
Artificial Intelligence Review, (1990) 4, 251-277

Intelligent Tutoring Systems: an

overview

Hyacinth S. Nwana
Department of Computer Science, University of Liverpool,

Liverpool L69 3BX, UK

Abstract, This is a non-expert overview of Intelligent Tutoring Systems

(ITSs), a way in which Artificial Intelligence (AI) techniques are being

applied to education. It introduces ITSs and the motivation for them. It

looks at its history: its evolution from Computer-Assisted Instruction

(CAI). After looking at the structure of a 'typical' ITS, the paper further

examines and discusses some other architectures. Several classic ITSs are

reviewed, mainly due to their historical significance or because they best

demonstrate some of the principles of intelligent tutoring. A reasonably

representative list of ITSs is also provided in order to provide a better

appreciation of this vibrant field as well as reveal the scope of existing

tutors. The paper concludes, perhaps more appropriately, with some of the

author's viewpoints on a couple of controversial issues in the intelligent

tutoring domain.

1 Artificial I n t e l l i g e n c e a n d E d u c a t i o n

The incorporation of Artificial Intelligence (AI) techniques into education in order

to produce educationally useful computer artefacts dates back to the early 1970s. By

the early 1980s researchers in the already vibrant field had clearly split into two

unequal camps with the emergence of two schools of thought. The first and smaller

of the two groups advocated 'exploration e n v i r o n m e n t s ' - - environments which

encourage discovery learning (i.e. learning by doing). Perhaps the most famous is

the LOGO language (Papert, 1980) which introduces students to the world of

geometry through the use of robot ' turtles ' and 'turtle graphics ' techniques, i.e. the

student learns by direct programming rather than by indirect instruction. Papert

(1980) projects that ' computer presence will enable us to modify the learning

environment outside the classroom so that much, if not all, of the knowledge

schools presently try to teach with such pain, expense and limited success, will be

learned as the child learns to talk, painlessly, successfully and without instruction. '

He goes on to conclude that 'schools as we know them today have no place in the

future. ' Clearly, Papert 's dream is quite revolutionary: hence, he and his advocates

in the LOGO camp are often referred to as revolutionaries.

251

252 H.S . Nwana

The second and larger of the camps is the "intelligent tutoring' group who refer to

themselves as reformists as they prefer a gradual improvement (i.e. evolution) in the

present quality of education using AI techniques. They advocate a paradigm where

the computer acts as a tutor, i.e. students largely learn by being told.

Naturally, the approach Papert champions was bound to be greeted with con-

siderable scorn and criticism as it proposes radically to change the status quo. It

appears inconceivable that such a rapid change is feasible even if it were thought

desirable. On the other hand, the intelligent tutoring approach enjoys the privilege

of being closer to current traditional classroom instruction. As a result, the LOGO

camp, perhaps unfortunately, is now often bracketed with its much larger intelli-

gent tutoring counterpart. In any case, this paper overviews the latter (i.e. intelli-

gent tutoring systems).

2 Introduction to intelligent tutoring systems

Intelligent tutoring systems (ITSs) are computer programs that are designed to

incorporate techniques from the AI community in order to provide tutors which

know what they teach, who they teach and how to teach it. AI attempts to produce

in a computer behaviour which, if performed by a human, would be described as

'intelligent': ITSs may similarly be thought of as attempts to produce in a computer

behaviour which, if performed by a human, would be described as 'goad teaching'

(Elsom-Cook, 1987). The design and development of such tutors lie at the intersec-

tion of computer science, cognitive psychology and educational research; this

intersecting area is normally referred to as cognitive science (see Fig. 1). For histor-

ical reasons, much of the research in the domain of educational software involving

AI has been conducted in the name of 'ICAI', an acronym for 'Intelligent Computer-

Aided Instruction'. This phrase, in turn, evolved out of the name 'Computer-Aided

Instruction' (CAI) often referring to the use of computers in education. Neverthe-

less, to all intents and purposes, ITSs and ICAI are synonymous. However, though

some researchers still prefer 'ICAI' (e.g. Self, 1988a, uses it in the title of his recent

book), it is now often replaced by the acronym 'ITS' (Sleeman & Brown, 1982b). The

latter, which is also the author's personal preference, is certainly gaining support,

as confirmed by the international conference on Intelligent Tutoring Systems held

in Montreal, Canada, as recently as June 1988. This preference is motivated by the

claim that, in many ways, the significance of the shift in research methodology goes

beyond the adding of an T to CAI (Wenger, 1987). However, some researchers are

understandably hesitant to use the term 'intelligent', instead opting for labels such

as 'Knowledge-Based Tutoring System' (KBTS) or 'Adaptive Tutoring System'

(ATS) (e.g. Streitz, 1988): Wenger (1987) prefers the label Knowledge Communica-

tion Systems. Nevertheless, most researchers appear to be reasonably content with

the acronym ITS. This is fine as long as everyone involved with the area under-

stands that the usage of the word 'intelligent' is, strictly speaking, a misnomer. This

does not appear to be the case, resulting in some very ambitious goals/claims,

particularly in the more theoretical parts of the literature: this also appears to be a

valid criticism of the entire AI literature.

Intelligent Tutoring Systems: an overview 253

The fact that ITS research spans three different disciplines has important im-

plications. It means that there are major differences in research goals, terminology,

theoretical frameworks, and emphases amongst ITS researchers. This will become

apparent later in this paper. ITS research also requires a mutual understanding of

the three disciplines involved, a very stressful demand given the problems of

keeping abreast with even a single discipline today.

However, some researchers have stood up to the challenge. As a result, a great

deal has been learnt about how to design and implement ITSs. A number of

impressive ITSs described in this paper bear test imony to this fact.

sc ience

Fig. 1. ITS domains.

3 M o t i v a t i o n

Why do researchers bother to produce such computer-based tutors? There seem to

be two main motivating factors.

(1) Research needs. On the pure research level, there is a need to understand more

about the processes which contribute to an educational interaction (Elsom-Cook,

1987). Since ITS research lies at the intersection of three main disciplines, it

provides an excellent test-bed for various theories from cognitive psychologists. AI

scientists and educational theorists. For example, a primary reason why the famous

Carnegie Mellon psychologist John Anderson came into the area, was to test out his

various theories of learning (Anderson, 1987). Hence, the design of an ITS will

contribute to the discovery of more accurate theories of cognition (Burns & Capps,

1988).

(2) Practical needs. On the more applied level, there are a number of useful results

which can be achieved using ITSs which cannot be achieved with human tutors for

economic and social reasons (Elsom-Cook, 1987). A primary advantage of ITSs is

the possibility for providing one-to-one tutoring. There is a consensus on the view

that individual tuition, tailored to the needs of the student, is the most effective

form of educational interaction, at least for most domains. Bloom (1984) in his

comparison of private tutoring with classroom instruction of cartography and

254 H.S . Nwana

probability found that 98% of the students with private tutors performed better than

the average classroom student, even though all students spent the same amount of

time learning the topics. Anderson et al. (1985a, b) also recorded a four-to-one

advantage for the private tutor, as measured by the amount of time for students to

get to the same level of proficiency. Since our educational systems have, of necessi-

ty, become geared towards group teaching, many of the advantages of one-to-one

tutoring have been lost. ITSs can provide such tuition without necessarily losing

the advantages of the group teaching environment (e.g. by providing one ITS per

student in a class), thereby getting the best of both worlds. The ITS could provide

immediate feedback to the student on the task being performed. This individual-

ized and immediate feedback is crucial because tutoring is most effective when

occurring in direct response to the need of the student.

4 Historical rev iew

4.1 Introduction to review

Computer-assisted instruction/learning (CAI/CAL) has evolved considerably since

its inception in the 1950s with Skinnerian type 'linear programs'. This has hap-

pened despite being set off in the wrong direction by Skinner's insistence that

students' responses could be ignored in linear programs (O'Shea & Self, 1983). The

central problem with early systems was that they were unable to provide rich

feedback or individualization, because they were not designed to know what they

were teaching, who they were teaching or how to teach it. In order to solve this

problem, CAI/CAL systems have evolved over the past three and a half decades into

what are now usually termed 'Intelligent Tutoring Systems' (ITSs). Although we

may still be far from truly intelligent tutoring systems, most would agree consider-

able progress has already been made.

4.2 From CAI to ITSs: major stages

There were some major stages in the metamorphosis of the linear programs of the

1950s into the ITSs of the 1980s (see Fig. 2). The path has spanned a period of

almost four decades. It began in the 1950s with simple 'linear programs' which

were based on the principle of operant conditioning. The main proponent of such

linear programs was the psychologist B. F. Skinner (1954, 1958). Material which

had been selected and arranged to take the student step by step towards the desired

behaviour was presented in a series of 'frames'. Most frames had very simple

questions (e.g. involving only the filling in of a missing space or two), and the

student was told immediately whether the answer was right or wrong. The system

proceeded to present the next frame regardless of the correctness of the student's

response. To be fair, Skinner held that students should not be allowed to make

mistakes because this gives negative reinforcement. If the designer succeeded in

this aim, all the responses would be correct and so could legitimately be ignored.

Unfortunately, experience showed that such an ideal situation was usually not

attainable. The major limitations of linear programs then became glaringly appa-

Intelligent Tutoring Systems: an overview 255

rent: they did not provide individualization, which meant that all students,

irrespective of their abilities, background, or previous knowledge of the domain,

received exactly the same material in exactly the same sequence; neither did they

provide feedback, as the students' responses were ignored. This style of CAI has

been dubbed ad-hoc frame-orientated (AFO) CAI by Carbonell (1970) to stress its

dependence on author-specified units of information. Carbonell concluded that 'in

most CAI systems of the AFO type, the computer does little more than what a

programmed text book can do, and one may wonder why the machine is used at all

when teaching sequences are extremely simple, perhaps trivial, one should consid-

er doing away with the computer, and using other devices or techniques more

related to the task' (Carbonell, 1970, pp. 194,201). Overcoming these limitations

prompted the chain of events which has culminated in today's ITSs.

Linear programs
t950s

Bronchincj
progrorns

1960s]
Generative CAI

~o~e t960~

Fig. 2. CAI to ITS metamorphosis.

ITSs1980s

Crowder (1959) overcame some of the limitations of Skinnerian systems by

ceasing to ignore students' responses. He proposed using them to control the

material shown to the student. The 'branching programs' that resulted still had a

fixed number of frames, but were able to comment on a student's response and then

use it to choose the next frame, possibly repeating an earlier one. Pattern-matching

techniques allowed alternate answers to be treated as acceptable or partially accept-

able rather than as totally correct or incorrect as demanded by Skinnerian systems.

However, the teaching material became too large to be manageable through straight-

forward programming and so a special breed of programming languages, called

'author languages', were developed for creating CAI material.

In the late 1960s and early 1970s, 'generative systems' came into being (also

called 'adaptive systems'). These emerged from the recognition of the fact that the

teaching material could itself be generated by the computer. A generative system

has the ability both to generate and solve meaningful problems. In some domains

like arithmetic, researchers realized they could do away with all the pre-stored

teaching material, problems, solutions and associated diagnostics, and actually

generate them. The potential advantages, if exploited, were enormous. They in-

cluded drastically reduced memory usage and the generation and provision of as

many problems (to some desired level of difficulty) as the student needed. Most

notably, Uhr and his team implemented a series of systems which generated

problems in arithmetic that were 'tailor-made' to a student's performance (Uhr,

1969). Suppes (1967) and Woods & Hartley (1971) produced systems with similar

abilities. Wexler (1970) describes a system which combines generative CAI with

frame-orientated CAI in which the course-author must specify certain question

formats. The system generates parameters for these formats and searches the data-

base to determine the correct answer. Nevertheless, a major shortcoming was the

256 H.S . Nwana

restriction to drill-type exercises in domains as well-structured as mathematics.

Only parametric summaries of behaviour were used to guide problem generation,

rather than an explicit representation of the student's knowledge (Sleeman &

Brown, 1982b). Sleeman (1983) notes that in the initial version of the Leeds

Adaptive Arithmetic System (which later evolved to the Leeds Modelling System,

LMS, Sleeman & Smith (1981) and from there to the PIXIE system (Sleeman, 1987)),

the model of the student consisted merely of an integer to indicate the level of the

student's competence.

Generative CAI was the main precursor of ITSs. Although individualization and

feedback had been improved, there was a rather shallow knowledge representation.

Yazdani (1986) notes that 'none of these systems has human-like knowledge of the

domain it is teaching, nor can it answer the serious questions from the students as

to "why" and "how" the task is performed.' Such sentiments have also been echoed

by other researchers (e.g. O'Shea & Self, 1983). Hence, many problems remained

unsolved. Sleeman & Brown (1982b) and Hawkes et al. (1986) point out that these

systems were found to be lacking for a number of reasons.

(1) They attempted to produce total courses rather than concentrating on building

systems for more limited topics.

(2) They had severe natural language barriers which restricted users' interaction

with them.

(3) They had no 'knowledge' or 'understanding' of the subject they tutored or of the

students themselves; this is sometimes referred to in the literature as the 'Eliza'

syndrome. Consequently, they tended to assume too much or too little student

knowledge, and they could not conceptualize so as to diagnose a student's miscon-

ception within his/her own framework.

(4) They were extremely ad hoc. Building tutoring systems was not recognized to be

a non-trivial task - - a task requiring detailed psychological theories of learning and

mislearning. Anyone with a knowledge of computing attempted to build a tutor.

Consequently, there was little or no co-operation among educators, psychologists

and computer scientists ill the development phase of the tutors.

(5) They tended to be static rather than dynamic. There was little experimentation

with systems in order to improve them. Human tutors learn about their students

and about the subjects they teach every day, and so should machine tutors.

In response to the problems CAI faced, Self, in his interesting and classic paper,

argued that a computer tutorial program should have a representation of what is

being taught, who is being taught and how to teach him/her (Self, 1974). Carbonell

(1970) argued that a solution to this problem could not be achieved without the use

of AI techniques. Jaime Carbonell's important contribution to cognitive science is

best summarized in the title of his first-rate 1970 publication AI in CAl. He wanted

to put AI into CAI systems. He dreamed of a system which had a database of

knowledge about a subject matter and general information about language and

principles of tutorial instruction. The system could then pursue a natural language

dialogue with a student, sometimes following the student's initiative, sometimes

taking its own initiative, but always generating its statements and responses in a

natural way from its general knowledge. Such a system sharpedly contrasted with

Intelligent Tutoring Systems: an overview 257

existing CAI systems at the time in which a relatively fixed sequence of questions

and possible responses had to be pre-determined for each topic. He constructed an

early version of his dream, a classic system he called SCHOLAR (Carbonell, 1970,

1971), but he died before it was fully realized. Carbonell's introduction of AI into

CAI marked the beginning of the era of ITSs which therefore emerged to provide

answers to the limitations of generative CAl. (ITSs are alternatively referred to as

Intelligent Computer-Assisted Instruction/Learning (ICAI/ICAL) systems as men-

tioned in Section 2.) It is claimed that ITSs combine AI, psychological models of the

student and the expert, and educational theory. The psychological models allow for

simulations of student performance and can be experimented upon until they

closely represent the behaviour exhibited by the student.

Summarizing, providing a truly 'intelligent' system was recognized to be a non-

trivial task which needed experts from several other disciplines; a need which

could be provided by the AI research community, which contains computer scien-

tists, psychologists and educationalists. Most of the present-day work in ITSs is

Fig. 3. General ITS architecture.

258 H.S . Nwana

being carried out by AI researchers or enthusiasts, and AIs influence has been so

great that Yazdani (1983) concludes that 'intelligent tutoring systems are AI's

answer to CAL packages.' However, it is worth making the point that most so-called

ITSs still do not escape the bulk of the criticisms discussed above, so that there is

considerable scope for further work. Some of the major differences between ITSs

and CAI programs are (or should be):

(1) ITSs provide a clear articulation of knowledge for a limited domain;

(2) ITSs have a model of student performance which is dynamically maintained

and is used to drive instruction;

(3) the ITS designer defines the knowledge and the inference rules, but not the

teaching sequence, which is derived by the program;

(4) ITSs provide detailed diagnostics of errors rather than simply drill and practice;

(5) students can pose questions to an ITS (this is the main characteristic of 'mixed-

initiative tutors').

5 Structure of ITSs

5.1 General Architecture

Existing ITSs vary tremendously in architecture. In fact, it is almost a rarity to find

two ITSs based on the same architecture. This results from the experimental nature

of the work in the area: there is yet no clear-cut general architecture for such

systems (Yazdani, 1986, 1987). Previously, there was considerable consensus in the

literature that ITSs consist of at least three basic components (Barr & Feigenbaum,

1982; Bonnet, 1985).

(1) The expert knowledge module.

(2) The student model module.

(3) The tutoring module.

However, more recent research (Wenger, 1987; Burns & Capps, 1988; Mandl&

Lesgold, 1988) has identified and added a fourth component to the list.

(4) The user interface module.

Figure 3 illustrates the general form of an ITS architecture, which will serve as a

basis for discussion. It does not represent any particular known system.

The expert knowledge module comprises the facts and rules of the particular

domain to be conveyed to the student, i.e. the knowledge of the experts. In the

transition from CAI to ITSs, such knowledge has been the first aspect of the

teacher's expertise to be explicitly represented in systems. It has already been

mentioned that in traditional CAI, the expertise to be communicated is contained in

pre-stored presentation material called 'frames', which are designed by the expert

teacher and simply displayed to the student under given conditions. Such implicit

representation of knowledge has since been recognized to be inadequate: in fact a

major lesson learned from all the research on expert systems is that any expert

module must have an abundance of specific and detailed knowledge, derived from

Intelligent Tutoring Systems: an overview 259

people who have years of experience in a particular domain. Consequently, in ITSs,

much effort is expended in discovering and codifying the domain knowledge, i.e.

distilling years of experience into a knowledge representation.

KnowIedge eticitation and codification can be a very time-consuming task, espe-

cially for a complex domain with an enormous amount of knowledge and interrela-

tionships of that knowledge. Thus, investigating how to encode knowledge and

how to represent it in an ITS remains the central issue of creating an expert

knowledge module. In effect, this process aims to make the knowledge stored in

this module more explicit. So, in current ITSs, expert knowledge is represented in

various ways, including semantic networks, frames and production systems. It

must not only include surface knowledge (e.g. the descriptions of various concepts

that the student has to acquire), but also the representational ability that has been

recognized to be a critical part of expertise. Expert knowledge must include the

ability to construct implicit representational understanding from explicitly repre-

sented information (Mandl & Lesgold, 1988).

Expert knowledge modules can be classified along a spectrum ranging from

completely opaque or 'blackbox' representations, whereby only final results are

available (e.g. in tutors like SOPHIE I, reviewed in the next section), to fully

transparent or 'glassbox' ones, where each reasoning step can be inspected and

interpreted (e.g. SOPHIE IlI, also reviewed later).

The expert knowledge module or domain expert, as it is alternatively termed,

fulfils a double function. First, it serves as the source of knowledge to be presented

to the student, which includes generating questions, explanations and responses.

Secondly, it provides a standard for evaluating the student's performance. For this

latter function, it must be able to generate solutions to problems in the same context

as the student, so that respective answers can be compared. The module must also

be able to detect common systematic mistakes, and if possible identify any gap in

the student's knowledge that may be the cause of this. If the ITS is to monitor

students in solving problems, the expert module must also be able to generate

sensible, and possibly multiple, solution paths so that intermediate steps can be

compared.

Also, in its function as a standard, the expert knowledge module can be used to

assess the student's overall progress. To achieve this required the establishment of

some criteria to compare knowledge. This type of comparison is possible only if the

knowledge has been explicitly represented. Hence, ITSs differ considerably from

traditional CAI programs in that the knowledge in the latter is implicitly repre-

sented within its code.

It is also worth recognizing that the expert knowledge module by necessity

embodies a specific view of the domain - - that of the designer. Thus, tutoring can

be compromised if the student does not understand the system's instruction or

because the system cannot interpret the student's behaviour in terms of its own

view of the knowledge (Wenger, 1987). Of course, human teachers also have their

own views, but they do also have the incredible ability to adapt them accordingly in

order to perceive that of the student. This issue touches on the central problem of

knowledge representation in AI; a problem which is often said to be the main

2fi0 H.S . Nwana

bottle-neck to AI's success. The solution to this bottle-neck is particularly relevant

to ITSs because of its deep pedagogical implications.

The student model module refers to the dynamic representation of the emerging

knowledge and skill of the student. No intelligent tutoring can take place without

an understanding of the student. Thus, along with the idea of explicitly represent-

ing the knowledge to be communicated came the idea of doing likewise with the

student, in the form of a student model. Most researchers agree that an ITS should

have a student model (Hartley & Sleeman, 1973; Self, 1974, 1987a, 1987b, 1988b;

Rich, 1979; Sleeman, 1985: Tobias, 1985; Zissos & Witten, 1985; Ross et al., 1987;

Gilmore & Self, 1988: Wachsmuth, 1988). Ideally, this model should include all

those aspects of the student's behaviour and knowledge that have possible reper-

cussions on his/her performance and learning. However, the task of constructing

such a complete model is not only non-trivial but, probably, impossible, especially

considering that the communication channel, which is usually the keyboard, is so

restrictive. Human tutors would normally combine data from a variety of other

sources, like voice effects or facial gestures. They may also be able to detect other

phenomenological factors such as boredom or motivation which are also crucial in

learning.

In a recent review, Self (1988b) identified twenty different uses that had been

found for student models in existing ITSs. From analysing this list, he notes that the

functions of student models could be generally classified into six types.

(1) Corrective: to help eradicate bugs in the student's knowledge.

(2) Elaborative: to help correct ' incomplete' student knowledge.

(3) Strategic: to help initiate significant changes in the tutorial strategy other than

the tactical decisions of 1 and 2 above.

(4) Diagnostic: to help diagnose bugs in the student's knowledge.

(5) Predictive: to help determine the student's likely response to tutorial actions.

(6) Evaluative: to help assess the student or the ITS.

In the author's view, Self's preceding list is still far from comprehensive; it could

be narrowed down much further, and the student model could be seen to fulfil a

double function. On the one hand, it acts as a source of information about the

student. On the other hand, it serves as a representation of the student's knowledge.

Wenger (1987) also supports this view. The next few paragraphs will attempt to

justify this aforementioned viewpoint.

In its function as a source of information, it infers unobservable aspects of the

student's behaviour from the model. Such an inference could produce an inter-

pretation of his/her actions and also lead to a reconstruction of the knowledge that

gave rise to these actions. Such knowledge is vital for the pedagogic component of

the ITS as it could be used in either of the six ways noted by Self.

The student model is also likely to be formed out of the system's representation of

the target knowledge in the expert knowledge module. Accordingly, the student

model can include a clear evaluation of the mastery of each unit of knowledge in

the expert module (the function of the student model here is evaluative). This

Intelligent Tutoring Systems: an overview 281

allows the student's state of knowledge to be compared with the expert knowledge

module, and instruction would then be biased towards portions of the model

shown to be weak (thus, the student model 's function here is elaborative). This form

of student modelling is referred to as 'overlay' modelling (Goldstein, 1982), because

the student 's state of knowledge is viewed as a subset of the expert's. Again, this

shows how the student model acts as a source of information.

However, incorrect or suboptimal behaviour does not always result from incom-

plete knowledge. It could also be due to incorrect versions of the target knowledge.

Therefore a more formative student model should also provide explicit representa-

tions of the student's incorrect versions of the target knowledge for remediation

purposes (clearly, the function of the student model here is diagnostic and correc-

tive). In such a capacity, it serves as a representation of the student's knowledge.

This approach to modelling is called the 'buggy' approach (Brown & Burton, 1978a).

Student models are also expected to be executable or runnable. This allows for

exact prediction about a particular student in a particular context (thus, the func-

tion of the student model here is predictive). The tutoring module would also be

making use of such executable representations for pedagogic purposes (i.e, the

knowledge represented in the student model is being used in a strategic way). The

student model is also serving here as a representation of the student's knowledge.

In conclusion, student models could be seen to perform two 'super' functions:

acting as a source of information about the student, and serving as a representation

of the student. In achieving these functions, they act in roles including corrective,

elaborative, strategic, diagnostic, predictive and evaluative.

The tutoring module is the part of the ITS that designs and regulates instructional

interactions with the student. In other architectures, this module is referred to as

the teaching strategy or the pedagogic module. It is closely linked to the student

model, using knowledge about the student and its own tutorial goal structure to

decide which pedagogic activities will be presented: hints to overcome impasses in

performance, advice, support, explanations, different practice tasks, tests to con-

firm hypotheses in the student's model, etc. (Self, 1988b). The tutorial component

is thus the source and the orchestrator of all pedagogic interventions. The decisions

involved are subtle. The order and manner in which topics are treated can produce

very different learning experiences. In tutorial, it is sometimes more effective to let

the student flounder for a while before interrupting; sometimes, the student will get

stuck or lost if left completely to himself/herself (however, no good human tutor

will destroy a student's personal motivation or sense of discovery). Consequently,

the tutoring in existing ITSs can be classified along a spectrum ranging from

systems that monitor the student's every activity very closely, adapting their ac-

tions to the student's responses but never relinquishing control, to guided-

discovery learning systems where the student has almost full control of the activity,

and the only way the system can direct the course of action is by modifying the

environment. In the middle are mixed-initiative systems where the control is

shared by the student and the system as they exchange questions and answers. The

existence of this spectrum clearly highlights the fact that tutoring is an art that

262 H.S . Nwana

requires great versatility which is still extremely difficult to articulate and represent

in an ITS. Nevertheless, some progress is being made, albeit limited.

ITSs also aim at explicitly representing the knowledge found in the tutoring

module. This creates the potential to adapt and improve strategies over time (as in

the case of self-improving tutors), and for the same strategies to be used for other

domains. Once more this is contrasted with traditional CAI systems where such

pedagogical knowledge is deeply buried in the various pieces of code that control

the tutorial interaction.

The user interface module is the communicating component of the ITS which

controls interaction between the student and the system, as depicted in Fig. 3. In

both directions, it translates between the system's internal representation and an

interface language that is understandable to the student. Because the user interface

can make or break the ITS, no matter how 'intelligent' the internal system is, it has

become customary to identify it as a distinct component of its own. In fact, it would

be a mistake to consider it a secondary component of the ITS for two main reasons.

First, when the ITS presents a topic, the interface can enhance or diminish the

presentation. Since the interface is the final form in which the ITS presents itself,

qualities such as ease of use and attractiveness could be crucial to the student's

acceptance of the system. Secondly, progress in media technology is increasingly

providing more and more sophisticated tools whose communicative power heavily

influences ITS design.

Current ITSs provide user interfaces which, for the input, range from the use of

fixed menus with multiple-choice answers to a fairly free treatment of a pseudo-

natural language. For the output, they range from the mere display of pre-stored

texts typical of CAI, to the use of fairly complicated generic frames. Within these

two ends of the spectrum there is also a varying flexibility (Wenger, 1987).

Some ITSs are making their interaction with the student more 'user friendly' by

substituting pictures and pointing for text and typing. In some, the treatment of text

is only supplemented by pictures and graphics; much more cognitive research into

the use of such interfaces is still required. However, the most one expects to see, in

the near future, is ITSs communicating with the student primarily via graphics, as

research in natural language understanding and computer speech recognition/

generation are still at such early and primitive stages. In fact, research into user

interfaces is just commencing, as they have only recently been acknowledged as

distinct parts of ITSs.

5.2 Other architectures

Other architectures have been suggested, some largely similar, but others radically

different to that depicted in Fig. 3. For example, there are four components to

Anderson's Advanced Computer Tutoring (ACT) ITS architecture (Anderson et al.,

1985a,b) (see Fig. 4).

(1) The domain expert (ideal student model): this module contains all the correct

rules used for solving problems in the domain.

(2) The bug catalogue: this is an extensive library of common misconceptions and

errors for the domain.

Intelligent Tutoring Systems: an overview 263

(3) The teaching knowledge (tutoring module).

(4) The user interface.

This architecture is not only a proposal; at least two tutors are based on it

including the Geometry tutor and the Lisp tutor (Anderson et al., 1985a).

Tutoring knowledge

L Domain expert L
F

I
Uierinterfoce L

F

I
Student I

J
v

Student I

Fig. 4. Andersons ITS architecture.

Fig. 5. O'Shea et al.'s architecture.

2B4 H.S. Nwana

Hartley & Sleeman, whose 1973 architecture is probably the closest proposal to

the general architecture depicted in Fig. 3, suggest that an ITS ought to have four

distinct knowledge bases:

(1) knowledge of the domain (expert knowledge),

(2) knowledge of the person being taught (student model),

(3) knowledge of the teaching strategies (tutoring knowledge),

(4) knowledge of how to apply the tutoring knowledge to the needs of an indi-

vidual,

Hartley & Sleeman's proposals differ from Anderson's inasmuch as they do not

give the misconceptions in the domain (the bug catalogue) primary importance but

instead introduce the student model as a primary component (Yazdani, 1987).

Furthermore, this proposal subsumes the user interface in a more tutoring-

orientated module which includes meta-rules that guide the tutoring rules. These

differences also reflect the different tutoring philosophies involved in both

architectures; Anderson plays down the importance of the student model and, in its

place, substitutes two knowledge bases of ideal and buggy representations of

knowledge of the domain (see Fig. 4). Immediately a behaviour is exhibited which

indicates an error or bug, the student is nudged to follow the correct path by being

presented with the ideal solution.

O'Shea et al. {1984) present a five-ring model as shown in Fig. 5, This bears some

similarity to the Hartley & Sleeman architecture. However, it also clearly demons-

trates how differences in emphasis on student modelling and teaching lead to an

architecture which is starkly different from Anderson's (see Fig. 4). Its components

include:

(1) student history,

(2) student model,

(3) teaching strategy,

(4} teaching generation,

(5) teaching administration.

In this proposal, the explicit representation of knowledge in the domain (expert

knowledge), and the common misconceptions in the domain (the bug catalogue),

are undermined in favour of teaching skills: hence the introduction of the teaching

generation and teaching administration components.

Figure 6 presents another architecture which introduces the self-improving

{learning) concept. The architecture thus forms the basis of self-improving systems

which attempt to improve their tutoring capabilities over time. Such systems are

still rare and typically consist of two components: an adaptive teaching program

(which may have any of the architectures discussed earlier or some other), and a

self-improving component that makes experimental changes using data collected

during teaching sessions. O'Shea's (1982) Quadratic tutor was one of the earliest to

exploit this idea. This ambitious architecture, which attempts to automate a process

that is even difficult for humans, is an important contribution; most researchers

agree but pay lip service to the fact that ITSs should improve or learn over time as

J
-I

Intelligent Tutoring Systems: an overview

[$1"uden'l" l

I
AdQptive te(]ching progrom

265

Self-improving program

Fig. 6. Self-improving ITS architecture.

good human tutors do. Kimball 's (1982) Integration tutor is generally acknowledged

to be the first self-improving tutor to have been developed.

In addit ion to the above architectures, more recent systems concentrate on other

features such as planning (e.g. see Peachey & McCalla, 1986). The SCENT-3

architecture evolved by McCalla's team (McCalla & Greet, 1988) is much more

complex and interested readers are referred to this paper. Suffice to say that it is

based on a blackboard philosophy; the blackboard mediates communicat ion among

the numerous components of the architecture.

5.3 Discussion

It is thus evident that differing tutoring philosophies place emphases on different

aspects of the instructional process (e.g. student modelling), and this in turn leads

to different architectures, as in the case of O'Shea et al. and Anderson. It is

inconceivable that there would be a consensus amongst researchers on a tutoring

philosophy; rather, more variations of present philosophies are emerging. Conse-

quently, this has resulted in the numerous ITS architectures in the literature.

Naturally, not all these architectures can support a range of tutoring strategies

within a given ITS.

Most of these architectures still remain only proposals. Also, almost all the

arguments to their support or as to which of them is the 'best ' have, disappointing-

ly, been theoretical rather than practical. Until ITSs built around these proposals

are evaluated and demonstrated to be educationally worthy, none can claim any

superiori ty over another. Regrettably, a significant fraction of these proposals have

not even had systems developed which are based on them. Admittedly, a few have

(e.g. Anderson's), but an insufficient number of ITSs based on these architectures

have been developed, evaluated and proven 'useful ' to warrant such arguments. In

fact, due to the experimental nature of the area, even the so-called general

architecture of Fig. 3 should be viewed with some degree of scepticism and should

definitely not be seen as a basis for all ITSs. When more developed ITSs become

evaluated, as is expected to be the case, it is possible that some additional, or

266 H . S . Nwona

perhaps alternate, set of building blocks might emerge (as is

blackboard architecture of McCalla & Greer, 1988).

the case in the

6 R e v i e w of s o m e c l a s s i c ITSs

In this section, some important ITSs are reviewed; an overview paper of this sort

would be incomplete without it. It is by no means meant to be exhaustive: rather, it

should augment the previous sections of this paper. The systems reviewed are

either chosen for their historical significance or because they are good examples of

systems which display some of the intelligent tutoring principles reported in this

paper.

6.1 SCHOLAR

As the system which successfully launched the new paradigm of intelligent tutor-

ing, SCHOLAR surely deserves a place in any review of ITSs. Needless to say it was

the first ITS to be constructed. It was a revolutionary system when considered in its

historical context; most of the then existing ITSs were of the ad-hoc frame-

orientated (AFO) type. SCHOLAR was created by Jaime Carbonell; this automatical-

ly earned him a place in history as founder of ITSs. He used SCHOLAR to launch a

new paradigm which he called ' information-structure-oriented' (ISO) CAI as

opposed to the predominant AFO-type CAI of the time (Carbonell, 1970, 1971).

These two approaches correspond in many ways to what are now respectively

called traditional CAI and ITS. Because SCHOLAR, like most other ITS projects,

evolved, the version described in this review is Carbonell 's original version: be-

sides, it is the important one because of its historical significance to ITS research.

SCHOLAR was a pioneering effort in the development of computer tutors capable

of handling unanticipated student questions and of generating instructional mate-

rial in varying levels of detail, depending on the context of the dialogue. It was a

mixed-initiative ITS: both the system and the student could initiate conversation by

asking questions. Both the program's output and the student 's inputs were English

sentences. It seems appropriate to review it further by considering its four compo-

nents, as defined in Section 5.1.

The knowledge in the expert knowledge module is that of the geography of South

America, which was represented in a semantic network whose nodes instantiated

geographical objects and concepts. Statements like 'Tell me more about Brazil' just

invoked a retrieval of facts stored in the semantic network. However, the real power

of this representation schema comes by recognizing that it is possible to answer

questions for which answers are not stored. This automatically relieves the system

of the memory problems encountered in anticipating and storing all solutions by

traditional CAI systems. For example, it is not necessary to store in the semantic

network that 'Lima is in South America ' provided that the program which inter-

prets the network can make the relevant inference. In other words, the program

must know about the attributes concerned, e.g. ' location' and 'capital ' , and in

particular, that if x is capital of v and y is located in z then x is in z: this is a rule of

inference.

Intelligent Tutoring Systems: an overview 267

A semantic network representation was chosen because Carbonell thought it to be

close to the teacher's conceptualization of knowledge. By implication, the network

also represented the ideal student's conceptualization (ideal student model): hence,

overlay modelling becomes feasible. So SCHOLAR could associate flags with each

node of the network to indicate whether the student was thought to know the

information represented by that node. More ambitiously, Carbonell proposed to

model student errors by introducing small 'perturbations' to the network; this

proposal was not followed up in SCHOLAR. Its student modelling was then ex-

tremely rudimentary.

SCHOLAR's tutorial strategies were also fairly primitive, consisting mainly of

local topic selections. The teacher using it was expected to provide an agenda.

Whenever a topic was too general, SCHOLAR generated a subtopic on an essentially

random basis. For example, the teacher might specify the topic of 'South America',

and SCHOLAR would select a subtopic, e.g. 'Peru', and then perhaps a sub-

subtopic, e.g. 'topography of Peru'. This random element led to somewhat discon-

nected discussions lacking the systematic development of ideas characteristic of a

good tutorial, though it was necessary since SCHOLAR's semantic network had

little information about desirable orders of presentations of topics. Nevertheless,

suitable relevant tags in the network (from the agenda), could provide SCHOLAR

with some reasonable guidance in selecting topics.

SCHOLAR possessed language processing capabilities that were also rather li-

mited. Text was generated by sentence and question templates that was filled up

with information from the network. The parsing of student's questions followed the

same principle in reverse, while the parsing of student's answers was done by

matching key words from a list dynamically generated from the network for each

question. Consequently, SCHOLAR did not understand wrong answers and so

could not glean diagnostic information from them.

SCHOLAR has not been widely used except in NLSoSCHOLAR, an intelligent

on-line consultant for a text editor (Grignetti et al., 1975). This was partly due to

some fundamental limitations such as difficulty of representing procedural know-

ledge using semantic nets. However, despite all its shortcomings, SCHOLAR intro-

duced many methodological principles that have become central to ITS design, e.g.

separation of tutorial strategies from domain knowledge, more explicit representa-

tion of knowledge, student modelling, etc. Indeed, SCHOLAR's significance as a

milestone for the entire field cannot be over-emphasized.

6.2 SOPHIE

SOPHIE (a SOPHisticated Instructional Environment) is an ITS which reflects a

major attempt to extend Carbonell's notion of mixed-initiative CAI (introduced in

SCHOLAR) for the purpose of encouraging a wider range of student initiatives

(Brown et al., 1975). It was developed by John Seely Brown, Richard Burton, and

their coleagues at Bolt Beranek and Newman, Inc. This project went through

successive phases spanning more than 5 years; the three stages of development of

SOPHIE (I-III) incorporate the most intensive attempt at building at complete ITS

268 H.S . N w a n a

so far. SOPHIE is a milestone for the field, and hence it well earns its place in this

review.

The pedagogic philosophy is different in SOPHIE: it is not so much to imitate a

dialogue with a human teacher (as SCHOLAR sought to do) as to provide a reactive

learning environment in which the student can try his ideas, have them assessed,

and receive advice. Its philosophy is thus 'learning by doing' as opposed to 'learn-

ir~g by being told' as in the case of SCHOLAR. Brown et al. (1982) suggest that

computer technology can be used to make experimentation both 'easier' and 'safer'

by simulating environments that capitalize on the motivational value of exploratory

problem-solving activities. SOPHIE's simulated area of expertise is electronic

troubleshooting. Since the components of a simulation can be made faulty, troub-

leshooting means performing a series of measurements to propose and test hypoth-

eses concerning the location and nature of the fault. This not only gives the student

the opportunity to apply a theoretical knowledge of electronic laws, but also to

acquire genera] troubleshooting strategies. In essence, it enables the student to have

a one-to~one relationship with an 'expert ' who helps create, experiment with, and

debug his/her own ideas (Brown et al., 1975). In keeping with the objectives of this

paper, SOPHIE will further be reviewed by considering the four components as

defined in Section 5.1.

The expert knowledge module of SOPHIE comprises a 'strong' model (simula-

tion) of electronic troubleshooting for the IP-28 regulated power supply and a

'canned' articulate expert troubleshooter which can not only solve problems, but is

also capable of explaining its tactics and high-level strategies for attacking the

problem. For example, the expert can explain 'why' a measurement was made and

'what' logically follows from the measurement obtained.

SOPHIE's tutoring module possesses numerous heuristic strategies for answering

and critiquing a student or generating alternative theories to his/her current hypoth-

eses. SOPHIE I's tutorial capabilities were impressive as mentioned in the previous

paragraph: however, with the evolution from SOPHIE I to SOPHIE III, the strategies

were enhanced to become more 'human-like'. This was because its implementors

observed that SOPHIE i and II's approaches to problem solving were foreign to

humans (Brown et al., 1982). Consequently, SOPHIE evolved from a simulation-

based inference system to a more powerful and human-like reasoning system (using

qualitative reasoning techniques). By implication, SOPHIE's sophisticated tutoring

module requires a similarly sophisticated student model.

By all accounts, the SOPHIE interface demonstrates a very impressive natural

language capability; it uses the powerful notion of semantic grammars proposed by

Richard Burton. It is robust (handling 'nearly all sentences generated by users who

have had a few minutes exposure to the system'), efficient ('understands a typical

statement in a fraction of a second'), and of some generality ('since the notion of

semantic grammars has been successfully applied to other areas besides electro-

nics'): the interface undeniably demonstrates that techniques for processing natural

language are sufficiently developed to be usable in ITSs (O'Shea & Self, 1983).

Summarizing, SOPHIE's performance as a 'complete' ITS is presently unsurpas-

sed. SOPHIE was actually commissioned by the American Defence Department and

had limited use for on-site job training over the ARPA network/ARPA Internet is a

Intelligent Tutoring Systems: an overview 269

network of several networks; the most important ARPANET links US research

centres and universities (with 150 nodes)) for 2 years; it is no longer maintained (no

reason has been given in the literature for this). However, considering that most

other prototype ITSs never ever get used after their development, SOPHIE was quite

a success story. Probably, SOPHIE's most important contribution to ITS, though,

was to establish it as a respectable subarea in the eye of the AI community (Wenger,

1987).

6.3 GUIDON

GUIDON, an ITS for teaching diagnostic problem solving, was developed by Wil-

liam Clancey and his colleagues at Stanford University. The GUIDON project is also

unique as it represents the first attempt to adapt a pre-existing expert system into an

intelligent tutor. Probably because it was strongly influenced by SCHOLAR and

SOPHIE, it turned out to be one of the most concerned efforts so far at designing an

ITS. Like the other two, it went through many stages spanning more than 5 years

during which it yielded many important findings. All of this coupled with the fact

that it is built around the most well-known expert system, MYCIN, earns it a place

as one of the key ITS projects ever undertaken.

GUIDON's goal is to tutor the knowledge from the famous expert system, MYCIN

(Shortliffe, 1976), a medical expert system that suggests treatment for bacterial

infections. It attempts to transfer expertise to the students exclusively through case

dialogues where a sick patient (the 'case') is described to the student in general

terms. The student is then asked to play the role of a physician and ask for

information he/she thinks might be relevant to the case. GUIDON compares the

student 's questions to those which MYCIN would have asked and critiques him/her

on this basis; this demonstrates a different tutoring strategy to that of SCHOLAR or

SOPHIE. It is easy to infer from the previous sentence that student modelling is

largely of the overlay-type. GUIDON also separates its tutorial strategies (compris-

ing 200 rules), which was largely influenced by SOPHIE's, from its domain know-

ledge. Nevertheless, its natural language cgpabilities are far less sophisticated than

SOPHIE's, but certainly improve on SCHOLAR's.

The component which has evolved considerably has been the expert module. The

original version (GUIDON 1) was implemented by 'reversing' MYCIN's 450 rules

(Clancey, 1984). This implementation was ineffectual largely because medical

diagnosis is not made 'cookbook' style - - i.e. medical practitioners do not diagnose

diseases by using perfect recall on hundreds of medical facts and rules IClancey,

1982, 1983, 1987). He realized that MYCIN's rules represent 'compiled' knowledge

devoid of the low-level detail and relation necessary for learning and tutoring.

GUIDON 1 's failure was largely due to the fact that it would have had to 'decompile '

and augment these rules with data and diagnostic hypotheses that the medical

practitioner uses implicitly. Thus, MYCIN's rules were reconfigured to separate the

strategic knowledge from the domain facts and rules, resulting in NEOMYCIN

(Clancey & Letsinger, 1981). This in turn became the new basis around which

GUIDON 2 was built, and with some improved teaching strategies, GUIDON 2 has

had greater success as a prototype tutoring system than GUIDON 1 (Clancey, 1987).

270 H.S. Nwana

The GUIDON project provided a fascinating inquiry into the epistemological

questions related to intelligent tutoring as well as producing many important

findings about designing ITSs. For example, it clearly demonstrated that an expert

system is not a sound basis for tutoring (Elsom-Cook, 1987). More importantly

however, GUIDON produced spectacular demonstrations of the field's ability to

bring to light fundamental AI research issues (Wenger, 1987).

6.4 WEST

The WEST coach is a program developed, again, by Richard Burton and John Seely

Brown to help students play a game on the PLATO system (PLATO was one of the

largest ever CAI projects ever undertaken). It is indeed an intelligent tutor but in

view of the implementation of this program in an informal learning environment,

the term 'coach', originated by Goldstein (1982), appeared more congenial than

'tutor' (Burton & Brown, 1977, 1982). WEST was a spin-off from the SOPHIE project;

hence, it is still in keeping with the concept of a reactive learning environment

central to SOPHIE, but requires much simpler skills. WEST is also the first ever

computer coach and it demonstrates how a different emphasis on different compo-

nents of the ITS (in this case the tutoring module) can produce a radically different

ITS, so radical that the term 'coach' is preferred to 'tutor'.

WEST simulates a board game requiring players to travel in a series of moves. The

number of spaces for each move are determined by digits on three 'spinners'

supplied from a random-number generator. Players can combine these three digits

by using any legitimate mathematical operation including exponentiation, or by

using negative numbers, parentheses, etc. The game also has such features as short

cuts to the goal; opportunities to 'bump' opponents, forcing them to return to the

beginning, and spaces safe from bumping. Although two students can play against

each other, they typically play against the machine. At each move, the student's

skill in writing algebraic equations is compared to the expert's solution for the same

skill. If the two solutions differ, the coach (tutoring component) can intervene and

provide the student with helpful hints as to how to improve his/her game or make

better moves.

WEST's expert knowledge module comprises the simulated board game and an

articulate expert which can monitor and evaluate the student's moves. The student

modelling technique is largely a simpler version of overlay modelling called dif-

ferential modelling. This is because, apart from outright arithmetical errors, the

student's moves are never wrong; they are just poor. What is important is the

difference in comparison between the expert's move and the student's: hence the

word 'differential'. WEST's interface is simple as its inputs are mainly arithmetical

expressions involving integers (e.g. 1 + 2 × 2) or just plain integers.

However, the component that makes WEST radically different from the previous

three systems discussed is its tutoring component. Its main strategy is to encourage

skill acquisition and general problem-solving abilities by engaging the student in

some game-like activity. In effect, the immediate aim is to have fun; skill acquisi-

tion and learning is an indirect consequence.

Intelligent Tutoring Systems: an overview 271

WEST has actually been used in elementary school classrooms. In a controlled

experiment, a coached group exhibited 'a considerably greater variety of patterns'

in the expressions they formed and they even 'enjoyed playing the game consider-

ably more than the uncoached group' (Burton & Brown, 1982). These results are

quite encouraging: they demonstrate that the coach succeeded in fostering learning

without any apparent adverse effect on the fun of the game. Unfortunately,

coaching currently appears only to be applicable to trivial domains; it is hard to see

how it could be used to teach, say, electronic troubleshooting or some non-obvious

fraction addition problem.

However, WEST's influence on ITSs has been significant, and it is still a reference

for researchers today. Regrettably, it seems it is no longer used. With so many

worthless computer games available on the market, it is really unfortunate that a

program like WEST, which has actually been demonstrated to be functional, should

still remain a laboratory prototype (Wenger, 1987).

7 The r a n g e of pro to type ITSs

This section, as in Ross (1987), lists examples of ITSs that have been developed.

The list of ITSs and environments shown in Table I below is reasonably representa-

tive and provides an appreciation of the vibrant nature of this new and interesting

field and also reveals the scope of already constructed systems. As also echoed by

Ross (1987) most of them do a lot less than the domain indication suggests and are

also mostly experimental as hardly any have been tested on more than a very few

people. The list also reveals that the domains chosen by ITS researchers are mainly

few. Nevertheless, with the experience being currently accrued by researchers,

more complex domains are expected to be tackled in future research.

8 S o m e v i e w p o i n t s

It is appropriate to conclude this paper with some viewpoints on some of the

contentious issues in the intelligent tutoring domain; it also has its own on-going

debates. Two pertinent ones are:

(1) is intelligent tutoring just old wine in a new bottle, or is it a new vintage

(Ok-choon et al., 1987)?

(2) is intelligent tutoring really possible (Ridgway, 1988)?

Before providing responses to these questions, it seems fair to remark that they

arise in the first place because of public opinion about the AI enterprise in general.

Bobrow et al. (1986) correctly point out that public opinion about AI is schizophre-

nic, ranging from 'it will never work' to 'it might cost me my job'. This range of

opinion reflects the collective confusion about AI. It appears that the AI fraternity

only has itself to blame. Misleading publicity, mostly in order to attract grants, and

misuse of flamboyant expressions like artificial intelligence, expert systems, intelli-

gent tutoring systems, etc., have helped contribute to unrealistic expectations of the

state-of-the-art. Consequently, questions such as those above are bound to be asked.

272 H.S. N w a n a

Table 1. A reasonably comprehensive list of ITSs and environments

ITS Domain Reference

ACE/PSM
ATDSE

ARITHMEKIT

ALGEBRALAND

BIP-I/BIP-II

BLOCKS Tutor
BRIDGE

BUGGY

DEB UGG Y

EDSMB

EUROHELP

EXCHECK

FGA

FITS

FLOW Tutor
GEOMETRY Tutor
GERMAN Tutor
GUIDON I/II

INTEGRATION Tutor
LISP Tutor
LMS
M A C S Y M A Advisor

M A L T

MENO-Tutor

METEOROLOGY ITS
NEOMYCIN

PIXIE

PBOUST
QUADRATIC Tutor
QUEST
SCENT-3 Advisor

SCHOLAR

SIERRA

SOPHIE I/II/RI

SPADE

SPIRIT

STEAMER

TALUS
THEVENIN

TUTOR

WEST

W H Y

WUSOR

NMR spectra interpretation
Basic subtraction
Basic subtraction
Algebraic proofs
Basic programming
Troubleshooting in a BLOCKS world
Programming
Basic subtraction
Basic subtraction
Basic multiplication
UNIX mail
Basic logic
Basic French grammar
Basic fractions addition
FLOW computer language
Geometry proofs
Basic German
Basic medical diagnosis
Basic integral calculus
Lisp programming
Basic algebra
Use of M A C S Y M A

Basic machine language programming
Basic Pascal programming
Basic meteorology
Medical diagnosis
Basic algebra
Pascal programming
Quadratic equations
Basic electrics
Lisp programming
South American geographical facts
Learning basic arithmetic procedures
Basic electronic troubleshooting
Basic LOGO programming
Probability theory
Marine steam propulsion plant
Basic Lisp programming
Basic electrical circuits
British highway code
Basic arithmetic skills
Basic meteorology
Maze game skills

Sleeman (1975)
Attisha & Yazdani (1983)
Brown (1983)
Brown (1985)
Barret al. (1976)
Brown & Burton (1978b)
Bonar (1985)
Brown & Burton (1978a)
Burton (1982)
Attisha & Yazdani (1984)
Breuker (1987)
Blaine (1982)
Barchan et al. (1986)
Nwana (1990)
Genter (1977)
Anderson et ol. (1985a)
Weischedel et al. (1978)
Clancey (1987)
Kimball (1982)
Anderson & Reiser (1985)
Sleeman & Smith (1981)
Genesereth (1982)
Koffman & Blount, 1975
Woolf & McDonald (1984)
Brown et al. (1973)
Clancey & Letsinger (1981)
Sleeman (1987)
Soloway & Johnson (1984)
O'Shea (1982)
White & Frederiksen (1985)
McCalla et al. (1988)
Carbonell (1970)
Vanlehn (1987)
Brown et al. (1982)
Goldstein & Miller (1976)
Barzilay (1985)
Hollan et al. (1984)
Murray (1987)
Joobbani & Talukdar (1985)
Davies et al. (1985)
Brown & Burton (1978b)
Collins & Stevens (1982)
Goldstein (1982)

In the first question, the old wine was basically the AFO-type CAI which has been

observed to have taken a very naive view of the instructional process. It has since

been realized that providing a truly 'intelligent' tutor is a non-trivial task requiring

experts from several disciplines. ITSs combine at least some of the following: AI,

psychological models of the student and expert, and educational theory. There is

thus a substantial change in the quality of wine and, therefore, a new vintage.

Intelligent Tutoring Systems: an overview 273

The second question investigates whether intelligent tutoring is really possible.

Many answers to such questions in the past have turned out to be far too optimistic.

For example, Suppes' (1966) prediction that 'in a few more years millions of school

children wiI1 have access to what Phillip of Macedon's son had as royal prerogative:

the personal services of a tutor as well-informed as Aristotle.' Clearly, besides the

obvious financial constraints forbidding this and without much deliberation on

what Suppes meant by 'few', this prediction is still far from being achieved a

quarter of a century on. Hence, the response to this second question requires more

caution. The answer seems to depend on how the questioner views the use of the

word 'intelligent' in AI terms. If he/she rightly views it as strictly speaking a

misnomer, at least for now, then intelligent tutoring becomes very feasible, at least

in various limited domains. On the other hand, if the questioner is more literal, as

many AI sceptics in the literature seem to be (again probably due to the misleading

publicity), then of course intelligent tutoring would appear impossible, and so

would AI in general. Nevertheless, there is a suspicion that no matter how 'intel-

ligently' an ITS may eventually perform (e.g. even if one were demonstrably to

perform beter than most human tutors), these sceptics would still not be satisfied,

mainly because ITSs are computer-based. It therefore appears that researchers will

eventually have to turn to the famous Turing test of intelligence for an answer when

ITSs come of age. This is because Turing's test circumvents the problem of lack of

consensus on the definition of the word 'intelligent': it regards intelligence as

undefinable but 'intelligent behaviour' as recognizable.

However, one prediction looks secure: that despite these controversies, ITS

research will grow. This is because, apart from their practical needs, the area

appears to provide an excellent test-bed for theories from AI scientists, educational

theorists and cognitive psychologists (for instance, it has been noted that the

Carnegie Mellon psychologist John Anderson came into the area to test his psycho-

logical theories). Furthermore, ITS researchers themselves would be very interested

in incorporating any promising research results from various AI/Cognitive Science

subdomains, e.g. qualitative reasoning, planning, natural language understanding,

h u m a n - c o m p u t e r interaction, etc., into their ITSs, and so they should. In conclu-

sion, it appears certain that the best of ITS research is yet to come.

9 Conclus ions

This paper has introduced the AI subdomain of intelligent tutoring systems and the

motivation of ITSs. It looked at its history, motivation as well as reviewed some

notable ITSs. The paper also reveals how different emphases on different compo-

nents of the ITS (because of different philosophies adopted by various researchers)

result in contrasting systems; it provides examples of different architectures to

support this. This also reflects the different disciplines which ITS spans. The paper

also lists a reasonably comprehensive set of prototype ITSs which have been

developed to date. The paper draws to a conclusion with the author's viewpoints on

two debatable issues in the ITS domain.

For further reading, see Sleeman & Brown (1982a), O'Shea & Self (1983), Wenger

(1987) or Nwana (1989).

274 H . S . N w a n a

Acknowledgments

T h e a u t h o r s i n c e r e l y a c k n o w l e d g e s t he i n v a l u a b l e c o m m e n t s of h is s u p e r v i s o r , Dr

Pe te r C o x h e a d a n d of h is e x a m i n e r , Dr Pe te r Ross.

References

Anderson, J. R~ (1987) Production systems, learning and tutoring. In Production System Models of

Learning and Development (eds D. Klahr, P. Langley & R. Neches). MIT Press, London, pp.

437-458.

Anderson, J. R., Boyle, D. G. & Reiser, B.]. (1985a) Intelligent tutoring systems. Science, 228,

456-462.

Anderson, J. R., Boyle, D. F. & Yost, G. (1985b) The geometry tutor. In Proceedings of the 9th

International Joint Conference on Artificial Intelligence, Los Angeles, CA, pp. 1-7.

Anderson, J. R. & Reiser, B. J. (1985) The lisp tutor. Byte, 10(4).

Attisha, M. G. & Yazdani, M. (1983) A micro-computer based tutor for teaching arithmetic skills.

Instructional Science, 12, 333-342.

Attisha, M. G. & Yazdani, M. (1984) An expert system for diagnosing children's multiplication

errors. Instructional Science, 13, 79-92.

Barchan, J., Woodmansee, B. J. & Yazdani, M. (1986) A prlog-based tool for French grammar

analysis. Instructional Science, 14.

Barr, A., Beard, M. & Atkinson, R. C. (1976) The computer as a tutorial laboratory: the Stanford BIP

Project. International lournal of Man-Machine Studies, 8, 567-596.

Barr, A. & Feigenbaum, E. A. (1982) The Handbook of Artificial Intelligence, Vol, 2. Kaufmann, Los

Altos.

Barzilay, A. (1985) SPIRIT: a flexible tutoring style in an intelligent tutoring system. In Artificial

Intelligence Applications: The Engineering of Knowledge-Based Systems (ed. R. C. Weisbin).

IEE Computer Society, North Holland.

Blaine, L. H. (1982) EXCHECK. Handbook of Artificial Intelligence, Vol. 2 (eds A. Barr & E. A.

Feigenbaum). Addison-Wesley, Reading, MA.

Bloom, B. S. 11984) The 2 Sigma Problem: the search for methods of group instruction as effective

as one-to-one tutoring. Educational Researcher 13, 4-16.

Bobrow, D. G., Mittal, S. & Steffik, M. (1986) Expert systems: perils and promise. Communications

of the ACM, 29, 880-893.

Bonar, J. (1985) Understanding the Bugs of Novice Programmers. PhD Thesis, Dept of Computer

and Information Science, University of Pittsburgh, Pittsburgh, PA.

Bonnet. A. (1985) Artificial Intelligence: Promise and Performance. Prentice Hall, London.

Breuker, J. (1987) Coaching in help systems. In Artificial Intelligence and Human Learning:

Intelligent Computer-aided Instruction (ed. J. A. Seft). Chapman & Hall, London.

Brown, J. S. (1985) Process versus product: a perspective on tools for communal and informal

electronic learning, lournal of Educational Computing Research 1,179-201.

Brown, J. S. & Burton, R. E. (1978a) Diagnostic models for procedural bugs in basic mathematical

skills. Cognitive Science, 2, 155-192.

Brown, J. S. & Burton, R. R. (1978b) A paradigmatic example of an artificially intelligent instruc-

tional system. International Journal of Man-Machine Studies, 10, 323-339.

Brown, J. S., Burton, R. R. & Bell, A. G. (1975) SOPHIE: a step towards a reactive learning

environment. International/ournal of Man-Machine Studies, 7, 675-696.

Brown, J. S., Burton, R. R. & de Kleer, J. (1982) Pedagogical, natural language, and knowledge

engineering techniques in SOPHIE I, II and II1. In Intelligent Tutoring Systems (eds D. H.

Sleeman & J. S. Brown). Academic Press, London, pp. 227-282.

Brown, J. S., Burton, R. R. & Zydel, F. (1973] A model-driven question-answering system for

mixed-initiative CAI. IEEE Transactions on Systems, Man, and Cybernetics, 3, 248-257.

Intelligent T u t o r i n g S y s t e m s : a n overv iew 275

Burns, H. L. & Capps, C. G. (1988) Foundations of intelligent tutoring systems: an introduction. In

Foundations of Intelligent Tutoring Systems (eds M. C. Poison & J. J. Richardson). Lawrence

Erlbaum, London~ pp. 1-19.

Burton, R. (1982) Diagnosing bugs in a simple procedural skill. In Intelligent Tutoring Systems (eds

D. H. Sleeman & J. S. Brown). Academic Press, London, pp. 157-183.

Burton, R. & Brown, J. S. (1977) A tutoring and student modelling paradigm for gaming environ-

ments. SIGCSE Bulletin, 8, 236-246.

Burton, R. & Brown, J. S. (1982) An investigation of computer coaching for informal learning

activities. In Intelligent Tutoring Systems (eds D. H. Sleeman &]. S. Brown). Academic Press,

London, pp. 79-98.

Carbonell, J. R. (1970) AI in CAI: an artificial intelligence approach to computer-assisted instruc-

tion. IEEE Transactions on Man-Machine Systems, II, 190-202.

Carbonell, J. R. (1971) Artificial intelligence and large interactive man computer systems. Proceed*

ings of the Joint National Conference on Major Systems, Anahein, CA, pp. 167-173.

Clancey, W. J. (1982) Tutoring rules for guiding a case method dialogue. In Intelligent Tutoring

Systems (eds D. H. Sleeman & J. S. Brown). Academic Press, London, pp. 201-225.

Clancey, W. J. (1983) GUIDON. Journal of Computer-Based Instruction, 10, 8-15.

Clancey, W. J. (1984) Methodology for building an intelligent tutoring system. In Methods and

Tactics in Cognitive Science (eds W. Kintsch, J. R. Miller & P. G. Polson). Lawrence Erlbaum,

London.

Clancey, W. J. (1987) Knowledge-Based Tutoring. MIT Press, London.

Clancey, W. J. & Letsinger, R. (1981) NEOMYCIN: reconfiguring a rule-based expert system for

application to teaching. Proceedings of the 7th International Joint Conference on Artificial

Intelligence, Vancouver, Canada, pp. 829-835.

Collins, A. & Stevens, A. L. (1982) Goals and strategies for inquiry teachers. In Advances in

Instructional Psychology, Vol 2 (ed R. Glaser). Lawrence Erlbaum, Hillsdale, NJ.

Crowder, N. A. (1959) Automatic tutoring by means of intrinsic programming. In Automatic

Teaching: The State of the Art, Wiley, New York, pp. 109-116.

Davies, N. G., Dickens, S. L. & Ford, L. (1985) Tutor - - a prototype ICAI system. In Research and

Development in Expert Systems (ed. M. A. Bramer). Cambridge University Press, Cambridge.

Elsom-Cook, M. (1987) Intelligent Computer-aided instruction research at the Open University.

Technical Report No: 63. Computer-Assisted Learning Research Group, The Open University,

Milton Keynes.

Genesereth, M. R. (1982) The role of plans in intelligent teaching systems. In Intelligent Tutoring

Systems (eds D. H. Sleeman & J. S. Brown). Academic Press, London, pp. 137-155.

Genter, D. R. (1977) The FLOW tutor: a schema-based tutorial system. Proceedings of the Fifth

International Joint Conference on Artificial Intelligence, Cambridge, MA 787-790.

Gilmore, D. & Self, J. A. (1988) The application of machine learning to intelligent tutoring systems.

In Artificial Intelligence and Human Learning: Intelligent Computer-Aided Instruction (ed.

J. A. Self). Chapman & Hall, London, pp. 179-196.

Goldstein, I. P. (1982) The genetic graph: a representation for the evolution of procedural know-

ledge. In Intelligent Tutoring Systems (eds D. H. Sleeman & J. S. Brown). Academic Press,

London, pp. 51-77.

Goldstein, I. P. & Miller, M. L. (1976) AI-based personal learning environments: directions far long

term research. AI lab Memo 384. Massachussetts Institute of Technology, Cambridge, MA.

GrignettL M., Hausman, C. L. & Gould, L. (1975) An intelligent on-line assistant and tutor:

NLS-SCHOLAR. Proceedings of the National Computer Conference, 775-781.

Hartley, J. R. & Sleeman, D. H. (1973) Towards more intelligent teaching systems. International
Journal of Man-Machine Studies, 5, 215-236.

Hasemann, K. (1981) On difficulties with fractions. Educational Studies in Mathematics, 12,

71-287.

Hawkes, W. L, Sharon, J. D., Kandel, A. & Taps Project Staff (1986) Fuzzy expert systems for an

intelligent computer-based tutor. Technical Report No: 86-5. Learning Systems Institute,

Centre for Educational Technology, Florida State University.

276 H . S . Nwana

Hollan, [. D_ Hutchins, E. L. & Weitzman, L. (1984) STEAMER: an interactive inspectable simula-

tion-based training system. A1 Magazine, 5, 1 5 - 2 7

Joobbani, R. & Talukdar, S. N. (1985) An expert system for understanding expressions for electric

circuits analysis. Proceedings of the Ninth International Joint Conference on Artificial Intelli-

gence, Los Angeles, pp. 23-25.

Kimball, R. A. (1982) A self-improving tutor for symbolic integration. In Intelligent Tutoring

Systems (eds D. H. Sleeman & J. S. Brown). Academic Press, London, pp. 283-307.

Koffman, E. B. & Blount, S. E. (1975) Artificial intelligence and automatic programming in CA1.

Artificial Intelligence, 6, 215-234.

Mandl, H. & Lesgold, A. (eds) (1988) Learning Issues for Intelligent Tutoring Systems. Springer-

Verlag~ London.

McCalla, G. I., Greer, J. E. & SCENT Team (1988) Intelligent advising in problem solving domains:

the SCENT-3 architecture. In Proceedings of the International Conference on Intelligent Tutor-

ing Systems, Montreal, Canada, pp. 124-131.

Murray, W. R. (1987) Automatic program debugging for intelligent tutoring systems. Computation-

al Intelligence, 3(1/.

Nwana, H, S. I1989) An iterative-style approach to constructing intelligent tutoring systems in

mathematics. PhD Thesis, Aston University, Birmingham.

Nwana, H. S. C1990) The anatomy of FITS: a mathematic tutor. Intelligent Tutoring Media, 1(2).

Ok-choon, P., Ray, S. P, & Seidel, R, J. (19871 Intelligent CAI: old winein new bottles or a new

vintage? In Artificial Intelligence and Instruction: Instruction and Methods, Addison-Wesley,

Reading, MA, pp. 11-43.

O'Shea, T. (19821 A self-improving quadratic tutor. In Intelligent Tutoring Systems (eds D. H.

Sleeman & J. S. Brown). Academic Press, London, pp. 283-307.

O'Shea, T,, Bornat, R., Du Boulay. B,, EisenstadL M. & Page~ 1. (1984) Tools for creating intelligent

computer tutors. In Artificial and Human Intelligence (eds ?. Elithorn & R. Beneiji). Elsevier,

North Holland, pp. 181-199.

O'Shea, R. & Self,]. (1983) Learning and Teaching with Computers. Harvester Press, Sussex.

Papert, S. (1980) Mindstorms: Children, Computers and Powerful Ideas. Basic Books, New York.

Peachey, D. R, & McCalla~ G. I. (1986) Using planning techniques in intelligent tutoring systems.

International]ournal of Man-Machine Studies, 24, 77-98.

Rich, E. (1979) User modelling via stereotypes. Cognitive Science, 3, 329-354.

Ridgway, J. (1988) Of course ICAI is impossible, . . worse though, it might be seditious. In Artificial

Intelligence and Human Learning: Intelligent computer-aided instruction (ed. J.A. Self).

Chapman & Hall. London, pp. 28-48.

Ross~ P. (1987) Intelligent tutoring systems, lournal of Computer Assisted Learning, 3, 194-203.

Ross, P., Jones, 1. & Millington, P. I1987) User modelling in intelligent teaching and tutoring. In

Trends in Computer Assisted Instruction (eds R. Lewis & E. D. Tagg). Blackwell, London, pp.

32-44.

Sel l], A. 11974) Student models in computer-aided instruction. International Journal of Man-

Machine Studies, 6, 261-276.

Self,]. A. (1987a) The application of machine learning to student modelling. In Artificial Intelli-

gence and Education 1: Learning Environments & Tutoring Systems (eds R. Lawler & M. Yaz-

dani). Ablex, Norwood, pp. 267-280.

Self, J, A. (1987b) Realism in student modelling. Alvey-IKBS Research Workshop Tutoring Sys-

tems. University of Exeter.

Self, J. A. (ed.) [1988a) Artificial Intelligence and Human Learning: Intelligent computer-aided

instruction. Chapman & Hall, London.

Self, J. A. I1988b) Student models: what use are they? In Artificial Intelligence Tools in Education

(eds P. Ercoli & R. Lewis/. North Holland, Amsterdam, pp. 73-86.

Shortliffe, E. H. (1976) Computer Based Medical Consultations: MYCIN. Elsevier, New York.

Skinner, B, F. {1954) The science of learning and the art of teaching. Harvard Educational Review,

24, 86-97,

Intelligent T u t o r i n g Systems: an overv iew 277

Skinner, B, F. (1958) Teaching Machines. Science, 128,969-977.

Sleeman, D. H. (1975) A problem-solving monitor for a deductive reasoning task. International

Journal of Man-Machine Studies, 7, 183-211.

Sleeman, D. H. (1983) Intelligent tutoring systems: a review. Proceedings of EdCompCon '83

meeting. IEEE Computer Society, pp. 95-101.

Sleeman, D. H. (1985) UMFE: a user modelling front-end subsystem. International Journal of

Man-Machine Studies, 23, 71-88.

Sleeman, D. H. (1987) PIXIE: a shell for developing intelligent tutoring systems. In Artificial

Intelligence and Education (eds R. Lawler & M. Yazdani). Ablex, Norwood, pp. 239-265.

Sleeman, D. H. & Brown, J. S. (eds) (1982a) Intelligent Tutoring Systems. Academic Press, London.

Sleeman, D. H. & Brown, J. S. (1982b) Introduction: intelligent tutoring systems. In Intelligent

Tutoring Systems [eds D. H. Sleeman & J. S. Brown). Academic Press, London, pp. 1-11.

Sleeman, D. H. & Smith, M. 1. (1981) Modelling students' problem solving. Artificial Intelligence,

16, 171-188.

Soloway, E. & Johnson, W. (1984) Remembrance of blunders past: a retrospective on the develop-

ment of PROUST. Proceedings of the Sixth Cognitive Science Society Conference, Boulder,

CO, p. 57.

Streitz, N. A. (1988) Mental models and metaphors: implications for the design of adaptive

user-system interfaces. In Learning Issues for Intelligent Tutoring Systems (eds H. Mandl&

A. Lesgold). Springer-Verlag, London, pp. 164-186.

Suppes, P. (19661 The uses of computers in education. Scientific American, 25, 206-221.

Suppes, P. (1967) Some theoretical models for mathematics learning, lournal of Research and

Development in Education 1, 5-22.

Tobias, S. (1985) Computer assisted instruction. In Adapting Instruction to Individual Differences

(eds M, C. Wang & H, J. Waldberg), McCutchan, Berkeley, CA, pp, 139-159,

Uhr, L. (1969) Teaching machine programs that generate problems as a function of interaction with

students. Proceedings of the 24th National Conference, pp. 125-134.

Vanlehn, K. (1987) Learning one subprocedure per lesson. Artificial Intelligence 31, 1-40.

Wachsmuth, I. (1988) Modelling the knowledge base of mathematical learners: situation-specific

and situation-nonspecific knowledge. In Learning Issues for Intelligent Tutoring Systems (eds

H. Mandl& A. Lesgold). Springer-Verlag, London, pp. 63-79.

Weischedel, R. M., Voge, W. M. & [ames, M. (19781 An artificial intelligence approach to language

instruction. Artificial Intellige~me 10, 225-240.

Wenger, E. (1987) Artificial Intelligence and Tutoring Systems. Morgan Kaufmann, Los Altos, CA.

Wexler, J. D. 11970) Information networks in generative computer.assisted instruction. IEEE Trans-

actions on Man-Machine Systems 11, 181-190.

White, B. Y. & Frederiksen, J. R. (1985) QUEST: qualitative understanding of electrical system

troubleshooting. ACM SIGART Newsletter, 93, 34-37.

Woods, P. & Hartley, J. R. (19711 Some learning models for arithmetic tasks and their use in

computer-based learning. British Journal of Educational Psychology, 41.35-48.

Woolf, B. P. & McDonald, D. D. (1984) Context-dependent transitions in tutoring discourse.

Proceedings of the National Conference on Artificial Intelligence. Austin, Texas, pp. 355-361.

Yazdani, M. (1983) Introduction: artificial intelligence and education. In New Horizons in Educa-

tional Computing led. M. Yazdani). Wiley, New York.

Yazdani, M. (1986) Intelligent tutoring systems survey. Artificial Intelligence Review, 1, 43-52.

Yazdani, M. (1987) Intelligence tutoring systems: an overview. In Artificial Intelligence and

Education (eds R. Lawler & M. Yazdani). Ablex, Norwood, pp. 182-201,

Zissos, A. Y. & Witten, I. H. (1985) User modelling for a computer coach: a case study. International

Journal of Man-Machine Studies, 23, 729-750.

