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Abstract, This is a non-expert overview of Intelligent Tutoring Systems 

(ITSs), a way in which Artificial Intelligence (AI) techniques are being 

applied to education. It introduces ITSs and the motivation for them. It 

looks at its history: its evolution from Computer-Assisted Instruction 

(CAI). After looking at the structure of a 'typical' ITS, the paper further 

examines and discusses some other architectures. Several classic ITSs are 

reviewed, mainly due to their historical significance or because they best 

demonstrate some of the principles of intelligent tutoring. A reasonably 

representative list of ITSs is also provided in order to provide a better 

appreciation of this vibrant field as well as reveal the scope of existing 

tutors. The paper concludes, perhaps more appropriately, with some of the 

author's viewpoints on a couple of controversial issues in the intelligent 

tutoring domain. 

1 Artificial  I n t e l l i g e n c e  a n d  E d u c a t i o n  

The incorporation of Artificial Intelligence (AI) techniques into education in order 

to produce educationally useful computer  artefacts dates back to the early 1970s. By 

the early 1980s researchers in the already vibrant field had clearly split into two 

unequal camps with the emergence of two schools of thought. The first and smaller 

of the two groups advocated 'exploration e n v i r o n m e n t s ' - -  environments  which 

encourage discovery learning (i.e. learning by doing). Perhaps the most famous is 

the LOGO language (Papert, 1980) which introduces students to the world of 

geometry through the use of robot ' turtles '  and 'turtle graphics '  techniques, i.e. the 

student learns by direct programming rather than by indirect instruction. Papert 

(1980) projects that ' computer  presence will enable us to modify the learning 

environment  outside the classroom so that much, if not all, of the knowledge 

schools presently try to teach with such pain, expense and limited success, will be 

learned as the child learns to talk, painlessly, successfully and without  instruction. '  

He goes on to conclude that 'schools as we know them today have no place in the 

future. '  Clearly, Papert 's  dream is quite revolutionary: hence, he and his advocates 

in the LOGO camp are often referred to as revolutionaries. 
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The second and larger of the camps is the "intelligent tutoring' group who refer to 

themselves as reformists as they prefer a gradual improvement (i.e. evolution) in the 

present quality of education using AI techniques. They advocate a paradigm where 

the computer acts as a tutor, i.e. students largely learn by being told. 

Naturally, the approach Papert champions was bound to be greeted with con- 

siderable scorn and criticism as it proposes radically to change the status quo. It 

appears inconceivable that such a rapid change is feasible even if it were thought 

desirable. On the other hand, the intelligent tutoring approach enjoys the privilege 

of being closer to current traditional classroom instruction. As a result, the LOGO 

camp, perhaps unfortunately, is now often bracketed with its much larger intelli- 

gent tutoring counterpart. In any case, this paper overviews the latter (i.e. intelli- 

gent tutoring systems). 

2 Introduction to intelligent tutoring systems 

Intelligent tutoring systems (ITSs) are computer programs that are designed to 

incorporate techniques from the AI community in order to provide tutors which 

know what they teach, who they teach and how to teach it. AI attempts to produce 

in a computer behaviour which, if performed by a human, would be described as 

'intelligent': ITSs may similarly be thought of as attempts to produce in a computer 

behaviour which, if performed by a human, would be described as 'goad teaching' 

(Elsom-Cook, 1987). The design and development of such tutors lie at the intersec- 

tion of computer science, cognitive psychology and educational research; this 

intersecting area is normally referred to as cognitive science (see Fig. 1). For histor- 

ical reasons, much of the research in the domain of educational software involving 

AI has been conducted in the name of 'ICAI', an acronym for 'Intelligent Computer- 

Aided Instruction'. This phrase, in turn, evolved out of the name 'Computer-Aided 

Instruction' (CAI) often referring to the use of computers in education. Neverthe- 

less, to all intents and purposes, ITSs and ICAI are synonymous. However, though 

some researchers still prefer 'ICAI' (e.g. Self, 1988a, uses it in the title of his recent 

book), it is now often replaced by the acronym 'ITS' (Sleeman & Brown, 1982b). The 

latter, which is also the author's personal preference, is certainly gaining support, 

as confirmed by the international conference on Intelligent Tutoring Systems held 

in Montreal, Canada, as recently as June 1988. This preference is motivated by the 

claim that, in many ways, the significance of the shift in research methodology goes 

beyond the adding of an T to CAI (Wenger, 1987). However, some researchers are 

understandably hesitant to use the term 'intelligent', instead opting for labels such 

as 'Knowledge-Based Tutoring System' (KBTS) or 'Adaptive Tutoring System' 

(ATS) (e.g. Streitz, 1988): Wenger (1987) prefers the label Knowledge Communica- 

tion Systems. Nevertheless, most researchers appear to be reasonably content with 

the acronym ITS. This is fine as long as everyone involved with the area under- 

stands that the usage of the word 'intelligent' is, strictly speaking, a misnomer. This 

does not appear to be the case, resulting in some very ambitious goals/claims, 

particularly in the more theoretical parts of the literature: this also appears to be a 

valid criticism of the entire AI literature. 
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The fact that ITS research spans three different disciplines has important im- 

plications. It means that there are major differences in research goals, terminology, 

theoretical frameworks,  and emphases amongst ITS researchers. This will become 

apparent  later in this paper. ITS research also requires a mutual understanding of 

the three disciplines involved, a very stressful demand given the problems of 

keeping abreast with even a single discipline today. 

However,  some researchers have stood up to the challenge. As a result, a great 

deal has been learnt about how to design and implement  ITSs. A number  of 

impressive ITSs described in this paper  bear test imony to this fact. 

sc ience 

Fig. 1. ITS domains. 

3 M o t i v a t i o n  

Why do researchers bother to produce such computer-based tutors? There seem to 

be two main motivating factors. 

(1) Research needs. On the pure research level, there is a need to understand more 

about the processes which contribute to an educational interaction (Elsom-Cook, 

1987). Since ITS research lies at the intersection of three main disciplines, it 

provides an excellent test-bed for various theories from cognitive psychologists. AI 

scientists and educational theorists. For example, a primary reason why the famous 

Carnegie Mellon psychologist John Anderson came into the area, was to test out his 

various theories of learning (Anderson, 1987). Hence, the design of an ITS will 

contribute to the discovery of more accurate theories of cognition (Burns & Capps, 

1988). 

(2) Practical needs. On the more applied level, there are a number  of useful results 

which can be achieved using ITSs which cannot be achieved with human tutors for 

economic and social reasons (Elsom-Cook, 1987). A primary advantage of ITSs is 

the possibility for providing one-to-one tutoring. There is a consensus on the view 

that individual tuition, tailored to the needs of the student, is the most effective 

form of educational interaction, at least for most domains. Bloom (1984) in his 

comparison of private tutoring with classroom instruction of cartography and 
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probability found that 98% of the students with private tutors performed better than 

the average classroom student, even though all students spent the same amount of 

time learning the topics. Anderson et al. (1985a, b) also recorded a four-to-one 

advantage for the private tutor, as measured by the amount of time for students to 

get to the same level of proficiency. Since our educational systems have, of necessi- 

ty, become geared towards group teaching, many of the advantages of one-to-one 

tutoring have been lost. ITSs can provide such tuition without necessarily losing 

the advantages of the group teaching environment (e.g. by providing one ITS per 

student in a class), thereby getting the best of both worlds. The ITS could provide 

immediate feedback to the student on the task being performed. This individual- 

ized and immediate feedback is crucial because tutoring is most effective when 

occurring in direct response to the need of the student. 

4 Historical  rev iew 

4.1 Introduction to review 

Computer-assisted instruction/learning (CAI/CAL) has evolved considerably since 

its inception in the 1950s with Skinnerian type 'linear programs'. This has hap- 

pened despite being set off in the wrong direction by Skinner's insistence that 

students'  responses could be ignored in linear programs (O'Shea & Self, 1983). The 

central problem with early systems was that they were unable to provide rich 

feedback or individualization, because they were not designed to know what they 

were teaching, who they were teaching or how to teach it. In order to solve this 

problem, CAI/CAL systems have evolved over the past three and a half decades into 

what are now usually termed 'Intelligent Tutoring Systems' (ITSs). Although we 

may still be far from truly intelligent tutoring systems, most would agree consider- 

able progress has already been made. 

4.2 From CAI to ITSs: major stages 

There were some major stages in the metamorphosis of the linear programs of the 

1950s into the ITSs of the 1980s (see Fig. 2). The path has spanned a period of 

almost four decades. It began in the 1950s with simple 'linear programs' which 

were based on the principle of operant conditioning. The main proponent  of such 

linear programs was the psychologist B. F. Skinner (1954, 1958). Material which 

had been selected and arranged to take the student step by step towards the desired 

behaviour was presented in a series of 'frames'. Most frames had very simple 

questions (e.g. involving only the filling in of a missing space or two), and the 

student was told immediately whether the answer was right or wrong. The system 

proceeded to present the next frame regardless of the correctness of the student's 

response. To be fair, Skinner held that students should not be allowed to make 

mistakes because this gives negative reinforcement. If the designer succeeded in 

this aim, all the responses would be correct and so could legitimately be ignored. 

Unfortunately, experience showed that such an ideal situation was usually not 

attainable. The major limitations of linear programs then became glaringly appa- 
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rent: they did not provide individualization, which meant that all students, 

irrespective of their abilities, background, or previous knowledge of the domain, 

received exactly the same material in exactly the same sequence; neither did they 

provide feedback, as the students' responses were ignored. This style of CAI has 

been dubbed ad-hoc frame-orientated (AFO) CAI by Carbonell (1970) to stress its 

dependence on author-specified units of information. Carbonell concluded that 'in 

most CAI systems of the AFO type, the computer does little more than what a 

programmed text book can do, and one may wonder why the machine is used at all 

when teaching sequences are extremely simple, perhaps trivial, one should consid- 

er doing away with the computer, and using other devices or techniques more 

related to the task' (Carbonell, 1970, pp. 194,201). Overcoming these limitations 

prompted the chain of events which has culminated in today's ITSs. 

Linear programs 
t950s 

Bronchincj 
progrorns 

1960s ] 
Generative CAI 

~o~e t960~ 

Fig. 2. CAI to ITS metamorphosis. 

ITSs1980s 

Crowder (1959) overcame some of the limitations of Skinnerian systems by 

ceasing to ignore students' responses. He proposed using them to control the 

material shown to the student. The 'branching programs' that resulted still had a 

fixed number of frames, but were able to comment on a student's response and then 

use it to choose the next frame, possibly repeating an earlier one. Pattern-matching 

techniques allowed alternate answers to be treated as acceptable or partially accept- 

able rather than as totally correct or incorrect as demanded by Skinnerian systems. 

However, the teaching material became too large to be manageable through straight- 

forward programming and so a special breed of programming languages, called 

'author languages', were developed for creating CAI material. 

In the late 1960s and early 1970s, 'generative systems' came into being (also 

called 'adaptive systems'). These emerged from the recognition of the fact that the 

teaching material could itself be generated by the computer. A generative system 

has the ability both to generate and solve meaningful problems. In some domains 

like arithmetic, researchers realized they could do away with all the pre-stored 

teaching material, problems, solutions and associated diagnostics, and actually 

generate them. The potential advantages, if exploited, were enormous. They in- 

cluded drastically reduced memory usage and the generation and provision of as 

many problems (to some desired level of difficulty) as the student needed. Most 

notably, Uhr and his team implemented a series of systems which generated 

problems in arithmetic that were 'tailor-made' to a student's performance (Uhr, 

1969). Suppes (1967) and Woods & Hartley (1971) produced systems with similar 

abilities. Wexler (1970) describes a system which combines generative CAI with 

frame-orientated CAI in which the course-author must specify certain question 

formats. The system generates parameters for these formats and searches the data- 

base to determine the correct answer. Nevertheless, a major shortcoming was the 
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restriction to drill-type exercises in domains as well-structured as mathematics. 

Only parametric summaries of behaviour were used to guide problem generation, 

rather than an explicit representation of the student's knowledge (Sleeman & 

Brown, 1982b). Sleeman (1983) notes that in the initial version of the Leeds 

Adaptive Arithmetic System (which later evolved to the Leeds Modelling System, 

LMS, Sleeman & Smith (1981) and from there to the PIXIE system (Sleeman, 1987)), 

the model of the student consisted merely of an integer to indicate the level of the 

student's competence. 

Generative CAI was the main precursor of ITSs. Although individualization and 

feedback had been improved, there was a rather shallow knowledge representation. 

Yazdani (1986) notes that 'none of these systems has human-like knowledge of the 

domain it is teaching, nor can it answer the serious questions from the students as 

to "why" and "how" the task is performed.' Such sentiments have also been echoed 

by other researchers (e.g. O'Shea & Self, 1983). Hence, many problems remained 

unsolved. Sleeman & Brown (1982b) and Hawkes et al. (1986) point out that these 

systems were found to be lacking for a number of reasons. 

(1) They attempted to produce total courses rather than concentrating on building 

systems for more limited topics. 

(2) They had severe natural language barriers which restricted users' interaction 

with them. 

(3) They had no 'knowledge' or 'understanding' of the subject they tutored or of the 

students themselves; this is sometimes referred to in the literature as the 'Eliza' 

syndrome. Consequently, they tended to assume too much or too little student 

knowledge, and they could not conceptualize so as to diagnose a student's miscon- 

ception within his/her own framework. 

(4) They were extremely ad hoc. Building tutoring systems was not recognized to be 

a non-trivial task - -  a task requiring detailed psychological theories of learning and 

mislearning. Anyone with a knowledge of computing attempted to build a tutor. 

Consequently, there was little or no co-operation among educators, psychologists 

and computer scientists ill the development phase of the tutors. 

(5) They tended to be static rather than dynamic. There was little experimentation 

with systems in order to improve them. Human tutors learn about their students 

and about the subjects they teach every day, and so should machine tutors. 

In response to the problems CAI faced, Self, in his interesting and classic paper, 

argued that a computer tutorial program should have a representation of what is 

being taught, who is being taught and how to teach him/her (Self, 1974). Carbonell 

(1970) argued that a solution to this problem could not be achieved without the use 

of AI techniques. Jaime Carbonell's important contribution to cognitive science is 

best summarized in the title of his first-rate 1970 publication AI in CAl. He wanted 

to put AI into CAI systems. He dreamed of a system which had a database of 

knowledge about a subject matter and general information about language and 

principles of tutorial instruction. The system could then pursue a natural language 

dialogue with a student, sometimes following the student's initiative, sometimes 

taking its own initiative, but always generating its statements and responses in a 

natural way from its general knowledge. Such a system sharpedly contrasted with 
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existing CAI systems at the time in which a relatively fixed sequence of questions 

and possible responses had to be pre-determined for each topic. He constructed an 

early version of his dream, a classic system he called SCHOLAR (Carbonell, 1970, 

1971), but he died before it was fully realized. Carbonell's introduction of AI into 

CAI marked the beginning of the era of ITSs which therefore emerged to provide 

answers to the limitations of generative CAl. (ITSs are alternatively referred to as 

Intelligent Computer-Assisted Instruction/Learning (ICAI/ICAL) systems as men- 

tioned in Section 2.) It is claimed that ITSs combine AI, psychological models of the 

student and the expert, and educational theory. The psychological models allow for 

simulations of student performance and can be experimented upon until they 

closely represent the behaviour exhibited by the student. 

Summarizing, providing a truly 'intelligent' system was recognized to be a non- 

trivial task which needed experts from several other disciplines; a need which 

could be provided by the AI research community,  which contains computer scien- 

tists, psychologists and educationalists. Most of the present-day work in ITSs is 

Fig. 3. General ITS architecture. 
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being carried out by AI researchers or enthusiasts, and AIs influence has been so 

great that Yazdani (1983) concludes that 'intelligent tutoring systems are AI's 

answer to CAL packages.' However, it is worth making the point that most so-called 

ITSs still do not escape the bulk of the criticisms discussed above, so that there is 

considerable scope for further work. Some of the major differences between ITSs 

and CAI programs are (or should be): 

(1) ITSs provide a clear articulation of knowledge for a limited domain; 

(2) ITSs have a model of student performance which is dynamically maintained 

and is used to drive instruction; 

(3) the ITS designer defines the knowledge and the inference rules, but not the 

teaching sequence, which is derived by the program; 

(4) ITSs provide detailed diagnostics of errors rather than simply drill and practice; 

(5) students can pose questions to an ITS (this is the main characteristic of 'mixed- 

initiative tutors'). 

5 Structure of ITSs 

5.1 General Architecture 

Existing ITSs vary tremendously in architecture. In fact, it is almost a rarity to find 

two ITSs based on the same architecture. This results from the experimental nature 

of the work in the area: there is yet no clear-cut general architecture for such 

systems (Yazdani, 1986, 1987). Previously, there was considerable consensus in the 

literature that ITSs consist of at least three basic components (Barr & Feigenbaum, 

1982; Bonnet, 1985). 

(1) The expert knowledge module. 

(2) The student model module. 

(3) The tutoring module. 

However, more recent research (Wenger, 1987; Burns & Capps, 1988; Mandl& 

Lesgold, 1988) has identified and added a fourth component to the list. 

(4) The user interface module. 

Figure 3 illustrates the general form of an ITS architecture, which will serve as a 

basis for discussion. It does not represent any particular known system. 

The expert knowledge module comprises the facts and rules of the particular 

domain to be conveyed to the student, i.e. the knowledge of the experts. In the 

transition from CAI to ITSs, such knowledge has been the first aspect of the 

teacher's expertise to be explicitly represented in systems. It has already been 

mentioned that in traditional CAI, the expertise to be communicated is contained in 

pre-stored presentation material called 'frames', which are designed by the expert 

teacher and simply displayed to the student under given conditions. Such implicit 

representation of knowledge has since been recognized to be inadequate: in fact a 

major lesson learned from all the research on expert systems is that any expert 

module must have an abundance of specific and detailed knowledge, derived from 
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people who have years of experience in a particular domain. Consequently, in ITSs, 

much effort is expended in discovering and codifying the domain knowledge, i.e. 

distilling years of experience into a knowledge representation. 

KnowIedge eticitation and codification can be a very time-consuming task, espe- 

cially for a complex domain with an enormous amount of knowledge and interrela- 

tionships of that knowledge. Thus, investigating how to encode knowledge and 

how to represent it in an ITS remains the central issue of creating an expert 

knowledge module. In effect, this process aims to make the knowledge stored in 

this module more explicit. So, in current ITSs, expert knowledge is represented in 

various ways, including semantic networks, frames and production systems. It 

must not only include surface knowledge (e.g. the descriptions of various concepts 

that the student has to acquire), but also the representational ability that has been 

recognized to be a critical part of expertise. Expert knowledge must include the 

ability to construct implicit representational understanding from explicitly repre- 

sented information (Mandl & Lesgold, 1988). 

Expert knowledge modules can be classified along a spectrum ranging from 

completely opaque or 'blackbox' representations, whereby only final results are 

available (e.g. in tutors like SOPHIE I, reviewed in the next section), to fully 

transparent or 'glassbox' ones, where each reasoning step can be inspected and 

interpreted (e.g. SOPHIE IlI, also reviewed later). 

The expert knowledge module or domain expert, as it is alternatively termed, 

fulfils a double function. First, it serves as the source of knowledge to be presented 

to the student, which includes generating questions, explanations and responses. 

Secondly, it provides a standard for evaluating the student's performance. For this 

latter function, it must be able to generate solutions to problems in the same context 

as the student, so that respective answers can be compared. The module must also 

be able to detect common systematic mistakes, and if possible identify any gap in 

the student's knowledge that may be the cause of this. If the ITS is to monitor 

students in solving problems, the expert module must also be able to generate 

sensible, and possibly multiple, solution paths so that intermediate steps can be 

compared. 

Also, in its function as a standard, the expert knowledge module can be used to 

assess the student's overall progress. To achieve this required the establishment of 

some criteria to compare knowledge. This type of comparison is possible only if the 

knowledge has been explicitly represented. Hence, ITSs differ considerably from 

traditional CAI programs in that the knowledge in the latter is implicitly repre- 

sented within its code. 

It is also worth recognizing that the expert knowledge module by necessity 

embodies a specific view of the domain - -  that of the designer. Thus, tutoring can 

be compromised if the student does not understand the system's instruction or 

because the system cannot interpret the student's behaviour in terms of its own 

view of the knowledge (Wenger, 1987). Of course, human teachers also have their 

own views, but they do also have the incredible ability to adapt them accordingly in 

order to perceive that of the student. This issue touches on the central problem of 

knowledge representation in AI; a problem which is often said to be the main 
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bottle-neck to AI's success. The solution to this bottle-neck is particularly relevant 

to ITSs because of its deep pedagogical implications. 

The student model module refers to the dynamic representation of the emerging 

knowledge and skill of the student. No intelligent tutoring can take place without 

an understanding of the student. Thus, along with the idea of explicitly represent- 

ing the knowledge to be communicated came the idea of doing likewise with the 

student, in the form of a student model. Most researchers agree that an ITS should 

have a student model (Hartley & Sleeman, 1973; Self, 1974, 1987a, 1987b, 1988b; 

Rich, 1979; Sleeman, 1985: Tobias, 1985; Zissos & Witten, 1985; Ross et al., 1987; 

Gilmore & Self, 1988: Wachsmuth, 1988). Ideally, this model should include all 

those aspects of the student's behaviour and knowledge that have possible reper- 

cussions on his/her performance and learning. However, the task of constructing 

such a complete model is not only non-trivial but, probably, impossible, especially 

considering that the communication channel, which is usually the keyboard, is so 

restrictive. Human tutors would normally combine data from a variety of other 

sources, like voice effects or facial gestures. They may also be able to detect other 

phenomenological factors such as boredom or motivation which are also crucial in 

learning. 

In a recent review, Self (1988b) identified twenty different uses that had been 

found for student models in existing ITSs. From analysing this list, he notes that the 

functions of student models could be generally classified into six types. 

(1) Corrective: to help eradicate bugs in the student's knowledge. 

(2) Elaborative: to help correct ' incomplete'  student knowledge. 

(3) Strategic: to help initiate significant changes in the tutorial strategy other than 

the tactical decisions of 1 and 2 above. 

(4) Diagnostic: to help diagnose bugs in the student's knowledge. 

(5) Predictive: to help determine the student's likely response to tutorial actions. 

(6) Evaluative: to help assess the student or the ITS. 

In the author's view, Self's preceding list is still far from comprehensive; it could 

be narrowed down much further, and the student model could be seen to fulfil a 

double function. On the one hand, it acts as a source of information about the 

student. On the other hand, it serves as a representation of the student's knowledge. 

Wenger (1987) also supports this view. The next few paragraphs will attempt to 

justify this aforementioned viewpoint. 

In its function as a source of information, it infers unobservable aspects of the 

student's behaviour from the model. Such an inference could produce an inter- 

pretation of his/her actions and also lead to a reconstruction of the knowledge that 

gave rise to these actions. Such knowledge is vital for the pedagogic component  of 

the ITS as it could be used in either of the six ways noted by Self. 

The student model is also likely to be formed out of the system's representation of 

the target knowledge in the expert knowledge module. Accordingly, the student 

model can include a clear evaluation of the mastery of each unit of knowledge in 

the expert module (the function of the student model here is evaluative). This 
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allows the student's state of knowledge to be compared with the expert knowledge 

module, and instruction would then be biased towards portions of the model 

shown to be weak (thus, the student model 's function here is elaborative). This form 

of student modelling is referred to as 'overlay' modelling (Goldstein, 1982), because 

the student 's state of knowledge is viewed as a subset of the expert's. Again, this 

shows how the student model acts as a source of information. 

However, incorrect or suboptimal behaviour does not always result from incom- 

plete knowledge. It could also be due to incorrect versions of the target knowledge. 

Therefore a more formative student model should also provide explicit representa- 

tions of the student's incorrect versions of the target knowledge for remediation 

purposes (clearly, the function of the student model here is diagnostic and correc- 

tive). In such a capacity, it serves as a representation of the student's knowledge. 

This approach to modelling is called the 'buggy' approach (Brown & Burton, 1978a). 

Student models are also expected to be executable or runnable. This allows for 

exact prediction about a particular student in a particular context (thus, the func- 

tion of the student model here is predictive). The tutoring module would also be 

making use of such executable representations for pedagogic purposes (i.e, the 

knowledge represented in the student model is being used in a strategic way). The 

student model is also serving here as a representation of the student's knowledge. 

In conclusion, student models could be seen to perform two 'super' functions: 

acting as a source of information about the student, and serving as a representation 

of the student. In achieving these functions, they act in roles including corrective, 

elaborative, strategic, diagnostic, predictive and evaluative. 

The tutoring module is the part of the ITS that designs and regulates instructional 

interactions with the student. In other architectures, this module is referred to as 

the teaching strategy or the pedagogic module. It is closely linked to the student 

model, using knowledge about the student and its own tutorial goal structure to 

decide which pedagogic activities will be presented: hints to overcome impasses in 

performance, advice, support, explanations, different practice tasks, tests to con- 

firm hypotheses in the student's model, etc. (Self, 1988b). The tutorial component  

is thus the source and the orchestrator of all pedagogic interventions. The decisions 

involved are subtle. The order and manner in which topics are treated can produce 

very different learning experiences. In tutorial, it is sometimes more effective to let 

the student flounder for a while before interrupting; sometimes, the student will get 

stuck or lost if left completely to himself/herself (however, no good human tutor 

will destroy a student's personal motivation or sense of discovery). Consequently, 

the tutoring in existing ITSs can be classified along a spectrum ranging from 

systems that monitor the student's every activity very closely, adapting their ac- 

tions to the student's responses but never relinquishing control, to guided- 

discovery learning systems where the student has almost full control of the activity, 

and the only way the system can direct the course of action is by modifying the 

environment.  In the middle are mixed-initiative systems where the control is 

shared by the student and the system as they exchange questions and answers. The 

existence of this spectrum clearly highlights the fact that tutoring is an art that 
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requires great versatility which is still extremely difficult to articulate and represent 

in an ITS. Nevertheless, some progress is being made, albeit limited. 

ITSs also aim at explicitly representing the knowledge found in the tutoring 

module. This creates the potential to adapt and improve strategies over time (as in 

the case of self-improving tutors), and for the same strategies to be used for other 

domains. Once more this is contrasted with traditional CAI systems where such 

pedagogical knowledge is deeply buried in the various pieces of code that control 

the tutorial interaction. 

The user interface module  is the communicating component of the ITS which 

controls interaction between the student and the system, as depicted in Fig. 3. In 

both directions, it translates between the system's internal representation and an 

interface language that is understandable to the student. Because the user interface 

can make or break the ITS, no matter how 'intelligent' the internal system is, it has 

become customary to identify it as a distinct component of its own. In fact, it would 

be a mistake to consider it a secondary component of the ITS for two main reasons. 

First, when the ITS presents a topic, the interface can enhance or diminish the 

presentation. Since the interface is the final form in which the ITS presents itself, 

qualities such as ease of use and attractiveness could be crucial to the student's 

acceptance of the system. Secondly, progress in media technology is increasingly 

providing more and more sophisticated tools whose communicative power heavily 

influences ITS design. 

Current ITSs provide user interfaces which, for the input, range from the use of 

fixed menus with multiple-choice answers to a fairly free treatment of a pseudo- 

natural language. For the output, they range from the mere display of pre-stored 

texts typical of CAI, to the use of fairly complicated generic frames. Within these 

two ends of the spectrum there is also a varying flexibility (Wenger, 1987). 

Some ITSs are making their interaction with the student more 'user friendly' by 

substituting pictures and pointing for text and typing. In some, the treatment of text 

is only supplemented by pictures and graphics; much more cognitive research into 

the use of such interfaces is still required. However, the most one expects to see, in 

the near future, is ITSs communicating with the student primarily via graphics, as 

research in natural language understanding and computer speech recognition/ 

generation are still at such early and primitive stages. In fact, research into user 

interfaces is just commencing, as they have only recently been acknowledged as 

distinct parts of ITSs. 

5.2 Other architectures 

Other architectures have been suggested, some largely similar, but others radically 

different to that depicted in Fig. 3. For example, there are four components to 

Anderson's Advanced Computer Tutoring (ACT) ITS architecture (Anderson et al., 

1985a,b) (see Fig. 4). 

(1) The domain expert (ideal student model): this module contains all the correct 

rules used for solving problems in the domain. 

(2) The bug catalogue: this is an extensive library of common misconceptions and 

errors for the domain. 
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(3) The teaching knowledge (tutoring module). 

(4) The user interface. 

This architecture is not only a proposal; at least two tutors are based on it 

including the Geometry tutor and the Lisp tutor (Anderson et al., 1985a). 

Tutoring knowledge 

L Domain expert L 
F 

I 
Uierinterfoce L 

F 

I 
Student I 

J 
v 

Student I 

Fig. 4. Andersons ITS architecture. 

Fig. 5. O'Shea et al.'s architecture. 
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Hartley & Sleeman, whose 1973 architecture is probably the closest proposal to 

the general architecture depicted in Fig. 3, suggest that an ITS ought to have four 

distinct knowledge bases: 

(1) knowledge of the domain (expert knowledge), 

(2) knowledge of the person being taught (student model), 

(3) knowledge of the teaching strategies (tutoring knowledge), 

(4) knowledge of how to apply the tutoring knowledge to the needs of an indi- 

vidual, 

Hartley & Sleeman's proposals differ from Anderson's inasmuch as they do not 

give the misconceptions in the domain (the bug catalogue) primary importance but 

instead introduce the student model as a primary component (Yazdani, 1987). 

Furthermore, this proposal subsumes the user interface in a more tutoring- 

orientated module which includes meta-rules that guide the tutoring rules. These 

differences also reflect the different tutoring philosophies involved in both 

architectures; Anderson plays down the importance of the student model and, in its 

place, substitutes two knowledge bases of ideal and buggy representations of 

knowledge of the domain (see Fig. 4). Immediately a behaviour is exhibited which 

indicates an error or bug, the student is nudged to follow the correct path by being 

presented with the ideal solution. 

O'Shea et al. {1984) present a five-ring model as shown in Fig. 5, This bears some 

similarity to the Hartley & Sleeman architecture. However, it also clearly demons- 

trates how differences in emphasis on student modelling and teaching lead to an 

architecture which is starkly different from Anderson's (see Fig. 4). Its components 

include: 

(1) student history, 

(2) student model, 

(3) teaching strategy, 

(4} teaching generation, 

(5) teaching administration. 

In this proposal, the explicit representation of knowledge in the domain (expert 

knowledge), and the common misconceptions in the domain (the bug catalogue), 

are undermined in favour of teaching skills: hence the introduction of the teaching 

generation and teaching administration components. 

Figure 6 presents another architecture which introduces the self-improving 

{learning) concept. The architecture thus forms the basis of self-improving systems 

which attempt to improve their tutoring capabilities over time. Such systems are 

still rare and typically consist of two components: an adaptive teaching program 

(which may have any of the architectures discussed earlier or some other), and a 

self-improving component that makes experimental changes using data collected 

during teaching sessions. O'Shea's (1982) Quadratic tutor was one of the earliest to 

exploit this idea. This ambitious architecture, which attempts to automate a process 

that is even difficult for humans, is an important contribution; most researchers 

agree but pay lip service to the fact that ITSs should improve or learn over time as 
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Fig. 6. Self-improving ITS architecture. 

good human  tutors do. Kimball 's  (1982) Integration tutor is generally acknowledged 

to be the first self-improving tutor to have been developed. 

In addit ion to the above architectures, more recent systems concentrate on other 

features such as planning (e.g. see Peachey & McCalla, 1986). The SCENT-3 

architecture evolved by McCalla's team (McCalla & Greet, 1988) is much  more 

complex and interested readers are referred to this paper. Suffice to say that it is 

based on a blackboard philosophy; the blackboard mediates communicat ion among 

the numerous  components  of the architecture. 

5.3 Discussion 

It is thus evident that differing tutoring philosophies place emphases on different 

aspects of the instructional process (e.g. student modelling), and this in turn leads 

to different architectures, as in the case of O'Shea et al. and Anderson. It is 

inconceivable that there would be a consensus amongst researchers on a tutoring 

philosophy; rather, more variations of present philosophies are emerging. Conse- 

quently, this has resulted in the numerous  ITS architectures in the literature. 

Naturally, not all these architectures can support  a range of tutoring strategies 

within a given ITS. 

Most of these architectures still remain only proposals. Also, almost all the 

arguments to their support  or as to which of them is the 'best '  have, disappointing- 

ly, been theoretical rather than practical. Until ITSs built around these proposals 

are evaluated and demonstrated to be educationally worthy, none can claim any 

superiori ty over another. Regrettably, a significant fraction of these proposals have 

not even had systems developed which are based on them. Admittedly,  a few have 

(e.g. Anderson's),  but an insufficient number  of ITSs based on these architectures 

have been developed,  evaluated and proven 'useful '  to warrant such arguments. In 

fact, due to the experimental  nature of the area, even the so-called general 

architecture of Fig. 3 should be viewed with some degree of scepticism and should 

definitely not be seen as a basis for all ITSs. When more developed ITSs become 

evaluated, as is expected to be the case, it is possible that some additional, or 
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perhaps alternate, set of building blocks might emerge (as is 

blackboard architecture of McCalla & Greer, 1988). 

the case in the 

6 R e v i e w  of s o m e  c l a s s i c  ITSs 

In this section, some important ITSs are reviewed; an overview paper  of this sort 

would be incomplete without it. It is by no means meant to be exhaustive: rather, it 

should augment the previous sections of this paper. The systems reviewed are 

either chosen for their historical significance or because they are good examples of 

systems which display some of the intelligent tutoring principles reported in this 

paper. 

6.1 SCHOLAR 

As the system which successfully launched the new paradigm of intelligent tutor- 

ing, SCHOLAR surely deserves a place in any review of ITSs. Needless to say it was 

the first ITS to be constructed. It was a revolutionary system when considered in its 

historical context; most of the then existing ITSs were of the ad-hoc frame- 

orientated (AFO) type. SCHOLAR was created by Jaime Carbonell; this automatical- 

ly earned him a place in history as founder of ITSs. He used SCHOLAR to launch a 

new paradigm which he called ' information-structure-oriented'  (ISO) CAI as 

opposed to the predominant  AFO-type CAI of the time (Carbonell, 1970, 1971). 

These two approaches correspond in many ways to what are now respectively 

called traditional CAI and ITS. Because SCHOLAR, like most other ITS projects, 

evolved, the version described in this review is Carbonell 's original version: be- 

sides, it is the important one because of its historical significance to ITS research. 

SCHOLAR was a pioneering effort in the development  of computer  tutors capable 

of handling unanticipated student questions and of generating instructional mate- 

rial in varying levels of detail, depending on the context of the dialogue. It was a 

mixed-initiative ITS: both the system and the student could initiate conversation by 

asking questions. Both the program's output and the student 's  inputs were English 

sentences. It seems appropriate to review it further by considering its four compo- 

nents, as defined in Section 5.1. 

The knowledge in the expert knowledge module is that of the geography of South 

America, which was represented in a semantic network whose nodes instantiated 

geographical objects and concepts. Statements like 'Tell me more about Brazil' just 

invoked a retrieval of facts stored in the semantic network. However, the real power 

of this representation schema comes by recognizing that it is possible to answer 

questions for which answers are not stored. This automatically relieves the system 

of the memory problems encountered in anticipating and storing all solutions by 

traditional CAI systems. For example, it is not necessary to store in the semantic 

network that 'Lima is in South America '  provided that the program which inter- 

prets the network can make the relevant inference. In other words, the program 

must know about the attributes concerned, e.g. ' location'  and 'capital ' ,  and in 

particular, that if x is capital of v and y is located in z then x is in z: this is a rule of 

inference. 
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A semantic network representation was chosen because Carbonell thought it to be 

close to the teacher's conceptualization of knowledge. By implication, the network 

also represented the ideal student's conceptualization (ideal student model): hence, 

overlay modelling becomes feasible. So SCHOLAR could associate flags with each 

node of the network to indicate whether the student was thought to know the 

information represented by that node. More ambitiously, Carbonell proposed to 

model student errors by introducing small 'perturbations' to the network; this 

proposal was not followed up in SCHOLAR. Its student modelling was then ex- 

tremely rudimentary. 

SCHOLAR's tutorial strategies were also fairly primitive, consisting mainly of 

local topic selections. The teacher using it was expected to provide an agenda. 

Whenever a topic was too general, SCHOLAR generated a subtopic on an essentially 

random basis. For example, the teacher might specify the topic of 'South America', 

and SCHOLAR would select a subtopic, e.g. 'Peru', and then perhaps a sub- 

subtopic, e.g. 'topography of Peru'. This random element led to somewhat discon- 

nected discussions lacking the systematic development of ideas characteristic of a 

good tutorial, though it was necessary since SCHOLAR's semantic network had 

little information about desirable orders of presentations of topics. Nevertheless, 

suitable relevant tags in the network (from the agenda), could provide SCHOLAR 

with some reasonable guidance in selecting topics. 

SCHOLAR possessed language processing capabilities that were also rather li- 

mited. Text was generated by sentence and question templates that was filled up 

with information from the network. The parsing of student's questions followed the 

same principle in reverse, while the parsing of student's answers was done by 

matching key words from a list dynamically generated from the network for each 

question. Consequently, SCHOLAR did not understand wrong answers and so 

could not glean diagnostic information from them. 

SCHOLAR has not been widely used except in NLSoSCHOLAR, an intelligent 

on-line consultant for a text editor (Grignetti et al., 1975). This was partly due to 

some fundamental limitations such as difficulty of representing procedural know- 

ledge using semantic nets. However, despite all its shortcomings, SCHOLAR intro- 

duced many methodological principles that have become central to ITS design, e.g. 

separation of tutorial strategies from domain knowledge, more explicit representa- 

tion of knowledge, student modelling, etc. Indeed, SCHOLAR's significance as a 

milestone for the entire field cannot be over-emphasized. 

6.2 SOPHIE 

SOPHIE (a SOPHisticated Instructional Environment) is an ITS which reflects a 

major attempt to extend Carbonell's notion of mixed-initiative CAI (introduced in 

SCHOLAR) for the purpose of encouraging a wider range of student initiatives 

(Brown et al., 1975). It was developed by John Seely Brown, Richard Burton, and 

their coleagues at Bolt Beranek and Newman, Inc. This project went through 

successive phases spanning more than 5 years; the three stages of development of 

SOPHIE (I-III) incorporate the most intensive attempt at building at complete ITS 
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so far. SOPHIE is a milestone for the field, and hence it well earns its place in this 

review. 

The pedagogic philosophy is different in SOPHIE: it is not so much to imitate a 

dialogue with a human teacher (as SCHOLAR sought to do) as to provide a reactive 

learning environment in which the student can try his ideas, have them assessed, 

and receive advice. Its philosophy is thus 'learning by doing' as opposed to 'learn- 

ir~g by being told' as in the case of SCHOLAR. Brown et al. (1982) suggest that 

computer  technology can be used to make experimentation both 'easier' and 'safer' 

by simulating environments that capitalize on the motivational value of exploratory 

problem-solving activities. SOPHIE's simulated area of expertise is electronic 

troubleshooting. Since the components of a simulation can be made faulty, troub- 

leshooting means performing a series of measurements to propose and test hypoth- 

eses concerning the location and nature of the fault. This not only gives the student 

the opportunity to apply a theoretical knowledge of electronic laws, but also to 

acquire genera] troubleshooting strategies. In essence, it enables the student to have 

a one-to~one relationship with an 'expert '  who helps create, experiment with, and 

debug his/her own ideas (Brown et al., 1975). In keeping with the objectives of this 

paper, SOPHIE will further be reviewed by considering the four components as 

defined in Section 5.1. 

The expert knowledge module of SOPHIE comprises a 'strong' model (simula- 

tion) of electronic troubleshooting for the IP-28 regulated power supply and a 

'canned'  articulate expert troubleshooter which can not only solve problems, but is 

also capable of explaining its tactics and high-level strategies for attacking the 

problem. For example, the expert can explain 'why' a measurement was made and 

'what' logically follows from the measurement obtained. 

SOPHIE's tutoring module possesses numerous heuristic strategies for answering 

and critiquing a student or generating alternative theories to his/her current hypoth- 

eses. SOPHIE I's tutorial capabilities were impressive as mentioned in the previous 

paragraph: however, with the evolution from SOPHIE I to SOPHIE III, the strategies 

were enhanced to become more 'human-like'. This was because its implementors 

observed that SOPHIE i and II's approaches to problem solving were foreign to 

humans (Brown et al., 1982). Consequently, SOPHIE evolved from a simulation- 

based inference system to a more powerful and human-like reasoning system (using 

qualitative reasoning techniques). By implication, SOPHIE's sophisticated tutoring 

module requires a similarly sophisticated student model. 

By all accounts, the SOPHIE interface demonstrates a very impressive natural 

language capability; it uses the powerful notion of semantic grammars proposed by 

Richard Burton. It is robust (handling 'nearly all sentences generated by users who 

have had a few minutes exposure to the system'), efficient ( 'understands a typical 

statement in a fraction of a second'), and of some generality ('since the notion of 

semantic grammars has been successfully applied to other areas besides electro- 

nics'): the interface undeniably demonstrates that techniques for processing natural 

language are sufficiently developed to be usable in ITSs (O'Shea & Self, 1983). 

Summarizing, SOPHIE's performance as a 'complete' ITS is presently unsurpas- 

sed. SOPHIE was actually commissioned by the American Defence Department and 

had limited use for on-site job training over the ARPA network/ARPA Internet is a 
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network of several networks; the most important ARPANET links US research 

centres and universities (with 150 nodes)) for 2 years; it is no longer maintained (no 

reason has been given in the literature for this). However, considering that most 

other prototype ITSs never ever get used after their development,  SOPHIE was quite 

a success story. Probably, SOPHIE's most important contribution to ITS, though, 

was to establish it as a respectable subarea in the eye of the AI community (Wenger, 

1987). 

6.3 GUIDON 

GUIDON, an ITS for teaching diagnostic problem solving, was developed by Wil- 

liam Clancey and his colleagues at Stanford University. The GUIDON project is also 

unique as it represents the first attempt to adapt a pre-existing expert system into an 

intelligent tutor. Probably because it was strongly influenced by SCHOLAR and 

SOPHIE, it turned out to be one of the most concerned efforts so far at designing an 

ITS. Like the other two, it went through many stages spanning more than 5 years 

during which it yielded many important findings. All of this coupled with the fact 

that it is built around the most well-known expert system, MYCIN, earns it a place 

as one of the key ITS projects ever undertaken. 

GUIDON's goal is to tutor the knowledge from the famous expert system, MYCIN 

(Shortliffe, 1976), a medical expert system that suggests treatment for bacterial 

infections. It attempts to transfer expertise to the students exclusively through case 

dialogues where a sick patient (the 'case') is described to the student in general 

terms. The student is then asked to play the role of a physician and ask for 

information he/she thinks might be relevant to the case. GUIDON compares the 

student 's questions to those which MYCIN would have asked and critiques him/her 

on this basis; this demonstrates a different tutoring strategy to that of SCHOLAR or 

SOPHIE. It is easy to infer from the previous sentence that student modelling is 

largely of the overlay-type. GUIDON also separates its tutorial strategies (compris- 

ing 200 rules), which was largely influenced by SOPHIE's, from its domain know- 

ledge. Nevertheless, its natural language cgpabilities are far less sophisticated than 

SOPHIE's, but certainly improve on SCHOLAR's. 

The component  which has evolved considerably has been the expert module. The 

original version (GUIDON 1) was implemented by 'reversing' MYCIN's 450 rules 

(Clancey, 1984). This implementation was ineffectual largely because medical 

diagnosis is not made 'cookbook' style - -  i.e. medical practitioners do not diagnose 

diseases by using perfect recall on hundreds of medical facts and rules IClancey, 

1982, 1983, 1987). He realized that MYCIN's rules represent 'compiled'  knowledge 

devoid of the low-level detail and relation necessary for learning and tutoring. 

GUIDON 1 's failure was largely due to the fact that it would have had to 'decompile '  

and augment these rules with data and diagnostic hypotheses that the medical 

practitioner uses implicitly. Thus, MYCIN's rules were reconfigured to separate the 

strategic knowledge from the domain facts and rules, resulting in NEOMYCIN 

(Clancey & Letsinger, 1981). This in turn became the new basis around which 

GUIDON 2 was built, and with some improved teaching strategies, GUIDON 2 has 

had greater success as a prototype tutoring system than GUIDON 1 (Clancey, 1987). 
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The GUIDON project provided a fascinating inquiry into the epistemological 

questions related to intelligent tutoring as well as producing many important 

findings about designing ITSs. For example, it clearly demonstrated that an expert 

system is not a sound basis for tutoring (Elsom-Cook, 1987). More importantly 

however, GUIDON produced spectacular demonstrations of the field's ability to 

bring to light fundamental AI research issues (Wenger, 1987). 

6.4 WEST 

The WEST coach is a program developed, again, by Richard Burton and John Seely 

Brown to help students play a game on the PLATO system (PLATO was one of the 

largest ever CAI projects ever undertaken). It is indeed an intelligent tutor but in 

view of the implementation of this program in an informal learning environment, 

the term 'coach', originated by Goldstein (1982), appeared more congenial than 

'tutor' (Burton & Brown, 1977, 1982). WEST was a spin-off from the SOPHIE project; 

hence, it is still in keeping with the concept of a reactive learning environment 

central to SOPHIE, but requires much simpler skills. WEST is also the first ever 

computer coach and it demonstrates how a different emphasis on different compo- 

nents of the ITS (in this case the tutoring module) can produce a radically different 

ITS, so radical that the term 'coach' is preferred to 'tutor'. 

WEST simulates a board game requiring players to travel in a series of moves. The 

number of spaces for each move are determined by digits on three 'spinners' 

supplied from a random-number generator. Players can combine these three digits 

by using any legitimate mathematical operation including exponentiation, or by 

using negative numbers, parentheses, etc. The game also has such features as short 

cuts to the goal; opportunities to 'bump' opponents, forcing them to return to the 

beginning, and spaces safe from bumping. Although two students can play against 

each other, they typically play against the machine. At each move, the student's 

skill in writing algebraic equations is compared to the expert's solution for the same 

skill. If the two solutions differ, the coach (tutoring component) can intervene and 

provide the student with helpful hints as to how to improve his/her game or make 

better moves. 

WEST's expert knowledge module comprises the simulated board game and an 

articulate expert which can monitor and evaluate the student's moves. The student 

modelling technique is largely a simpler version of overlay modelling called dif- 

ferential modelling. This is because, apart from outright arithmetical errors, the 

student's moves are never wrong; they are just poor. What is important is the 

difference in comparison between the expert's move and the student's: hence the 

word 'differential'. WEST's interface is simple as its inputs are mainly arithmetical 

expressions involving integers (e.g. 1 + 2 × 2) or just plain integers. 

However, the component that makes WEST radically different from the previous 

three systems discussed is its tutoring component. Its main strategy is to encourage 

skill acquisition and general problem-solving abilities by engaging the student in 

some game-like activity. In effect, the immediate aim is to have fun; skill acquisi- 

tion and learning is an indirect consequence. 
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WEST has actually been used in elementary school classrooms. In a controlled 

experiment, a coached group exhibited 'a considerably greater variety of patterns' 

in the expressions they formed and they even 'enjoyed playing the game consider- 

ably more than the uncoached group' (Burton & Brown, 1982). These results are 

quite encouraging: they demonstrate that the coach succeeded in fostering learning 

without any apparent adverse effect on the fun of the game. Unfortunately, 

coaching currently appears only to be applicable to trivial domains; it is hard to see 

how it could be used to teach, say, electronic troubleshooting or some non-obvious 

fraction addition problem. 

However, WEST's influence on ITSs has been significant, and it is still a reference 

for researchers today. Regrettably, it seems it is no longer used. With so many 

worthless computer games available on the market, it is really unfortunate that a 

program like WEST, which has actually been demonstrated to be functional, should 

still remain a laboratory prototype (Wenger, 1987). 

7 The r a n g e  of pro to type  ITSs 

This section, as in Ross (1987), lists examples of ITSs that have been developed. 

The list of ITSs and environments shown in Table I below is reasonably representa- 

tive and provides an appreciation of the vibrant nature of this new and interesting 

field and also reveals the scope of already constructed systems. As also echoed by 

Ross (1987) most of them do a lot less than the domain indication suggests and are 

also mostly experimental as hardly any have been tested on more than a very few 

people. The list also reveals that the domains chosen by ITS researchers are mainly 

few. Nevertheless, with the experience being currently accrued by researchers, 

more complex domains are expected to be tackled in future research. 

8 S o m e  v i e w p o i n t s  

It is appropriate to conclude this paper with some viewpoints on some of the 

contentious issues in the intelligent tutoring domain; it also has its own on-going 

debates. Two pertinent ones are: 

(1) is intelligent tutoring just old wine in a new bottle, or is it a new vintage 

(Ok-choon et al., 1987)? 

(2) is intelligent tutoring really possible (Ridgway, 1988)? 

Before providing responses to these questions, it seems fair to remark that they 

arise in the first place because of public opinion about the AI enterprise in general. 

Bobrow et al. (1986) correctly point out that public opinion about AI is schizophre- 

nic, ranging from 'it will never work' to 'it might cost me my job'. This range of 

opinion reflects the collective confusion about AI. It appears that the AI fraternity 

only has itself to blame. Misleading publicity, mostly in order to attract grants, and 

misuse of flamboyant expressions like artificial intelligence, expert systems, intelli- 

gent tutoring systems, etc., have helped contribute to unrealistic expectations of the 

state-of-the-art. Consequently, questions such as those above are bound to be asked. 
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Table 1. A reasonably comprehensive list of ITSs and environments 

ITS Domain Reference 

ACE/PSM 
ATDSE 

ARITHMEKIT 

ALGEBRALAND 

BIP-I/BIP-II 

BLOCKS Tutor 
BRIDGE 

BUGGY 

DEB UGG Y 

EDSMB 

EUROHELP 

EXCHECK 

FGA 

FITS 

FLOW Tutor 
GEOMETRY Tutor 
GERMAN Tutor 
GUIDON I/II 

INTEGRATION Tutor 
LISP Tutor 
LMS 
M A C S Y M A  Advisor 

M A L T  

MENO-Tutor 

METEOROLOGY ITS 
NEOMYCIN 

PIXIE 

PBOUST 
QUADRATIC Tutor 
QUEST 
SCENT-3 Advisor 

SCHOLAR 

SIERRA 

SOPHIE I/II/RI 

SPADE 

SPIRIT 

STEAMER 

TALUS 
THEVENIN 

TUTOR 

WEST 

W H Y  

WUSOR 

NMR spectra interpretation 
Basic subtraction 
Basic subtraction 
Algebraic proofs 
Basic programming 
Troubleshooting in a BLOCKS world 
Programming 
Basic subtraction 
Basic subtraction 
Basic multiplication 
UNIX mail 
Basic logic 
Basic French grammar 
Basic fractions addition 
FLOW computer language 
Geometry proofs 
Basic German 
Basic medical diagnosis 
Basic integral calculus 
Lisp programming 
Basic algebra 
Use of M A C S Y M A  

Basic machine language programming 
Basic Pascal programming 
Basic meteorology 
Medical diagnosis 
Basic algebra 
Pascal programming 
Quadratic equations 
Basic electrics 
Lisp programming 
South American geographical facts 
Learning basic arithmetic procedures 
Basic electronic troubleshooting 
Basic LOGO programming 
Probability theory 
Marine steam propulsion plant 
Basic Lisp programming 
Basic electrical circuits 
British highway code 
Basic arithmetic skills 
Basic meteorology 
Maze game skills 

Sleeman (1975) 
Attisha & Yazdani (1983) 
Brown (1983) 
Brown (1985) 
Barret al. (1976) 
Brown & Burton (1978b) 
Bonar (1985) 
Brown & Burton (1978a) 
Burton (1982) 
Attisha & Yazdani (1984) 
Breuker (1987) 
Blaine (1982) 
Barchan et al. (1986) 
Nwana (1990) 
Genter (1977) 
Anderson et ol. (1985a) 
Weischedel et al. (1978) 
Clancey (1987) 
Kimball (1982) 
Anderson & Reiser (1985) 
Sleeman & Smith (1981) 
Genesereth (1982) 
Koffman & Blount, 1975 
Woolf & McDonald (1984) 
Brown et al. (1973) 
Clancey & Letsinger (1981) 
Sleeman (1987) 
Soloway & Johnson (1984) 
O'Shea (1982) 
White & Frederiksen (1985) 
McCalla et al. (1988) 
Carbonell (1970) 
Vanlehn (1987) 
Brown et al. (1982) 
Goldstein & Miller (1976) 
Barzilay (1985) 
Hollan et al. (1984) 
Murray (1987) 
Joobbani & Talukdar (1985) 
Davies et al. (1985) 
Brown & Burton (1978b) 
Collins & Stevens (1982) 
Goldstein (1982) 

In the first question, the old wine was basically the AFO-type CAI which has been 

observed to have taken a very naive view of the instructional process. It has since 

been realized that providing a truly 'intelligent' tutor is a non-trivial task requiring 

experts from several disciplines. ITSs combine at least some of the following: AI, 

psychological models of the student and expert, and educational theory. There is 

thus a substantial change in the quality of wine and, therefore, a new vintage. 
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The second question investigates whether intelligent tutoring is really possible. 

Many answers to such questions in the past have turned out to be far too optimistic. 

For example, Suppes'  (1966) prediction that 'in a few more years millions of school 

children wiI1 have access to what Phillip of Macedon's son had as royal prerogative: 

the personal services of a tutor as well-informed as Aristotle.' Clearly, besides the 

obvious financial constraints forbidding this and without much deliberation on 

what Suppes meant by 'few', this prediction is still far from being achieved a 

quarter of a century on. Hence, the response to this second question requires more 

caution. The answer seems to depend on how the questioner views the use of the 

word 'intelligent' in AI terms. If he/she rightly views it as strictly speaking a 

misnomer, at least for now, then intelligent tutoring becomes very feasible, at least 

in various limited domains. On the other hand, if the questioner is more literal, as 

many AI sceptics in the literature seem to be (again probably due to the misleading 

publicity), then of course intelligent tutoring would appear impossible, and so 

would AI in general. Nevertheless, there is a suspicion that no matter how 'intel- 

ligently' an ITS may eventually perform (e.g. even if one were demonstrably to 

perform beter than most human tutors), these sceptics would still not be satisfied, 

mainly because ITSs are computer-based. It therefore appears that researchers will 

eventually have to turn to the famous Turing test of intelligence for an answer when 

ITSs come of age. This is because Turing's test circumvents the problem of lack of 

consensus on the definition of the word 'intelligent': it regards intelligence as 

undefinable but 'intelligent behaviour'  as recognizable. 

However, one prediction looks secure: that despite these controversies, ITS 

research will grow. This is because, apart from their practical needs, the area 

appears to provide an excellent test-bed for theories from AI scientists, educational 

theorists and cognitive psychologists (for instance, it has been noted that the 

Carnegie Mellon psychologist John Anderson came into the area to test his psycho- 

logical theories). Furthermore, ITS researchers themselves would be very interested 

in incorporating any promising research results from various AI/Cognitive Science 

subdomains, e.g. qualitative reasoning, planning, natural language understanding, 

h u m a n - c o m p u t e r  interaction, etc., into their ITSs, and so they should. In conclu- 

sion, it appears certain that the best of ITS research is yet to come. 

9 Conclus ions  

This paper has introduced the AI subdomain of intelligent tutoring systems and the 

motivation of ITSs. It looked at its history, motivation as well as reviewed some 

notable ITSs. The paper also reveals how different emphases on different compo- 

nents of the ITS (because of different philosophies adopted by various researchers) 

result in contrasting systems; it provides examples of different architectures to 

support  this. This also reflects the different disciplines which ITS spans. The paper 

also lists a reasonably comprehensive set of prototype ITSs which have been 

developed to date. The paper draws to a conclusion with the author's viewpoints on 

two debatable issues in the ITS domain. 

For further reading, see Sleeman & Brown (1982a), O'Shea & Self (1983), Wenger 

(1987) or Nwana (1989). 
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