parking

error, comfort, energy consumption and switching frequency.

Therefore, the control algorithm is a feasible, effective

and efficient speed-tracking control scheme for medium

and low speed suspended permanent magnetic maglev

trains.

D. ROBUSTNESS AND SENSITIVITY ANALYSIS

In the simulation system analysis of the first two sections,

the WM-F-PID control algorithm can adapt to different

speed limits. In this section, we will verify the robustness

of the WM-F-PID speed tracking control algorithm under

uncertain interference. We introduced step signals with

amplitudes of 0.2 and −0.2 as external interference sig-

nals at 700 s and 1100 s, respectively. The simulation

curves of the PID, F-PID, simple cascade MPC, sim-

ple cascade M-F-PID, and WM-W-PID controllers return

to a stable state after being disturbed, as shown in

Figure 12.

Figure 12 shows that the PID, F-PID, simple cascade

M-F-PID and WM-F-PID methods can all return to a sta-

ble state after being disturbed by the outside world. How-

ever, the output switching frequency, adjustment time and

fluctuation range of the PID, F-PID and simple cascade

M-F-PID control algorithms are much higher than those of

the WM-F-PID control algorithm. Although the MPC con-

trol algorithm has a smaller switching frequency and fluc-

tuation range, the adjustment time is almost twice that of

the WM-F-PID control algorithm, and the real-time sys-

tem is relatively poor. This observation verifies that the

WM-F-PID control algorithm has a good control effect and

robustness.

However, the above simulation experiment cannot prove

the sensitivity of the control system when the parameters of

the control system are changed over a wide range. There-

fore, the following simulation experiment was designed: the

parameters of the PID controller were changed to half that
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FIGURE 11. Comparison of train acceleration error under complex speed-limit.

FIGURE 12. Robustness analysis of simple speed-limit.

of the original, and the control effects of the PID, F-PID,

simple cascade M-F-PID, andWM-F-PID control algorithms

were compared to verify the WM-F-PID control algorithm

sensitivity.

As shown in Figure 13, the WM-F-PID control algorithm

proposed in this paper still has a better control effect than

other algorithms. Therefore, the WM-F-PID control algo-

rithm proposed in this paper has strong robustness.
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FIGURE 13. Sensitivity analysis under a wide range of parameters.

V. CONCLUSION

This paper proposes a cascadedWM-F-PID control algorithm

to address the speed-tracking control problem for the sus-

pended permanent magnet maglev train to system time delays

and uncertain interference. More specifically, the proposed

cascaded WM-F-PID speed-tracking controller includes a

two-layer algorithm structure: the predictive control algo-

rithm of the outer layer and the fuzzy PID control algo-

rithm of the inner layer. The input of the internal fuzzy

PID control algorithm is the mixing speed that combines

the output of the external predictive control algorithm with

the ideal input according to a certain weight. In order to

accurately solve the weight of the predicted speed under

mixed speed in real-time, an improved steepest descent algo-

rithm is proposed.The simulation experiment results under

the MATLAB/Simulink simulation platform show that com-

pared with the traditional speed-tracking control algorithm

based on PID, F-PID, MPC and simple cascade M-F-PID,

train operation by the WM-F-PID control algorithm results

in reduced energy consumption by up to 18.6%, a reduced

number of output changes by up to 7 − fold , a reduced

parking error of less than 5 cm, and an improvement in

passenger comfort of 69%. TheWM-F-PID control algorithm

proposed in this paper has better performance, especially

in terms of energy consumption, controller output conver-

sion times, parking error and passenger comfort. This study

also uses different train speed-limits, different slopes, uncer-

tain interference and wide-ranging changes in parameters to

perform simulations, indicating that the method has good

robustness.

However, due to the relatively large numbers of calcu-

lations and low computational efficiency of the predictive

control algorithm, this control algorithm is only suitable for

the speed control system of medium and low speed trains.

In future work, we will optimize the computational com-

plexity of the model predictive controller to suit the needs

of high-speed permanent magnet maglev trains. Of course,

the algorithm is not only suitable for medium and low speed

permanent magnet maglev trains but also for other medium

and low speed passenger trains and freight trains, as well as

the auto-driving path tracking of automobiles. This area of

future study will be interesting.
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