
■ Many of the intelligent tutoring systems that have

been developed during the last 20 years have

proven to be quite successful, particularly in the

domains of mathematics, science, and technology.

They produce significant learning gains beyond

classroom environments. They are capable of

engaging most students’ attention and interest for

hours. We have been working on a new generation

of intelligent tutoring systems that hold mixed-

initiative conversational dialogues with the learn-

er. The tutoring systems present challenging prob-

lems and questions to the learner, the learner types

in answers in English, and there is a lengthy mul-

titurn dialogue as complete solutions or answers

evolve. This article presents the tutoring systems

that we have been developing. AUTOTUTOR is a con-

versational agent, with a talking head, that helps

college students learn about computer literacy.

ANDES, ATLAS, AND WHY2 help adults learn about

physics. Instead of being mere information-deliv-

ery systems, our systems help students actively

construct knowledge through conversations.

I
ntelligent tutoring systems (ITSs) are clearly
one of the successful enterprises in AI.
There is a long list of ITSs that have been

tested on humans and have proven to facilitate
learning. There are well-tested tutors of alge-
bra, geometry, and computer languages (such
as PACT [Koedinger et al. 1997]); physics (such
as ANDES [Gertner and VanLehn 2000; VanLehn
1996]); and electronics (such as SHERLOCK [Les-
gold et al. 1992]). These ITSs use a variety of
computational modules that are familiar to
those of us in the world of AI: production sys-
tems, Bayesian networks, schema templates,
theorem proving, and explanatory reasoning.
According to the current estimates, the arsenal
of sophisticated computational modules inher-
ited from AI produce learning gains of approx-

imately .3 to 1.0 standard deviation units com-
pared with students learning the same content
in a classroom (Corbett et al. 1999). 

The next generation of ITSs is expected to go
one step further by adopting conversational
interfaces. The tutor will speak to the student
with an agent that has synthesized speech,
facial expressions, and gestures, in addition to
the normal business of having the computer
display text, graphics, and animation. Animat-
ed conversational agents have now been devel-
oped to the point that they can be integrated
with ITSs (Cassell and Thorisson, 1999; John-
son, Rickel, and Lester 2000; Lester et al. 1999).
Learners will be able to type in their responses
in English in addition to the conventional
point and click. Recent developments in com-
putational linguistics (Jurafsky and Martin
2000) have made it a realistic goal to have
computers comprehend language, at least to
an extent where the ITS can respond with
something relevant and useful. Speech recog-
nition would be highly desirable, of course, as
long as it is also reliable. 

At this point, we are uncertain whether the
conversational interfaces will produce incre-
mental gains in learning over and above the
existing ITSs (Corbett et al. 1999). However,
there are reasons for being optimistic. One rea-
son is that human tutors produce impressive
learning gains (between .4 and 2.3 standard
deviation units over classroom teachers), even
though the vast majority of tutors in a school’s
system have modest domain knowledge, have
no training in pedagogical techniques, and
rarely use the sophisticated tutoring strategies
of ITSs (Cohen, Kulik, and Kulik 1982; Graess-
er, Person, and Magliano, 1995). 

A second reason is that there are at least two
success cases, namely, the AUTOTUTOR and
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This article describes some of the tutoring

systems that we are developing to simulate

conversational dialogue. We begin with AUTO-

TUTOR. Then we describe a series of physics

tutors that vary from conventional ITS systems

(the ANDES tutor) to agents that attempt to com-

prehend natural language and plan dialogue

moves (ATLAS and WHY2). 

AUTOTUTOR

The Tutoring Research Group (TRG) at the Uni-

versity of Memphis developed AUTOTUTOR to

simulate the dialogue patterns of typical

human tutors (Graesser et al. 1999; Person et

al. 2001). AUTOTUTOR tries to comprehend stu-

dent contributions and simulate dialogue

moves of either normal (unskilled) tutors or

sophisticated tutors. AUTOTUTOR is currently

being developed for college students who are

taking an introductory course in computer lit-

eracy. These students learn the fundamentals

ATLAS systems that we discuss in this article.
AUTOTUTOR (Graesser et al. 1999) is a fully auto-
mated computer tutor that has tutored
approximately 200 college students in an
introductory course in computer literacy. An
early version of AUTOTUTOR improved learning
by .5 standard deviation units (that is, about a
half a letter grade) when compared to a con-
trol condition where students reread yoked
chapters in the book. ATLAS (VanLehn et al.
2000) is a computer tutor for college physics
that focuses on improving students’ conceptu-
al knowledge. In a recent pilot evaluation, stu-
dents who used ATLAS scored .9 standard devi-
ation units higher than students who used a
similar tutoring system that did not use natur-
al language dialogues. Thus, it appears that
there is something about conversational dia-
logue that plays an important role in learning.
We believe that the most effective tutoring sys-
tems of the future will be a hybrid between
normal conversational patterns and the ideal
pedagogical strategies in the ITS enterprise. 
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Figure 1. A Screen Shot of AUTOTUTOR.



of computer hardware, the operating system,
and the internet. 

Figure 1 is a screen shot that illustrates the
interface of AUTOTUTOR. The left window has a
talking head that acts as a dialogue partner
with the learner. The talking head delivers
AUTOTUTOR’S dialogue moves with synthesized
speech, intonation, facial expressions, nods,
and gestures. The major question (or problem)
that the learner is working on is both spoken
by AUTOTUTOR and is printed at the top of the
screen. The major questions are generated sys-
tematically from a curriculum script, a module
that we discuss later. AUTOTUTOR’S major ques-
tions are not the fill-in-the-blank, true-false, or
multiple-choice questions that are so popular
in the U.S. educational system. Instead, the
questions invite lengthy explanations and
deep reasoning (such as why, how, and what-if
questions). The goal is to encourage students to
articulate lengthier answers that exhibit deep
reasoning rather than deliver short snippets of
shallow knowledge. There is a continuous mul-
titurn tutorial dialogue between AUTOTUTOR

and the learner during the course of answering
a deep-reasoning question. When considering
both the learner and AUTOTUTOR, it typically
takes 10 to 30 turns during the tutorial dia-
logue to answer a single question from the cur-
riculum script. The learner types in his/her
contributions during the exchange by key-
board, as reflected in the bottom window. For
some topics, as in figure 1, there are graphic
displays and animation, with components that
AUTOTUTOR points to. AUTOTUTOR was designed
to be a good conversational partner that com-
prehends, speaks, points, and displays emo-
tions, all in a coordinated fashion. 

An Example AUTOTUTOR-
Learner Dialogue

Figure 2 shows a dialogue between a college stu-
dent and AUTOTUTOR. Prior to this question, the
student had been asked and attempted to
answer 6 previous questions about the internet.
The internet was the macrotopic, and students
were tutored by answering several deep-reason-
ing questions about the internet. It should be
noted that this is not a fabricated toy conversa-
tion. It is a bona fide dialogue from our corpus
of approximately 200 AUTOTUTOR-student dia-
logues in a computer literacy course. 

AUTOTUTOR begins this exchange by asking a
how question in turn 1: What hardware do you
need to take photos and send them over the
internet? However, AUTOTUTOR doesn’t merely
pop the question out of the blue. It first pre-
sents a discourse marker that signals a change
in topic (All right, let’s go on.), presents a con-

text to frame the question (You want to take

photos and send them over the internet.), and

then presents a discourse marker that signals

the questions (Consider this problem.). There-

fore, AUTOTUTOR monitors different levels of dis-

course structure and functions of dialogue

moves. AUTOTUTOR inserts appropriate discourse

markers that clarify these levels and functions

to the learner. Without these discourse markers,

learners are confused about what AUTOTUTOR is

doing and what they are supposed to do next.

A dialogue advancer network (DAN) has been

designed to manage the conversational dia-

logue (Person et al. 2001). The DAN is a finite-
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TUTOR-1:  Alright, let's go on. You want to take photos and 
send them over the Internet. Consider this problem. What 
hardware do you need to take photos and send them over 
the Internet? 
STUDENT-1:  First of all you need to have access to 
the internet.

TUTOR-2:  What else?

STUDENT-2:  a camera 

TUTOR-3:  Yeah. For what type of connection do you need 
a network card?

STUDENT-3:  network card

TUTOR-4:  Okay. Now, if you have access to the Internet 
through a network card, then your connection is… 

STUDENT-4:  I don't know.

TUTOR-5:  Is direct.  Okay.  A network card is needed if 
you have a direct connection to the Internet. Okay. How 
does the user get hooked up to the internet?

STUDENT-5:  by a plug.

TUTOR-6:  Once again, a network card is needed if you 
have a direct connection to the Internet. Okay, what does 
a modem do?

STUDENT-6:  connects network card and internet

TUTOR-7:  Okay. Try this. A modem is required when 
there is… 

STUDENT-7:  a connection

TUTOR-8:  a dial up connection.

.

.

.

TUTOR-30:  Let’s review. To send your photos on the 
Internet, you need either a digital camera or a regular 
camera to take the photos. If you use a regular camera, 
you need a scanner to scan them onto a computer disk. 
If you have a direct connection to the Internet, then you 
need a network card. A modem is needed if you have a 
dial up connection.

Figure 2. An Example Tutorial Dialogue between AUTOTUTOR and a Learner.



if you have a direct connection to the
internet.

Expectation 4: A modem is needed if you
have a dial-up connection.

AUTOTUTOR decides which expectation to
handle next and then selects dialogue moves
that flesh out the expectation. The dialogue
moves vary in directness and information con-
tent. The most indirect dialogue moves are
hints, the most direct are assertions, and
prompts are in between. Hints are often articu-
lated in the form of questions, designed to lead
the learner to construct the expected informa-
tion. Assertions directly articulate the expected
information. Prompts try to get the learner to
produce a single word in the expectation. For
example, the tutor turns 3, 4, 5, and 6 in figure
2 are all trying to get the learner to articulate
expectation 3. Hints are in the tutor-3 turn (For
what type of connection do you need a net-
work card?) and the tutor-5 turn (How does the
user get hooked up to the internet?). Prompts
are in tutor-4 (If you have access to the internet
through a network card, then your connection
is…, with a hand gesture encouraging the
learner to type in information). Assertions are
in tutor-5 and tutor-6 (A network card is need-
ed if you have a direct connection to the inter-
net.). AUTOTUTOR attempts to get the learner to
articulate any given expectation E by going
through two cycles of hint-prompt-assertion.
Most students manage to articulate the expec-
tation within the six dialogue moves (hint-
prompt-assertion-hint-prompt-assertion).
AUTOTUTOR exits the six-move cycle as soon as
the student has articulated the expected
answer. Interestingly, sometimes students are
unable to articulate an expectation even after
AUTOTUTOR spoke it in the previous turn. After
expectation E is fleshed out, AUTOTUTOR selects
another expectation. 

How Does AUTOTUTOR Know 
Whether a Student Has Covered 
an Expectation?

AUTOTUTOR does a surprisingly good job evalu-
ating the quality of the answers that learners
type in. AUTOTUTOR attempts to “comprehend”
the student input by segmenting the contribu-
tions into speech acts and matching the stu-
dent’s speech acts to the expectations. Latent
semantic analysis (LSA) is used to compute
these matches (Landauer, Foltz, and Laham
1998). When the tutor’s expectation E is com-
pared with the learner’s speech act A, a cosine
match score is computed that varies from 0 (no
match) to 1.0 (perfect match). AUTOTUTOR con-
siders each combination of speech acts that the
learner makes during the evolution of an

state automaton that can handle different class-

es of information that learners type in. The

DAN is augmented by production rules that are

sensitive to learner ability and several parame-

ters of the dialogue history. 

How Does AUTOTUTOR Handle the Stu-
dent’s Initial Answer to the Question?

After AUTOTUTOR asks the question in the tutor-

1 turn, the student gives an initial answer in

the student-1 turn. The answer is very incom-

plete. A complete answer would include all the

points in the summary at the final turn (tutor-

30). What does AUTOTUTOR do with this incom-

plete student contribution? AUTOTUTOR doesn’t
simply grade the answer (for example, good,

bad, incomplete, a quantitative score) as many

conventional tutoring systems do. AUTOTUTOR

also stimulates a multiturn conversation that is

designed to extract more information from the

student and get the student to articulate pieces

of the answer. Thus, instead of being an infor-

mation-delivery system that bombards the stu-

dent with a large volume of information, AUTO-

TUTOR is a discourse prosthesis that attempts to

get the student to do the talking and explores

what the student knows. AUTOTUTOR adopts the

educational philosophy that students learn by

actively constructing explanations and elabo-

rations of the material (Chi et al. 1994; Conati

and VanLehn 1999). 

How Does AUTOTUTOR Get the 
Learner to Do the Talking?

AUTOTUTOR has a number of dialogue moves to

get the learner to do the talking. For starters,

there are open-ended pumps that encourage
the student to say more, such as What else? in

the tutor-2 turn. Pumps are frequent dialogue

moves after the student gives an initial answer,

just as is the case with human tutors. The tutor

pumps the learner for what the learner knows

before drilling down to specific pieces of an

answer. After the student is pumped for infor-

mation, AUTOTUTOR selects a piece of informa-

tion to focus on. Both human tutors and AUTO-

TUTOR have a set of expectations about what

should be included in the answer. What they

do is manage the multiturn dialogue to cover

these expected answers. A complete answer to

the example question in figure 2 would have

four expectations, as listed here:

Expectation 1: You need a digital camera

or regular camera to take the photos.

Expectation 2: If you use a regular cam-

era, you need to scan the pictures onto the

computer disk with a scanner. 

Expectation 3: A network card is needed

AUTOTUTOR is
a discourse
prosthesis

that attempts
to get the

student to do
the talking

and explores
what the

student
knows.
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answer to a major question; the value of the

highest cosine match is used when computing

whether the student covers expectation E. LSA

is a statistical, corpus-based method of repre-

senting knowledge. LSA provides the founda-

tion for grading essays, even essays that are not

well formed grammatically, semantically, and

rhetorically. LSA-based essay graders can assign

grades to essays as reliably as experts in compo-

sition (Landauer et al. 1998). Our research has

revealed that AUTOTUTOR is almost as good as

an expert in computer literacy in evaluating

the quality of student answers in the tutorial

dialogue (Graesser et al. 2000).

How Does AUTOTUTOR Select 
the Next Expectation to Cover?

AUTOTUTOR uses LSA in conjunction with vari-

ous criteria when deciding which expectation

to cover next. After each student turn, AUTOTU-

TOR updates the LSA score for each of the four

expectations listed earlier. An expectation is

considered covered if it meets or exceeds some

threshold value (for example, .70 in our cur-

rent tutor). One selection criterion uses the

zone of proximal development to select the

next expectation, which is the highest LSA

score that is below threshold. A second criteri-

on uses coherence, the expectation that has

the highest LSA overlap with the previous

expectation that was covered. Other criteria

that are currently being implemented are pre-

conditions and pivotal expectations. Ideally,

AUTOTUTOR will decide to cover a new expecta-

tion in a fashion that both blends into the con-

versation and that advances the agenda in an

optimal way. AUTOTUTOR generates a summary

after all the expectations are covered (for exam-

ple, the tutor-30 turn). 

How Does AUTOTUTOR

Give Feedback to the Student?

There are three levels of feedback. First, there is

backchannel feedback that acknowledges the

learner’s input. AUTOTUTOR periodically nods

and says uh-huh after learners type in impor-

tant nouns but is not differentially sensitive to

the correctness of the student’s nouns. The

backchannel feedback occurs online as the

learner types in the words of the turn. Learners

feel that they have an impact on AUTOTUTOR

when they get feedback at this fine-grain level.

Second, AUTOTUTOR gives evaluative pedagogical
feedback on the learner’s previous turn based on

the LSA values of the learner’s speech acts. The

facial expressions and intonation convey differ-

ent levels of feedback, such as negative (for

example, not really while head shakes), neutral

negative (okay with a skeptical look), neutral

positive (okay at a moderate nod rate), and pos-

itive (right with a fast head nod). Third, there is

corrective feedback that repairs bugs and miscon-

ceptions that learners articulate. Of course,

these bugs and their corrections need to be

anticipated ahead of time in AUTOTUTOR’S cur-

riculum script. This anticipation of content

mimics human tutors. Most human tutors

anticipate that learners will have a variety of

particular bugs and misconceptions when they

cover particular topics. An expert tutor often

has canned routines for handling the particular

errors that students make. AUTOTUTOR currently

splices in correct information after these errors

occur, as in turn tutor-8. Sometimes student

errors are ignored, as in tutor-4 and tutor-7.

These errors are ignored because AUTOTUTOR has

not anticipated them by virtue of the content

in the curriculum script. AUTOTUTOR evaluates

student input by matching it to what it knows

in the curriculum script, not by constructing a

novel interpretation from whole cloth. 

How Does AUTOTUTOR Handle Mixed-
Initiative Dialogue?

We know from research on human tutoring

that it is the tutor who controls the lion’s share

of the tutoring agenda (Graesser, Person, and

Magliano 1995). Students rarely ask informa-

tion-seeking questions and introduce new top-

ics. However, when learners do take the initia-

tive, AUTOTUTOR needs to be ready to handle

these contributions. AUTOTUTOR does a moder-

ately good job in managing mixed-initiative

dialogue. AUTOTUTOR classifies the learner’s
speech acts into the following categories: 

Assertion (RAM is a type of primary mem-

ory.)

WH-question (What does bus mean and

other questions that begin with who,

what, when, where, why, how, and so on.)

YES-NO question (Is the floppy disk work-

ing?)

Metacognitive comment (I don’t under-

stand.)

Metacommunicative act (Could you re-

peat that?)

Short response (okay, yes) 

Obviously, AUTOTUTOR’S dialogue moves on

turn N + 1 need to be sensitive to the speech

acts expressed by the learner in turn N. When

the student asks a What does X mean? ques-

tion, the tutor answers the question by giving

a definition from a glossary. When the learner

makes an assertion, the tutor evaluates the

quality of the assertion and gives short evalua-

tive feedback. When the learner asks, What did

Our research
has revealed
that
AUTOTUTOR is
almost as
good as an
expert in
computer
literacy in
evaluating the
quality of
student
answers in the
tutorial
dialogue ….
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riculum script with deep-reasoning questions

and problems. The developer then computes

LSA vectors on the content of the curriculum

scripts. A glossary of important terms and their

definitions is also prepared. After that, the

built-in modules of AUTOTUTOR do all the rest.

AUTOTUTOR is currently implemented in JAVA for

PENTIUM computers, so there are no barriers to

widespread use. 

ANDES: A Physics Tutoring 
System That Does Not 
Use Natural Language

The goal of the second project is to use natural

language–processing technology to improve

an already successful intelligent tutoring sys-

tem named ANDES (Gertner and VanLehn

2000; VanLehn 1996). ANDES is intended to be

used as an adjunct to college and high-school

physics courses to help students do their

homework problems. 

Figure 3 shows the ANDES screen. A physics

problem is presented in the upper-left window.

Students draw vectors below it, define variables

you say? AUTOTUTOR repeats what it said in the

last turn. The DAN manages the mixed-initia-

tive dialogue. 

The Curriculum Script

AUTOTUTOR has a curriculum script that orga-

nizes the content of the topics covered in the

tutorial dialogue. There are 36 topics, one for

each major question or problem that requires

deep reasoning. Associated with each topic are

a set of expectations, a set of hints and prompts

for each expectation, a set of anticipated bugs-

misconceptions and their corrections, and

(optionally) pictures or animations. It is very

easy for a lesson planner to create the content

for these topics because they are English

descriptions rather than structured code. Of

course, pictures and animations would require

appropriate media files. We are currently devel-

oping an authoring tool that makes it easy to

create the curriculum scripts. Our ultimate goal

is to make it very easy to create an AUTOTUTOR

for a new knowledge domain. First, the devel-

oper creates an LSA space after identifying a

corpus of electronic documents on the domain

knowledge. The lesson planner creates a cur-
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Figure 3. The ANDES Tutoring System.



in the upper-right window, and enter equations

in the lower-right window. When students

enter a vector, variable, or equation, ANDES will

color the entry green if it is correct and red if it

is incorrect. This approach is called immediate
feedback and is known to enhance learning

from problem solving (Anderson et al. 1995).

To give immediate feedback, ANDES must

understand the student’s entries no matter

how the student tries to solve the problem.

ANDES uses a rule-based expert system to solve

the problem in all correct ways. It gives nega-

tive feedback if the student’s entry does not

match one of the steps of one of the solutions

from the expert model. For this reason, ANDES

and similar tutoring systems are known as

model-tracing tutors. They follow the student’s
reasoning by comparing it to a trace of the

model’s reasoning.

How Does ANDES Hint and Give Help?

Students can ask ANDES for help by either click-

ing on the menu item What do I do next? or by

selecting a red entry and clicking on the menu

item What’s wrong with that? ANDES uses a

Bayesian network to help it determine which

step in the expert’s solution to give the student

help on (Gertner, Conati, and VanLehn 1998).

It prints in the lower-left window a short mes-

sage, such as the one shown in figure 3. The

message is only a hint about what is wrong or

what to do next. Often a mere hint suffices, and

the students are able to correct their difficulty

and move on. However, if the hint fails, then

the student can ask for help again. ANDES gener-

ates a second hint that is more specific than the

first. If the student continues to ask for help,

ANDES’s last hint will essentially tell the student

what to do next. This technique of giving help

is based on human-authored hint sequences.

Each hint is represented as a template. It is filled

in with text that is specific to the situation

where help was requested. Such hint sequences

are often used in intelligent tutoring systems

and are known to enhance learning from prob-

lem solving (McKendree 1990). 

During evaluations in the fall of 2000 at the

U.S. Naval Academy, students using ANDES

scored about a letter grade (0.92 standard devi-

ation units) higher on the midterm exam than

students in a control group (Shelby et al. 2002).

Log file data indicate that students are using

the help and hint facilities as expected. Ques-

tionaire data indicate that many of them prefer

doing their homework on ANDES to doing it

with paper and pencil.

Other intelligent tutoring systems use similar

model tracing, immediate feedback, and hint

sequences techniques, and many have been

shown to be effective (for example, Anderson et

al. [1995]; McKendree, Radlinski, and Atwood

[1992]; Reiser et al. [2002]). A new company,

Carnegie Learning,1 is producing such tutors for

use in high-school mathematics classes. As of

fall 2000, approximately 10 percent of the alge-

bra I classes in the United States will be using

one of the Carnegie Learning tutors. Clearly,

this AI technology is rapidly maturing.

Criticisms of ANDES and Other Similar
Tutoring Systems

The pedagogy of immediate feedback and hint

sequences has sometimes been criticized for

failing to encourage deep learning. The follow-

ing four criticisms are occasionally raised by

colleagues:

First, if students don’t reflect on the tutor’s
hints but merely keep guessing until they find

an action that gets positive feedback, they can

learn to do the right thing for the wrong rea-

sons, and the tutor will never detect the shallow

learning (Aleven, Koedinger, and Cross 1999).

Second, the tutor does not ask students to

explain their actions, so students might not

learn the domain’s language. Educators have

recently advocated that students learn to “talk

science.” Talking science is allegedly part of a

deep understanding of the science. It also facil-

itates writing scientifically, working collabora-

tively in groups, and participating in the cul-

ture of science.

Third, to understand the students’ thinking,

the user interface of such systems requires stu-

dents to display many of the details of their rea-

soning. This design doesn’t promote stepping

back to see the “basic approach” one has used

to solve a problem. Even students who have

received high grades in a physics course can sel-

dom describe their basic approaches to solving

a problem (Chi, Feltovich, and Glaser 1981).

Fourth, when students learn quantitative

skills, such as algebra or physics problem solv-

ing, they are usually not encouraged to see their

work from a qualitative, semantic perspective.

As a consequence, they fail to induce versions

of the skills that can be used to solve qualitative

problems and check quantitative ones for rea-

sonableness. Even physics students with high

grades often score poorly on tests of qualitative

physics (Halloun and Hestenes 1985).

Many of these objections can be made to just

about any form of instruction. Even expert

tutors and teachers have difficulty getting stu-

dents to learn deeply. Therefore, these criticisms

of intelligent tutoring systems should only

encourage us to improve them, not reject them.

There are two common themes in this list of

four criticisms. First, all four involve integrat-

Talking
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ing technology that was originally developed

for CIRCSIM tutor (Freedman and Evens 1996),

the BASIC ELECTRICITY AND ELECTRONICS (BEE) tutor

(Rosé, Di Eugenio, and Moore 1999), and the

COCONUT model of collaborative dialogue (Di

Eugenio et al. 2000). A number of natural lan-

guage–understanding authoring tools have

been developed, including the LC-FLEX parser

(Rosé and Lavie 2001). 

Currently, ATLAS plays only a small role in the

student’s total problem-solving process. Most

of the time, the students interact with ANDES

just as they ordinarily do. However, if ATLAS

notices an opportunity to promote deep learn-

ing, it takes control of the interaction and

begins a natural language dialogue. Although

ATLAS can ask students to make ANDES actions as

part of the dialogue (for example, it might have

the student draw a single vector), most of the

dialogue is conducted in a scrolling text win-

dow, which replaces the hint window shown in

the lower left of figure 3. When ATLAS has fin-

ished leading the student through a line of rea-

soning, it signs off and lets the student return

to solving the problem with ANDES.

The ATLAS dialogues are called knowledge con-
struction dialogues (KCDs) because they are

designed to encourage students to infer or con-

struct the target knowledge. For example, ANDES

might simply tell the student that when an

object moving in a straight line is slowing

down, its acceleration is in the opposite direc-

tion to it velocity. ATLAS will instead try to draw

the knowledge out of the student with a dia-

logue such as the one shown in figure 4, where

the student derived the target principle from a

deeper one. KCDs are intended to provide deep-

er knowledge by connecting principles, relating

them to commonsense knowledge, and giving

the student practice in talking about them.

Knowledge Construction 
Dialogues to Teach Principles

To date, ATLAS conducts just one kind of KCD,

namely, those that teach domain principles.

Currently, we are concentrating on only a

small portion of physics, so only 55 principles

are covered. Even so, building so many KCDs

was daunting enough that we built tools to

help us. With these tools, we were able to build

knowledge sources for our KCDs in only three

person-months.

The primary design concept is to represent

KCDs as recursive finite-state networks. States

correspond to tutor utterances (usually ques-

tions), and arcs correspond to student respons-

es. A few arcs are special in that they either call

a subdialogue or return from one. Such recur-

sive finite- state networks are often used in spo-

ing problem-solving knowledge with other
knowledge, namely (1) principles or rationales;
(2) domain language; (3) abstract, basic
approaches; and (4) qualitative rules of infer-
ence. Second, the kinds of instructional activi-
ty that are currently used to tap these other
kinds of knowledge make critical use of natural
language. Although one can invent graphic or
formal notations to teach these kinds of knowl-
edge on a computer, they might be more con-
fusing to the students and instructors than the
knowledge that they are trying to convey.
Moreover, students and instructors are likely to
resist learning a new formalism, even a graphic
one, if they will only use it temporarily.

ATLAS: A Natural Language
Enhancement for 

Model-Tracing Tutors 

We believe that tutoring systems must use nat-
ural language if they are to become more effec-
tive at encouraging deep learning. Therefore,
we have begun building ATLAS, a module that
can be added to ANDES or other similar model-
tracing tutoring systems to conduct natural
language dialogues and thereby promote deep
learning. ATLAS uses natural language-process-
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1.  Tutor: As you know, you can think of an acceleration 
vector as changing a velocity vector by pulling on its 
tip. In this case, the elevator’s velocity vector points 
straight down and you drew its acceleration vector 
pointing down too. What does your acceleration 
vector do to the velocity vector?

2.  Student: It stretches it downward.

3.  Tutor: Does that make it longer?

4.  Student: Yes.

5.  Tutor: Which means the elevator is speeding up, right?

6.  Student: Yeah, but its not really speeding up. It's 
slowing down.

7.  Tutor: Right. So maybe your acceleration vector’s 
direction is wrong. What direction should it be?

8.  Student: Up.

9.  Tutor: Right.  So what have you learned about the 
direction of acceleration when an object is moving in 
a straight line and slowing down?

10.  Student: It’s in the opposite direction from the velocity.

11.  Tutor: Yes!  That’s exactly right.  Good job. 

Figure 4. A Hypothetical Dialogue between ATLAS and a Student.



ken language dialogue systems (Jurafsky and

Martin 2000), so it makes sense to start with

them and see where they break down.

Our primary tool is the KCD editor (figure 5).

In the upper-left window, the author selects a

topic, which is deceleration in this case. This

selection causes a shorthand form of the recipes

(discourse plans) to appear in the upper-right

window. Selecting a tutor-student interaction

brings up windows for seeing the tutor’s contri-

bution (as with the lower-right window) and

the student’s expected answers (middle win-

dows). The left-middle window is for correct

answers. As in AUTOTUTOR, the student’s expect-

ed answer is represented as a set of expectations

(left and opposite in this case). The right-mid-

dle window is for incorrect answers. When one

of these is selected, a subdialogue for handling

it is displayed in the lower-left window. Notice

that the author enters natural language text for

the tutor contribution, the expectations, and

almost everything else.

In a limited sense, the KCDs are intended to

be better than naturally occurring dialogues.

Just as most text expresses its ideas more clearly

than informal oral expositions, the KCD is

intended to express its ideas more clearly than

the oral tutorial dialogues that human tutors

generate. Thus, we need a way for expert physi-

cists, tutors, and educators to critique the KCDs

and suggest improvements. Because the under-

lying finite-state network can be complex, it is

not useful to merely print it out and let experts

pencil in comments. The second tool facilitates

critiquing KCDs by allowing expert physicists

and psychologists to navigate around the net-

work and enter comments on individual states

and arcs (figure 6). It presents a dialogue in the

left column and allows the user to enter com-

ments in the right column. Because there are

many expected responses for each tutorial con-

tribution, the user can select a response from a

pull-down menu, causing the whole dialogue

to adjust, opening up new boxes for the user’s
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Figure 5. The Knowledge Construction Dialogue Editor.



should have ATLAS say line 7 instead of line 3.

Although the authors only see and edit nat-

ural language text, we cannot expect students

to type in exactly the responses that the

authors enter. The compiler uses CARMEL (Rosé
2000) to translate the expected student

responses into semantic structures. Thus, it

should recognize the expected responses even

if they are not expressed with the same words

and syntax as the author-provided versions.

Current Status and Future Directions

The initial version of ATLAS was pilot tested in

the fall of 2000. Five students used ATLAS, and

five students used ANDES without its hint

sequences instead of the ATLAS KCDs. Despite

the small number of subjects, the ATLAS stu-

dents scored significantly higher than the

ANDES students on a conceptual posttest. Sur-

prisingly, the effect was large: The ATLAS stu-

dents gained about .9 standard deviation units

more than the ANDES students. Moreover, they

scored about the same as the ANDES students on

a quantitative posttest, suggesting that the

improvements were limited to the material

taught by ATLAS, as expected. 

Five issues dominate ATLAS’s future develop-

ment. First, writing an effective KCD and

debugging it with real students is an inherently

labor-intensive process. We will continue

building tools to expedite the process. Second,

the conventional wisdom is that a recursive

finite-state network does not provide sufficient

flexibility for managing complex dialogues.

Although a reactive planner interprets ATLAS’s
networks, we do not currently make use of all

its power. Thus, a second important direction is

to determine how much of this additional

power is necessary for conducting more effec-

tive tutorial dialogues with students. Third, the

current version of ATLAS does not make use of

the full power offered by the CARMEL core-

understanding component. Thus, another

related direction is determining how sophisti-

cated an analysis of student input is necessary

for the system to determine how best to pro-

ceed with its dialogue with the student. Fourth,

we have deliberately left the ANDES system’s two

major knowledge sources alone, so ANDES is still

responsible for solving physics problems and

deciding which hint sequence is appropriate.

Thus, KCDs are used mostly to replace hint

sequences. We are not sure if this simple design

will allow pedagogically useful dialogues or

whether we will need to port some of ANDES’s
knowledge to ATLAS. Fifth, we plan to extend

ATLAS’s capabilities to additional types of knowl-

edge-construction dialogues, such as goal-scaf-

folding dialogues.

comments. This tool runs in a web browser, so

experts can use it remotely.

At any point in its development, a KCD can

be compiled into executable code. The code is

interpreted by a reactive planning engine

(Freedman 1999). The engine does not simply

follow the finite-state network. Instead, it has

rudimentary (but growing) capabilities for

treating the network as a plan for the conver-

sation that it will adapt as necessary. For

example, in the conversation in figure 4, sup-

pose the student said at line 2, “The accelera-

tion makes the velocity vector longer, so the

elevator should be going faster.” The reactive

planner should recognize that the student has

skipped ahead in the conversation plan, so it
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Figure 6. The Knowledge Construction Dialogue Commenter.



WHY2: Tutoring 
Qualitative Explanations

All tutoring systems have students perform a

task, and they help the students do it. Some

tutoring systems, such as ANDES and ATLAS, have

the student solve problems. Other tutoring sys-

tems, such as AUTOTUTOR, ask the student deep

questions and help them formulate a correct,

complete answer. Recent work with human

tutors (for example, Chi et al. [2001]) suggests

that a good activity for teaching is to have stu-

dents explain physical systems qualitatively.

Although it is possible to have them express

their explanations in formal or graphic lan-

guages (for example, CYCLEPAD [Forbus et al.

1998]), we believe that they will learn more if

they can express their explanations in natural

language. Thus, the goal of the WHY2 project is

to coach students as they explain physical sys-

tems in natural language.

WHY2 is intended to be a successor of one of

the first intelligent tutoring systems in the lit-

erature, the WHY system. WHY was envisioned

and partially implemented by Albert Stevens

and Alan Collins (Stevens and Collins 1977).

They studied experts helping students articu-

late such explanations and tried to embed their

tutorial strategies in the WHY system. Stevens

and Collins discovered that students had a

great many misconceptions about nature.

These misconceptions would only surface

when students expressed their ideas qualita-

tively because they could solve textbook quan-

titative problems correctly (Halloun and

Hestenes 1985). Since this time, considerable

effort has been expended by physics educators

to discover, catalog, and invent remedies for

student misconceptions. The remedies are usu-

ally intended for classroom or laboratories and

have had only moderate success (Hake 1998).

By adapting them to the tutorial setting and

embedding the tutorial strategies uncovered by

Collins, Stevens, and others, WHY2 might be

much more successful.

The basic idea of WHY2 is to ask the student

to type in an explanation for a simple physical

situation, such as the battery-bulb circuit

shown in figure 7. WHY2 analyzes the student’s
explanation (line 1 in Figure 7) to see if the stu-

dent has any misconceptions. If it detects a

misconception, it invokes a knowledge con-

struction dialogue (KCD), such as the one

shown in lines 2 through 9. During this dia-

logue, further misunderstandings may arise,

which can cause another KCD to be selected

and applied (see lines 10 onward). 

WHY2 is a joint project involving both the

AUTOTUTOR and ATLAS groups. It began recently

and is still in the design stages. A corpus of

explanations from students has been collected

and is being analyzed to see what kinds of mis-

conceptions and language the students are

using. Our plan is to use a combination of the

LSA technology from AUTOTUTOR and the

semantic composition technology from ATLAS.

Articles

WINTER 2001   49

Question: A battery is connected to a bulb by two wires. 
The bulb lights.  Why?

1.  Student: There are two currents 
which come out, one current 
positive and one negative. They 
combine in the bulb to produce 
light and heat.

2.  Tutor: I see. Which current is composed of moving 
electrons?

3.  Student: I’m not sure. Both?

4.  Tutor: Right, both are.  An electrical current is just 
moving electrons. Which direction do the electrons 
move in  your two currents?

5.  Student: I think the electrons move out from the 
battery to the bulb. The two currents meet there and 
produce energy.

6.  Tutor: Are the electrons actually destroyed in the bulb?

7.  Student: I’m not sure.

8.  Tutor: Actually, electrons are not destroyed or lost in  
an electrical current. Instead, they go out one side of 
the battery, go through the bulb and go back in the 
other side of the battery. Thus, your two currents are 
actually the same flow, only the electrons are leaving 
the battery for one and returning to the battery for 
the other.  Given everything you know about batteries 
and bulbs, does this make sense?

9.  Student: But I thought the battery dies when it runs 
out of electrons.

10.  Tutor: Batteries die when they run out of the chemical 
energy that they use to pump electrons around the 
circuit. The battery is like a water pump that produces 
a powerful current, and the bulb is like a paddle wheel 
that is driven by the water current. When the water 
pump runs out of energy, the current slows to a stop. 
As this happens, does the number of electrons in the 
battery change?

11.  Student: Maybe a little.  But it stays about the same.

12.  Tutor: Exactly right!  I think you understand electrical 
current better now. See if you can write a better 
explanation.

Figure 7. A Hypothetical Dialogue between a Student and WHY2.
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