
Intelligent tutors for all: Constraint-based modeling methodology,
systems and authoring

Contributing Authors

Antonija Mitrovic, Brent Martin, Pramuditha Suraweera
Intelligent Computer Tutoring Group
University of Canterbury, Christchurch, New Zealand

Abstract: Intelligent Tutoring Systems (ITS) have revolutionized online education by
providing individualized instruction tailored towards each student. Constraint-based
tutors model instructional domains at an abstract level, a novel approach that simplifies
the development of ITSs. We have developed many effective constraint-based tutors
over the last decade in a number of instructional domains of various characteristics, some
of which have been successfully commercialized. Constraint-based tutoring is now a
mature and successful approach to providing adaptive learning environments. Our
authoring tools aim to make this technology widely available to teachers and students
everywhere.

Keywords: Artificial Intelligence: Applications and Expert Knowledge-Intensive
Systems: Education, Knowledge Representation Formalisms and Methods, Knowledge
Modeling; Computers and Education: Computer Uses in Education: Computer-assisted
instruction

Introduction

Providing Web-based environments for learning is increasingly important in today’s
society as the number of people with Internet access is growing and the resources for
supporting effective learning are restricted. The idea of using computers in education is
not new. There are numerous e-learning systems available; however, most of them are
overly simple and provide very limited interactivity to their users. For learning to be
effective, the student must be active and have opportunities to practice important skills.
Intelligent Tutoring Systems (ITS) provide tailored support to each individual student, a
unique strength that comes from their ability to model various types of knowledge
required for instruction: domain knowledge, knowledge about their students (i.e. student
models), models of pedagogy and communication knowledge.

Since the inception of ITS more than three decades ago many approaches to developing
them have been proposed, most of which have stayed in the realm of research labs. The
same is true for the actual tutors developed – typically systems were only used under very
strict experimental conditions in research labs, often with participants who are paid for
their time and not representative of typical students. However, there are some ITSs that
have been widely used in schools, such as model tracing tutors1, developed by researchers
at Carnegie-Mellon University.

In the last decade a promising new type of ITSs, referred to as Constraint-based Tutors,
has emerged. We at the Intelligent Computer Tutoring Group (ICTG) have developed
constraint-based tutors for instructional domains of very different natures. Our approach
to building ITSs is based on Stellan Ohlsson’s theory of learning from performance
errors2, which resulted in the methodology known as constraint-based modeling3 (CBM).
A distinguishing characteristic of constraint-based tutors is the knowledge representation
formalism they are based upon. Ohlsson proposed that knowledge should be represented
in the form of constraints, which specify what ought to be so, rather than generating
problem-solving paths. Domain knowledge is thus used as a way of prescribing abstract
features of correct solutions, rather than as a recipe for performing tasks in a domain, the
way it is done in model tracing (using production rules). Constraints support evaluation
and judgment, not inference, and are used to represent both domain and student
knowledge.

This paper follows the evolution of CBM from an abstract idea to a methodology proven
through the development of effective tutoring systems and powerful ITS authoring tools.
We start by discussing constraints as a knowledge-representation formalism, and present
features of some example systems. Our constraint-based systems have been evaluated
thoroughly in real classrooms with students of various backgrounds. The results show
that CBM is a sound theoretical foundation for ITSs, and demonstrate that our
development methodology is effective and efficient. We present details of some
evaluation studies, and describe commercial success.

The effort required to builds an ITS is a major impediment to their wide-spread
adoption4. ICTG has developed constraint-based authoring tools that dramatically reduce
this effort. We describe WETAS, a tutoring shell, and ASPIRE, a comprehensive
authoring platform, and discuss how they aim to meet the challenge of enabling educators
to build tutors as teaching tools for their own courses.

Constraint-based tutoring is now a mature and successful approach to providing adaptive
learning environments. Experimental results show that our approach is equally effective
in supporting student learning as state-of-the-art ITSs today, and at the same time
requires less effort to be developed5. However, the benefits of CBM still have not been
fully explored. We are currently extending CBM to model meta-cognitive skills, such as
self-explanation and collaborative skills. We describe these future directions and present
our vision of how CBM may lead to widespread access to technology that enhances
learning for all.

Representing Knowledge as Constraints

Constraint-based modeling uses abstraction to avoid the need to model students’
misconceptions. Constraints represent only correct knowledge in terms of pedagogically
significant states; each constraint maps to a set of solution states that share the same
domain principle. A constraint-based ITS can therefore react in the same way (e.g. by
displaying the same feedback message) for any solution that violates a given constraint.
Constraints have three components: a relevance condition, a satisfaction condition and

the feedback message. The relevance condition describes (in terms of problem/solution
features) when this constraint is applicable. The satisfaction condition then specifies
additional tests to be applied to the solution to check its correctness. This way, constraint
violations allow an ITS to react at the right time, and also govern the instruction to be
delivered. The feedback message attached to the constraint tells the student that his/her
solution is wrong, points out why it is wrong, and reminds the student of the
corresponding declarative knowledge (i.e. the domain principle that is violated by the
solution). An example constraint is “If you are driving in New Zealand, you need to be on
the left side of the road.” The relevance condition of this constraint indicates it is
applicable to those driving events that take place in New Zealand. For such an event to be
valid, it also needs to meet the satisfaction condition (i.e. the car is on the left). If this
latter condition is not met, appropriate feedback can be given, such as “When driving in
New Zealand you need to keep left”. An interesting side-effect of this approach is that
CBM is silent to situations it has no knowledge of. We describe therefore CBM’s
approach as “innocent until proven guilty”: if there are no constraints violated by a
particular solution, it is deemed correct. This is in contrast to approaches that enumerate
possible problem-solving paths such as model tracing; if a student performs an action that
is not on a known path, a model tracing tutor will typically assume the answer is incorrect
(although it might not know why); otherwise it would be unable to follow what the
student is doing. Both approaches have their strengths and weaknesses, but it means that
overall CBM is more permissive than model tracing.

Just as constraints are used to represent the domain knowledge by specifying features of
correct solutions in the domain, they also serve as the basis for representing student’s
knowledge. When a student submits a solution, a constraint-based tutor analyses it using
the constraints; relevant constraints are identified, and their satisfaction conditions
determine whether they have been satisfied or violated. The lists of relevant, satisfied and
violated constraints thus serve as a short-term student model, which is then used to update
the long-term model of the student’s understanding. A student’s knowledge may be
represented in constraint-based tutors in many ways, such as an overlay on top of the
domain model, as a set of performance histories for all constraints used by the student, or
even a Bayesian student model.

Pedagogically CBM determines the content of instruction provided. If there are errors in
a student’s action, the ITS will present feedback provided by the violated constraints. The
form of this feedback is shaped by the underlying learning theory: it should tell the
student what domain principle he/she has violated, how it was violated by the student’s
solution, and reiterate the correct domain principle2. However, the style and delivery of
feedback is independent of CBM; they can be adapted to a particular student. For
example, feedback can be given in textual and/or pictorial form, depending on the
student’s learning style. Further, both the timing (immediate or delayed) and amount of
feedback (i.e. the number of feedback messages and the level of detail) can vary and can
be adaptive.

The student model is also used for problem selection, by directing the ITS to select
problems that exercise constraints the student has yet to master. Many problem-solving

strategies can be implemented, and CBM merely supports the process by providing
information about the mastery and novelty of concepts and exercises.

CBM is computationally simple, requiring only pattern matching. Unlike model tracing,
it does not require a runnable expert module; student diagnosis is achieved by using the
constraints to compare the student’s solution to a pre-specified “ideal” solution. This
works even in domains where problems can have multiple (and often radically different)
correct solutions because constraints can identify alternative constructs in the student
solution that are equally valid6. The ideal solution therefore simply encapsulates the
semantics required of the student’s answer. If a problem solver is available, however, it
can be used beneficially to provide more information to the student in the form of advice
about the next step to perform. Alternatively, the constraints themselves can be used to
repair errors in the student’s answer, and the repaired solution (or part of it) can then be
shown to them as a hint of what to do/fix next.

CBM has further advantages over other modeling techniques. It does not require bug
libraries (collections of common errors students make), which are difficult and expensive
to collect and maintain. Constraint-based tutors are also robust in the face of student
inconsistency; CBM does not model problem-solving procedures, and therefore it can
handle mixed problem-solving strategies. This also makes CBM able to handle creativity
because the student is free to use a novel problem-solving procedure if they wish without
the system intervening. However, the author may optionally add constraints that catch
suboptimal strategies, in which case the student will be guided towards optimal
behaviour. CBM’s higher level of abstraction also means that domain models are smaller,
and therefore authoring effort is reduced5.

Successful Constraint-based Tutors

SQL-Tutor6 is the first constraint-based tutor built by the ICTG. It supports students
learning how to query relational databases using SQL. This language is hard for students
to learn. It is typically taught in lectures and labs, with students learning query definition
in the context of a specific database management system (DBMS). There is a great deal
of complexity involved: students need to learn the concepts of the relational data model,
be familiar with the DBMS used, and they also need to learn the syntax of SQL. On top
of all of these difficulties, DBMSs provide error messages that are cryptic, hard to
understand and limited to syntax errors only.

SQL-Tutor provides rich support to students, both in terms of the scaffolding provided by
its interface and in terms of adaptive problem-solving support. The problem-solving
interface (Fig. 1) provides problem text, the solution structure and information about the
database schema. The student can also run their queries and see the resulting data. The
system provides feedback on demand at several levels of detail. For the first submission,
the student is only told whether or not the solution is correct. If they continue to submit
incorrect solutions, they will progressively get more help until they are able to complete
the problem or ask for the solution. The student model is used to select the next problem

to be posed to the student, and we have experimented with a number of different
problem-selection strategies.

SQL-Tutor contains almost 700 constraints describing the fundamental principles that all
solutions must satisfy. Some constraints check that the student is using correct syntax.
For example, constraint 254 first checks whether the student has specified a nested
SELECT statement in the WHERE clause (relevance condition); if that is the case, the
satisfaction condition requires that the nested query is preceded by either a comparison
operator, or a predicate (IN, ALL, ANY or EXISTS). Other constraints check whether the
student’s solution is the correct solution for the given problem by comparing it to the
ideal solution. Such constraints (which we refer to as semantic constraints) also check for
alternative ways of solving problems. As an illustration, constraint 263 is relevant for

situations when the ideal solution contains a BETWEEN condition in the WHERE clause
using an attribute, and the student has not used that predicate, but instead has a condition
comparing the same attribute to a numerical constant. The satisfaction condition of this
constraint requires that the student has also specified another (conjunctive) condition
comparing the same attribute to another numeric constraint, thus allowing an alternative
way of specifying a range of values for the attribute. Please note that this constraint only
requires two search conditions in the student’s solution using the same attribute (which is
necessary for a range check), and does not check whether the student has used the correct

Figure 1. The interface of SQL-Tutor consists of (a) problem text, (b) workspace for composing
SQL queries, (c) feedback panel and (d) database schema.

constants and comparison operators. These additional checks will be performed by other
constraints, thus allowing feedback to be very precise. Figure 1 shows feedback given
when constraint 263 is violated.

The success of SQL-Tutor led us to research the generality of CBM by implementing
ITSs in other domains, and also to explore how the methodology could be enhanced. We
have particularly focused on design tasks because these tasks are typically difficult to
support using other types of ITSs. Since developing SQL-Tutor, we have also built EER-
Tutor (the early, stand-alone version of which was KERMIT7), a tutor that teaches
conceptual database design. This task is difficult for students because as well as requiring
the student to learn how to construct EER diagrams, it also involves analytical experience
that can only be obtained by practice. EER-Tutor provides numerous problems to
students, a custom drawing tool for developing diagrams, and feedback at several levels
of detail. The interface (Figure 2) reminds the student of the requirements for the current
problem and provides drawing tools corresponding to the constructs of Enhanced Entity-
Relationships (EER). It also reinforces good practice in the domain by asking the student
to name the diagram components by selecting terms from the problem description.
Although this latter mechanism is arguably somewhat restrictive, it is valuable from a
pedagogical point of view in that it focuses the student on the problem requirements and
forces him/her to use the end user’s language; this is widely considered good practice in
software engineering. The system also highlights the selected names (within the problem
text) in various colors, thus providing a means for the student to visually explore how
much of the problem he/she has covered. If there are any errors in the student’ solution,
the corresponding parts of the diagram will be highlighted in red, to help the student
identify the errors in combination with the feedback given.

The majority of our tutors are developed for the area of database systems because we
teach these areas and desired the tutors for our own courses. However, we have also
developed ITSs in other domains to demonstrate that our approach is general. CAPIT and
LBITS are systems that teach various aspects of the English language to elementary
school children; the former teaches punctuation and capitalization rules, while LBITS
contains a number of vocabulary building activities such as unscrambling words, turning
the singular form of nouns into plural, and turning verbs into nouns.

All of the tutors described thus far were developed for domains that do not prescribe a
strict problem solving procedure. We have also explored the suitability of CBM for
procedural tasks, for which there are problem-solving algorithms available and therefore
problem solvers can be developed. The first such system was NORMIT, a tutor that
teaches data normalization. Data normalization is the process of refining a database
schema by applying a series of tests to its relations and decomposing them if necessary.
Although the algorithm is straightforward, students often fail to perform it correctly
because they lack a strong understanding of the underlying database theory. NORMIT
strengthens students’ performance in applying the procedure by focusing on each step of
the algorithm in isolation, and requiring them to complete the current step before being
allowed to move to the next one. At each step NORMIT provides a summary of the

solution developed so far, and checks whether the student has completed all the necessary
actions using the constraints relevant for that step. We experienced no difficulties
generating constraints to support learning in this domain, and have since developed tutors
for other procedural domains.

Evaluating Learning Effectiveness

Our firm belief is that ITSs must be evaluated in authentic classroom situations. We have
performed more than 30 evaluation studies, all with students taking appropriate courses.
SQL-Tutor alone has been evaluated in eleven studies at the University of Canterbury
since 1998, focusing on a variety of issues such as learning gain, effectiveness of
feedback, problem/feedback selection strategies, open student models and students’ self-

Figure 2. EER-Tutor interface containing (a) problem description, (b) EER diagram
workspace, and (c) feedback for three violated constraints.

assessment skills. Although classroom studies are much more difficult to organize and
conduct than strictly controlled laboratory studies with paid participants, they are sorely
needed because they provide information about representative student populations.

In the evaluation studies performed, we typically begin by measuring the students’
existing knowledge via pre-tests. Participants are free to use the tutor under study as
much as they wish over a certain fixed period of time (usually several weeks). A typical
study involves two or more versions of the same system, which allows us to compare the
effectiveness of various kinds of support implemented. The tutoring system collects data
about all actions the students perform and stores it in log files. Students are typically
asked to sit a post-test at the end of interaction, and are sometimes also asked to provide
their impressions of the system. This information is then analyzed statistically in a variety
of ways. When measuring the learning effectiveness of students using our systems,
typical effect sizes we obtain are in the order of one standard deviation improvement, as
good as that achieved by state-of-the-art ITSs available today.

SQL-Tutor was the first of our systems to be formally evaluated, with the results
demonstrating that students using it achieved real learning gains. After only two hours
with SQL-Tutor, students outperformed their peers in the final examination, scoring an
average of three quarters of a standard deviation higher on questions related to SQL
query formulation6. This result is comparable to results achieved by other approaches8,9,
including studies where the students have used the relevant system throughout an entire
semester.

EER-Tutor has also been proven to be effective. The stand-alone version (KERMIT) was
evaluated in August 2001 during a regular lab session at the University of Canterbury7.
The 62 volunteers that participated in the study were randomly assigned to use the
complete version of KERMIT (the experimental group) or a cut-down version of
KERMIT that only provided the final solution (the control group). Pre/post test results
revealed that the students who used KERMIT attained significantly higher gains (t = 3.07,
p < 0.01). The effect size of the experiment, which allows the comparison of the results of
one pedagogical experiment to another, was 0.63. The power of the experiment was 0.75
at significance 0.05, indicating that there is a high probability that the experiment would
produce significant results for the same design, the same number of participants and the
same effect size.

Commercial Success: The Database Place Web Portal

Having demonstrated the efficacy of constraint-based tutors at our own institution, the
next step was to unleash them internationally, which we achieved through
commercialization. Since February 2003, two of our database tutors (SQL-Tutor and
NORMIT) have been available on the Addison-Wesley’s “Database Place” Web portal
(www.aw-bc.com/databaseplace), with EER-Tutor following a year later. The student
population on Database Place is very different from our local students – anyone who has
bought database textbooks published by Addison-Wesley may access this site. Unlike our
domestic students, we know nothing about these students’ backgrounds and pre-existing

knowledge, so it is very interesting to observe the way they use the systems and their
learning performance compared to our local cohort.

Figure 3 shows that the number of registered users for the three systems on Database
Place increases almost linearly. There are periods of slower increase during northern
hemisphere summers, which provides some evidence of the locations of the majority of
users. Our contract with Addison-Wesley prevents us from requiring pre/post test to be
completed by users, and therefore we cannot compare the test results of our Canterbury
students to Database Place users. However, we log all students’ actions both at
Canterbury and at Database Place (including what constraints were satisfied and violated
for each student submission), and can therefore compare the two populations in terms of
their learning processes. Figure 4 shows the learning curves for the Canterbury and
Database Place student populations. A learning curve plots the performance on using
constraints in terms of the probability on average of violating a constraint versus the
number of times the constraint has been applied. Psychological research has shown that
such performance improves approximately as a power law of practice, and our tutors
exhibit this characteristic. As can be seen in Figure 4, the two groups of students learn the
domain material in comparable ways; the initial probabilities of errors (the y-intercepts)
and the learning rates (the exponent of the power law functions) are similar. The degree
of fit to a power law is a little higher for the Database Place population, but this is
probably because the data volume is several orders of magnitude greater.

0

1000

2000

3000

4000

5000

6000

7000

F
e

b
-0

3

A
p

r-
0
3

Ju
n

-0
3

A
u

g
-0

3

O
ct

-0
3

D
e

c-
0
3

F
e

b
-0

4

A
p

r-
0
4

Ju
n

-0
4

A
u

g
-0

4

S
e

p
-0

4

N
o

v-
0

4

Ja
n
-0

5

M
a

r-
0

5

M
a

y-
0

5

Ju
l-

0
5

S
e

p
-0

5

N
o

v-
0

5

Ja
n
-0

6

M
a

r-
0

6

M
a

y-
0

6

Ju
l-

0
6

S
e

p
-0

6

SQL-Tutor ER-Tutor NORMIT

Figure 3. Registered Database Place Users

Author Support

Building ITSs from scratch is a large, time-consuming process. To ease the development
of further tutors we developed WETAS10, a web-enabled authoring shell that provides all
the functionality necessary for constraint-based tutors, including student modeling,
problem selection and feedback. WETAS can generate simple text-based interfaces
automatically, whilst more complex interfaces are catered for by allowing the author to
provide these resources in the form of custom HTML pages or Java applets. To develop a
new constraint-based tutor using WETAS, the author provides the domain model and a
set of problems with their solutions. LBITS and the web-enabled version of our database
design tutor (EER-Tutor) were developed in WETAS, as well as several other constraint-
based tutors, including Collect-UML described in the next section. WETAS can also be
invoked via remote procedure calls, which allows tutoring functions to be embedded into
existing applications. For example, the students at Canterbury University developed a
UML diagrams tutor as a plugin for the CASE tool Borland Together.

WETAS dramatically decreases the time required to build a fully working tutoring
system. Since its creation in 2001, WETAS has been used for five years by students in a
graduate course on ITS at Canterbury University. The students are given just 3-4 weeks
to develop a fully working tutor using WETAS in a fairly simple domain, such as English
pluralization or adding fractions. In all cases, 89% or more of the students have created

Canterbury

y = 0.1863x-0.154

R2 = 0.8589

DatabasePlace

y = 0.1739x-0.1716

R2 = 0.9316

0

0.05

0.1

0.15

0.2

1 3 5 7 9 11 13 15

Occasion

P
ro

b
ab

il
it

y

DatabasePlace Canterbury

Power (Canterbury) Power (DatabasePlace)

Figure 4. NORMIT learning curves for Canterbury and Database Place Students

fully functioning tutors in the time available. In 2006 a graduate student at Canterbury
University developed a tutor for teaching German adjectives, which was used by a
German class at the University. Two versions of the system were built for comparative
testing of two interface styles, with the actual implementation taking around 40 hours to
complete. The system received very positive reviews by both the students and their
instructor, who is keen to develop more tutors to support the teaching of German. This
illustrates how WETAS has made it feasible to rapidly develop and implement effective
tutors in a classroom setting.

Although WETAS significantly shortens the development time, creating the domain
model (the most difficult part4) is still hard. Domain models typically consist of hundreds
of constraints: for example, the domain model of SQL-Tutor consists of almost 700
constraints, each taking over an hour to develop6. SQL-Tutor constraints were developed
by an authoring expert; for novice authors the time per constraint would probably be
larger. Novice authors experience two main hurdles: it is hard to work out what to model,
and it takes skill to transform the conceptual model into actual constraints10. The latter
problem is tackled to some degree in WETAS by using a custom constraint language that
reduces constraints to pattern matches and logical connectors only. To overcome the
second problem of working out what to model, we developed WETAS-Ontology, a
system that lets the author create an ontology of the domain diagrammatically. WETAS-
Ontology then generates the constraints based on the ontology. Figure 5 shows the
ontology for a hypothetical search engine language created using the WETAS-Ontology
tool.

The ontology is a combination of a taxonomy and a partonomy: each node represents a
domain concept, where a diamond indicates that the sub-nodes are alternative
specializations of this node (i.e. they have an “is-a” relationship with this node) and a
rectangle indicates that any sub-nodes are components of this node and must appear in

Figure 5. The ontology developed in WETAS-Ontology for a search language

the solution in strict order (i.e. they have a “part-of” relationship). For example, a logical
connective can be either AND or OR; a complex expression consists of a search
expression followed by a logical connective and another search expression. Rectangles
with double edges represent concepts that have already been defined. Note that the latter
could also have been achieved by allowing a node to have multiple parents. However,
this would make the representation visibly more complex. This particular representation
was chosen because it is simple to understand by novices and provides a clear
visualization of the domain. Once the ontology has been created, WETAS-Ontology uses
a set of templates to generate constraints directly from the nodes in the ontology. One
constraint is created (per concept node) for each test we need to make, such as: Does this
concept need to be used or not; Has the same instance of this concept been used by the
student as the author; Has the student provided all required instances of this concept; Has
the student used the correct sub-concepts?

Figure 6 shows two constraints generated from the ontology in Figure 5. Constraint 5 is
for the concept “string” and checks whether or not a string is needed. The test for a string
is more complex than can be easily represented in the ontology, so a macro “^string” has
been used; such macros are hand written by the author in a language similar to the
constraint language. Writing macros is an additional task to producing the ontology,
however in practice few (if any) macros tend to be required. Constraint 16 checks
whether or not the concept “complex expression” is needed in the student’s solution. In
this case there is no easy way to test for this concept because it consists only of two
alternative sub-concepts and no literal components. The generator therefore descends the
tree until it finds sub-concepts with literal components (in this case “AND” and “OR”)
and creates tests for each alternative sub-component.

WETAS-Ontology was trialed at the Adaptive Hypermedia 2006 Summer School on e-
learning, held at the National College of Ireland in Dublin. Students were first asked to
develop an ontology for the search language domain just described, and were given just

(5 "Check whether you need one or more strings in your
answer."
; Relevance condition
 (MATCH IDEAL_SOLUTION (?* (^string ?IS_1) ?*))
; Satisfaction condition
 (MATCH STUDENT_SOLUTION (?* (^string ?SS_1) ?*)))

(16 "Are you sure you need complex expressions in your
answer?"
; Relevance condition
 (OR (MATCH STUDENT_SOLUTION (?* "AND" ?*))
 (MATCH STUDENT_SOLUTION (?* "OR" ?*)))
; Satisfaction condition
 (OR (MATCH IDEAL_SOLUTION (?* "AND" ?*))
 (MATCH IDEAL_SOLUTION (?* "OR" ?*))))

Figure 6. Generated constraint examples

one hour to complete it, including around fifteen minutes spent instructing them in the
use of the tools. At any time they could get the tool to create a set of constraints from
their ontology, which was then automatically loaded into WETAS so they could test it (a
problem/solution set was provided for them). Of the twelve students who participated in
the exercise, half of them succeeded in creating an ontology that produced a fully
functioning tutor in the time allocated, although all but one of these could have benefited
from some refinement. Of the other six students, three had nearly completed the
ontology. The remaining three had made some progress.

The students were also required to complete a group project in some area of adaptive
web-based education systems, with six projects being offered. Two groups (representing
around half of the total class) chose to use WETAS for their project, with one group using
it to develop a tutor for English pluralization. They succeeded in creating a complete
working tutor from scratch in just six hours, including developing a problem/solution set
and building the domain model. For the latter they used WETAS-Ontology to create the
set of constraints; they then wrote some low-level pattern matches to make the constraints
more flexible and edited the generated feedback messages. The resulting tutor was of
sufficient quality that it could be deployed in an elementary school.

WETAS-Ontology makes it easier to create the domain model, and allows the author to
visualize the concepts of the domain via the ontology diagram tool. However, it only
enables simple semantic checking. In particular, it is difficult to model multiple, highly
dissimilar ways of satisfying a particular concept; the author must still code such
constraints by hand. WETAS is therefore a useful tool for developers, but is not suitable
for novice authors such as educators. ASPIRE11 is an authoring environment currently
under development that aims to be usable by teachers. Like WETAS-Ontology, ASPIRE
provides rich domain-authoring support in addition to deploying ITSs. Authoring in
ASPIRE starts with the author describing general features of the domain, such as whether
the task is procedural or not, and specifying steps for procedural tasks. The author then
describes the domain in terms of an ontology. Constraints that check for syntactic
correctness can be generated directly from the ontology. The author is then asked to
describe the structure of solutions in terms of the ontology, and provide a set of problems
and their solutions. Finally, ASPIRE generates a set of constraints for checking the
semantics of the answer using a machine-learning technique: alternative (correct)
solutions are compared, and, if necessary, constraints are specialized or generalized to be
consistent across all the given solutions. It is this last step that enables the system to
model alternative correct solution approaches.

ASPIRE also provides the essential components of a tutoring system similar to WETAS,
enabling the domain models generated using ASPIRE to be served as web-based tutors.
In addition to running a collection of tutoring systems in parallel, ASPIRE also provides
the functionality for managing teachers and students and student cohorts, which allows
teachers to be able to assign ITSs for their students. We are currently evaluating ASPIRE
with two novice authors, who are developing ITSs for very different domains
(thermodynamics and accounting), as well as exploring its efficacy in the more complex

domains of computer program design (via Nassi-Shneiderman diagrams) and engineering
mechanics.

Representing and Supporting Meta-Cognitive Skills

ITSs use their domain models and adaptive support to help students acquire declarative
knowledge and problem-solving skills in the chosen domain. However, very successful
students also understand how to learn effectively, and how to monitor their own cognitive
processes. We have enhanced some of our constraint-based tutors to provide support for
such higher-order, or “meta-cognitive”, skills. For example, NORMIT-SE and KERMIT-
SE are versions of our data normalization and database design tutors respectively that
have been extended to provide support for self-explanation, by asking students to explain
their actions. Students are required to justify their problem-solving decisions when they
make errors and thus practice self-explanation skills. The student is asked to explain an
incorrect action in a series of questions, thereby leading him/her towards the correct
solution through their own reasoning. Students are free to stop the dialogue at any point
once they understand the problem and have determined how to recover from it.

Collect-UML is a constraint-based tutor that supports groups of students collaborating on
a software design task. As well as teaching the students problem-solving skills in the area
of UML class diagrams, it also strengthens their collaborative skills. Problem solving
consists of three phases: students begin by negotiating the collaboration process and
working on individual solutions. This is followed by a collaboration phase during which
they develop a group solution. The latter phase involves communication between students
via a chat tool. As well as providing feedback on the individual and group solutions
Collect-UML also gives advice that aids them in their collaboration.

To be able to support these meta-cognitive skills, constraints need to represent more than
just domain knowledge. We are now extending the use of constraint-based modeling to
represent meta-cognitive knowledge as well. Two current projects include modeling
explanation and communication skills as constraints. Collect-UML includes a model of
collaboration skills represented in such a manner. An evaluation study performed in May
2006 showed that such support for collaboration results in improved declarative
knowledge of good collaborative skills, as well as improving collaboration within groups.
In another research project we are developing a meta-model of explanations skills that
controls the self-explanation process and makes it more adaptive.

Conclusions

Our research has demonstrated that CBM is a very effective modeling approach that
provides good foundations for successful instruction. Our constraint-based tutors have
been thoroughly evaluated and proven to achieve significant learning gains. The
interfaces of our systems are easy to use and reduce the working memory load by
providing domain-specific information, visualizing the solution structure and structuring
students’ thinking. Our tutors enforce good practices in the chosen instructional domain,
and provide learning environments that are close to the real-world environment.

Evaluation studies have also shown that the wording of feedback is important; when
feedback is worded according to the theory of learning from performance errors2 students
learn more. Furthermore, we have seen that asking students to provide reasons behind
their actions results in learning declarative knowledge more efficiently. Recent
achievements in advancing the capabilities of CBM include the use of constraints to
represent not only domain-level knowledge, but also meta-cognitive knowledge. We have
used constraints in two projects to represent the ideal models of collaboration and self-
explanation skills.

We have also made significant advances in supporting the authoring process. WETAS, an
authoring shell for developers, provides all the domain-independent tutoring functions,
thus freeing up the author to perfect the all-important domain model. ASPIRE goes one
step further and provides support for novice authors by automating many of the authoring
tasks and providing comprehensive support for the others. Work continues on
enhancements of ASPIRE and further development of our philosophy of authoring
constraint-based tutors from domain ontology, including investigating the features of
instructional domains that make them particularly suitable for CBM. ASPIRE will be a
solid test-bed for this research. Furthermore, ASPIRE will be freely available via the Web
from mid 2007 to anyone interested in building constraint-based tutors, and the ITSs
developed in it will also be free to use; other researchers will therefore be able to confirm
the effectiveness of our approach by developing their own constraint-based tutors and
deploying them in ASPIRE. As the approach gains popularity, ASPIRE has the potential
to deliver ITS to the world’s classrooms.

Acknowledgments
This research was supported by grants U6430 and U6532 from the University of
Canterbury, and eCDF grants 502 and 592. We are grateful for the contributions of
Stellan Ohlsson and all present and past members of ICTG.

References

1. Anderson, J.R. et al. Cognitive Tutors: Lessons Learned. Journal of the Learning Sciences

4(2), 1995, 167-207.
2. Ohlsson, S. (1996). Learning from performance errors. Psychological Review, 103,1996,

241-262.
3. Ohlsson, S. Constraint-based student modeling. Journal of Artificial Intelligence and

Education, 3(4), 1992, 429-447.
4. Murray, T. An Overview of Intelligent Tutoring System Authoring Tools: Updated analysis

of the state of the art. Authoring tools for advanced technology learning environments. 2003,
491-545.

5. Mitrovic, A., Koedinger, K. and Martin, B. A Comparative Analysis of Cognitive Tutoring
and Constraint-Based Modelling. P. Brusilovsky, A. Corbett, F. de Rosis (Eds.) Proc. 9th Int.
Conf. User Modeling, Springer-Verlag, LNAI 2702, 2003, pp. 313-322.

6. Mitrovic, A. and Ohlsson, S., Evaluation of a Constraint-Based Tutor for a Database
Language. Int. J. Artificial Intelligence in Education, 10(3-4), 1999, 238-256.

7. Suraweera, P., Mitrovic, A. An Intelligent Tutoring System for Entity Relationship
Modelling. Int. J. Artificial Intelligence in Education, 14(3-4), 2004, 375-417.

8. VanLehn, K. et al. The Andes Physics Tutoring System: Lessons Learned. Int. J. Artificial
Intelligence in Education, 15(3), 2005, 147-204.

9. Koedinger, K.R., Anderson, J.R., Hadley, W.H. and Mark, M.A. Intelligent tutoring
goes to school in the big city. Int. J. Artificial Intelligence in Education, 8, 1997, 30-
43.

10. Martin, B. and Mitrovic, A. Domain Modeling: Art or Science? In: U. Hoppe, F. Verdejo & J.
Kay (ed) Proc. 11th Int. Conf. Artificial Intelligence in Education, IOS Press, 2003, pp. 183-
190.

11. Mitrovic, A. et al. Authoring constraint-based tutors in ASPIRE. M. Ikeda, K. Ashley, and
T.-W. Chan (Eds.) Proc. 8th Int. Conf. Intelligent Tutoring Systems, Springer, LNCS 4053,
2006, pp. 41-50.

Author Biographies

Dr. Antonija Mitrovic is an Associate Professor at the University of Canterbury, and
director of the Intelligent Computer Tutoring Group. Her research interests are in
Intelligent Tutoring Systems, databases and GIS. She holds a PhD in intelligent education
systems from the University of Nis, Yugoslavia.

Dr. Brent Martin is a Senior Lecturer at the University of Canterbury and a researcher
in the Intelligent Computer Tutoring Group. He performs research in intelligent education
systems and machine learning. He holds a PhD in intelligent educations systems from the
University of Canterbury, New Zealand.

Pramuditha Suraweera is a Research Fellow at the University of Canterbury and a
researcher in the Intelligent Computer Tutoring Group. His research interest is in
intelligent education systems. He holds a MSc in intelligent educations systems from the
University of Canterbury, New Zealand.

