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ABSTRACT 

Conventional GNSS positioning in dense urban areas can 

exhibit errors of tens of meters due to blockage and 

reflection of signals by the surrounding buildings. Here, 

we present a full implementation of the intelligent urban 

positioning (IUP) 3D-mapping-aided (3DMA) GNSS 

concept. This combines conventional ranging-based 

GNSS positioning enhanced by 3D mapping with the 

GNSS shadow-matching technique. Shadow matching 
determines position by comparing the measured signal 

availability with that predicted over a grid of candidate 

positions using 3D mapping. Thus, IUP uses both pseudo-

range and signal-to-noise measurements to determine 

position. All algorithms incorporate terrain-height aiding 

and use measurements from a single epoch in time. 

Two different 3DMA ranging algorithms are presented, 

one based on least-squares estimation and the other based 
on computing the likelihoods of a grid of candidate 

position hypotheses. The likelihood-based ranging 

algorithm uses the same candidate position hypotheses as 

shadow matching and makes different assumptions about 

which signals are direct line-of-sight (LOS) and non-line-

of-sight (NLOS) at each candidate position. Two different 

methods for integrating likelihood-based 3DMA ranging 

with shadow matching are also compared. In the position-

domain approach, separate ranging and shadow-matching 

position solutions are computed, then averaged using 

direction-dependent weighting. In the hypothesis-domain 

approach, the candidate position scores from the ranging 
and shadow matching algorithms are combined prior to 

extracting a joint position solution. 

Test data was recorded using a u-blox EVK M8T 

consumer-grade GNSS receiver and a HTC Nexus 9 tablet 

at 28 locations across two districts of London. The City of 

London is a traditional dense urban environment, while 

Canary Wharf is a modern environment. The Nexus 9 

tablet data was recorded using the Android Nougat GNSS 

receiver interface and is representative of future 

smartphones. Best results were obtained using the 
likelihood-based 3DMA ranging algorithm and 

hypothesis-based integration with shadow matching. With 

the u-blox receiver, the single-epoch RMS horizontal (i.e., 

2D) error across all sites was 4.0 m, compared to 28.2 m 

for conventional positioning, a factor of 7.1 improvement. 

Using the Nexus tablet, the intelligent urban positioning 

RMS error was 7.0 m, compared to 32.7 m for 

conventional GNSS positioning, a factor of 4.7 

improvement. 

An analysis of processing and data requirements shows 

that intelligent urban positioning is practical to implement 
in real-time on a mobile device or a server. 
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1. INTRODUCTION

The positioning performance of global navigation satellite 

systems (GNSS) in dense urban areas is poor because 

buildings block, reflect and diffract the signals. If the real-

time position accuracy using low-cost equipment could be 

improved to 5m or better, a host of potential applications 

would benefit. These include situation awareness of 

emergency, security and military personnel and vehicles; 
emergency caller location; mobile mapping; tracking 

vulnerable people and valuable assets; intelligent 

mobility; location-based services; location-based 

charging; augmented reality; and enforcement of curfews, 

restraining orders and other court orders. A further 

accuracy improvement to around 2m would also enable 

navigation for the visually impaired; lane-level road 

positioning for intelligent transportation systems; aerial 

surveillance for law enforcement, emergency 

management, building management and newsgathering; 

and advanced rail signaling. 

Buildings and other obstacles degrade GNSS positioning 

in three ways. Firstly, where signals are completely 

blocked, they are simply unavailable for positioning, 

degrading the signal geometry. Secondly, where the direct 

signal is blocked (or severely attenuated), but the signal is 

received via a (much stronger) reflected path, this is 

known as non-line-of-sight (NLOS) reception. NLOS 

signals exhibit positive ranging errors corresponding to 

the path delay (the difference between the reflected and 

direct paths). These are typically a few tens of meters in 

dense urban areas, but can be much larger if a signal is 
reflected by a distant building. Thirdly, where both direct 

line-of-sight (LOS) and reflected signals are received, 

multipath interference occurs. This can lead to both 

positive and negative ranging errors, the magnitude of 

which depends on the signal and receiver designs. NLOS 

reception and multipath interference are often grouped 

together and referred to simply as “multipath”. However, 

to do so is highly misleading as the two phenomena have 

different characteristics and can require different 

mitigation techniques [1]. 

There are many different approaches to multipath and 

NLOS mitigation [2]. A good GNSS antenna is more 

sensitive to right-hand circularly polarized (RHCP) 

signals than to left-hand circularly polarized (LHCP) 

signals. As direct LOS signals are RHCP while most 

reflected signals are LHCP or mixed polarization, this 

reduces multipath errors by attenuating the reflected signal 

components with respect to the direct. Furthermore, 

NLOS reception can usually be detected from the signal to 

noise ratio (SNR) measurements, enabling NLOS signals 

to be eliminated from the position calculation. However, 

cheaper antennas offer less polarization discrimination 
and smartphone antennas none at all. 

Much of the literature on multipath mitigation is 

dominated by receiver-based signal-processing techniques 

[3]. However, because they work by separating out the 

direct and reflected signals within the receiver, they can 

only be used to mitigate multipath; they have no effect on 

NLOS reception at all. Consistency checking selects the 

most consistent subset of the signals received to compute 

a position solution from. This is based on the principle 

that measurements from “clean” direct LOS signals 

produce a more consistent navigation solution than those 

from NLOS and severely multipath-contaminated signals. 

In dense urban areas, a subset comparison approach is 
more robust that conventional sequential testing [4]. 

Over the past six years, there has been a lot of interest in 

3D-mapping-aided (3DMA) GNSS, a range of different 

techniques that use 3D mapping data to improve GNSS 

positioning accuracy in dense urban areas. The simplest 

form of 3DMA GNSS is terrain height aiding. For most 

land applications, the antenna is at a known height above 

the terrain. By using a digital terrain model (DTM), also 

known as a digital elevation model (DEM), the position 

solution may be constrained to a surface. In conventional 

least-squares positioning, this is done by generating a 
virtual ranging measurement [5]. By effectively removing 

a dimension from the position solution, this improves the 

accuracy of the remaining dimensions. In open areas, 

terrain height aiding only improves the vertical position 

solution (as one might expect). However, in dense urban 

areas where the signal geometry is poor, it can improve 

the horizontal accuracy by almost a factor of two [6].  

3D models of the buildings can be used to predict which 

signals are blocked and which are directly visible at any 

location [7][8]. This can be computationally intensive. 
However, the real-time computational load can be reduced 

dramatically by using building boundaries [9]. These 

describe the minimum elevation above which satellite 

signals can be received at a series of azimuths and are 

precomputed for each candidate position. A signal can 

then be classified as LOS or NLOS simply by comparing 

the satellite elevation with that of the building boundary at 

the corresponding azimuth. 

The shadow-matching technique [10] determines position 

by comparing the measured signal availability and 
strength with predictions made using a 3D city model over 

a range of candidate positions. Several research groups 

have demonstrated this experimentally, using both single 

and multiple epochs of GNSS data [11][12][13][14][15] 

[16][17][18]. Cross-street position accuracies of a few 

meters have been achieved in dense urban areas, enabling 

users to determine which side of the street they’re on. This 

complements GNSS ranging, which is more accurate in 

the along-street direction in these environments because 

more direct LOS signals are received along the street than 

across it. Shadow matching has also been demonstrated in 

real time on an Android smartphone [19]. A review of 
shadow matching, including its error sources and how it 

could be developed further may be found in [20]. 

3D models of the buildings can also be used to aid 

conventional ranging-based GNSS positioning. Where the 
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user position is already approximately known, it is 

straightforward to use a 3D city model to predict the 

NLOS signals and eliminate them from the position 

solution [21][22][23]. However, for most urban 

positioning applications there is significant position 

uncertainty. One solution is to define a search area 

centered on the conventional GNSS position solution and 

compute the proportion of candidate positions at which 

each signal is receivable via direct LOS. This can then be 
used to re-weight a least-squares position solution and aid 

consistency checking [6]. More sophisticated approaches 

which score position hypotheses using the GNSS pseudo-

range measurements and satellite visibility predictions at 

each candidate position are presented in [24] and in 

Section 2.2 of this paper. 

 

Several groups have extended 3D-mapping-aided GNSS 

ranging by using the 3D city model to predict the path 

delay of the NLOS signals across an array of candidate 

positions [25][26][27][28]. A single-epoch positioning 

accuracy of 4m has been reported [27]. However, unless 
the search area is small, this approach is very 

computationally intensive as the path delay cannot easily 

be pre-computed. The urban trench approach presented in 

[29] enables the path delays of NLOS signals to be 

computed very efficiently, but only if the building layout 

is highly symmetric, so it can only be used in suitable 

environments. Therefore, NLOS path delay predictions 

are not used in the work presented here. 

 

3DMA GNSS ranging has also been combined with 

‘direct positioning’ which uses the receiver correlator 
outputs to score an array of position hypothesis [30]. 

 

Clearly, to get the best performance out of GNSS aided by 

3D mapping, as much information as possible should be 

used. Thus, both pseudo-range and SNR measurements 

from a multi-constellation GNSS receiver should be used, 

together with both LOS/NLOS predictions and terrain 

height from 3D mapping. This concept is known as 

intelligent urban positioning (IUP) [31]. 

 

A preliminary implementation of the IUP concept is 
presented in [32]. This integrates shadow matching with a 

3DMA least-squares GNSS ranging algorithm 

incorporating terrain height aiding, consistency checking, 

and weighting of the pseudo-ranges according to the 

average predicted satellite visibility over a search area. 

Position-domain integration is used with two different 

weighting approaches. Error covariance-based weighting 

was found to perform slightly better than weighting using 

the street azimuth. The overall root mean square (RMS) 

horizontal (i.e., 2D) single-epoch position accuracy 

obtained using a u-blox EVK M8T receiver was 6.1 m, 

compared to 25.9 m using conventional GNSS 
positioning, a factor of four improvement. 

 

This paper extends this work, incorporating: 

 A 3DMA GNSS ranging algorithm based on 

computing the likelihood of an array of candidate 

position hypotheses based on the satellite visibility 

predictions at each position (the least-squares 

algorithm is retained for initialization); 

 Hypothesis-domain integration of 3DMA ranging with 

shadow matching; 

 Additional test sites in the Canary Wharf area of 

London, which is similar to modern urban 

environments in North America and Asia; 

 Test results using a Nexus 9 tablet equipped with the 

Android Nougat GNSS receiver interface that will 

enable 3DMA GNSS ranging to be implemented on a 

smartphone. 

All results presented here are based on a single epoch of 

GNSS measurements, which suits many location-based 

service (LBS) applications that require a quick one-time 

fix. 3DMA GNSS is particularly important for single-

epoch positioning because other augmentations, such as 

carrier-smoothing, carrier-phase positioning and 

integration with inertial sensors, only work with multiple 

epochs of GNSS data [2]. 
 

An alternative implementation of the intelligent urban 

positioning concept is presented in [24]. The shadow-

matching algorithm is simpler than that used here. A 

different likelihood-based 3DMA GNSS ranging 

algorithm is also implemented which uses only the signals 

predicted to be direct LOS at each candidate position. The 

experimental tests demonstrate that the method works 

well. However, as the results presented combine 

measurements from multiple epochs, they are not directly 

comparable with the single-epoch results presented here. 

 
Extending the IUP implementation presented here to 

multiple epochs for navigation and tracking applications is 

a subject for future work. Better performance can be 

expected as several researchers have already demonstrated 

that filtering can improve 3DMA GNSS performance 

[17][18][24]. Conventional GNSS positioning also works 

much better with multiple epochs of data. With an 

extended Kalman filter (within which carrier-smoothing is 

normally inherent), it is much easier to detect outliers due 

to NLOS reception and severe multipath interference than 

it is using single-epoch least-squares positioning. 
However, 3DMA GNSS also has an important role to play 

in multi-epoch positioning as it will enable carrier-

smoothed, inertially aided and potentially even real-time 

kinematic (RTK) carrier-phase positioning to be 

accurately initialized and re-initialized in challenging 

urban environments. 

 

Section 2 summarizes the positioning algorithms, 

including the least-squares and likelihood-based 3DMA 

ranging algorithms, the shadow matching algorithm and 

the integration algorithms.  Section 3 presents 

experimental test results from data collected using a u-
blox EVK M8T consumer-grade GNSS receiver and a 

Nexus 9 tablet at 28 locations across two districts of 

London. Section 4 then discusses the practicality of real-

time implementation of intelligent urban positioning. 
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Finally, Sections 5 and 6 summarize the conclusions and 

plans for future work, respectively.  

 

2. POSITIONING ALGORITHMS 

 

The intelligent urban positioning system comprises four 

main algorithms as shown in Figure 1. The least-squares 

3DMA GNSS ranging algorithm is used to initialize the 

likelihood-based 3DMA GNSS ranging algorithm and the 
shadow-matching algorithm, enabling them to use a much 

smaller search area than if the conventional GNSS 

position was used for initialization. The integration 

algorithms then compute a joint position solution from 

likelihood-based 3DMA ranging and shadow matching. 

Both a position-domain integration algorithm and a 

hypothesis-domain integration algorithm are presented. 

The least-squares 3DMA GNSS ranging solution is also 

integrated with shadow matching in the position domain 

to enable comparison of the new IUP algorithms with 

those presented in [32]. Thus, three integrated position 

solutions are produced altogether. The following 
subsections summarize each algorithm. 

 

 
 

Figure 1: Intelligent urban positioning algorithm 

configuration 

 

2.1. Least-Squares 3DMA GNSS Ranging  

Figure 2 shows the least-squares 3DMA ranging 
algorithm, comprising the following six steps: 

1. A search area is determined using the conventional 

GNSS position solution on the first iteration and the 

previous solution on subsequent iterations, together 

with an appropriate confidence interval.  

2. Using 3D mapping converted to precomputed building 

boundaries, the proportion of the search area within 

which each satellite is directly visible is computed, 

giving the probability that the signal is direct LOS.   

3. A consistency-checking process is applied to the 

ranging measurements, using the direct LOS 

probabilities from the 3D mapping. 

 

Figure 2: Least-squares 3DMA GNSS ranging 

algorithm block diagram (Adapted from [6]). 

 

4. The set of signals resulting from the consistency 

checking process is subjected to a weighting strategy 

based on the previously determined LOS probabilities 

and carrier-power-to-noise-density ratio, C/N0. 

5. Terrain height is extracted from the 3D mapping and a 

virtual range measurement is generated using the 

position at the centre of the search area. 

6. Finally, a position solution is derived from the pseudo-

ranges and virtual range measurement using weighted 

least-squares estimation. 

The algorithm is then iterated several times to improve the 
position solution. Full details are presented in [6] (final 

version) and [33] (preliminary version). 

Projected coordinates (eastings and northings) are used for 

the 3D mapping while Cartesian ECEF coordinates are 

used for the least-squares position solution. Conversion 

between Cartesian ECEF and projected coordinates can be 

simplified using a nearby reference point [32]. 

 

2.2. Likelihood-based 3DMA GNSS Ranging  

In likelihood-based 3DMA GNSS ranging an array of 

candidate position hypotheses are scored according to the 
correspondence between the predicted and measured 

pseudo-ranges. This enables different error distributions to 

be assumed for a given GNSS signal at different candidate 

positions. Thus, at positions where a signal is predicted 

from the 3D mapping (via precomputed building 

boundaries), to be NLOS, a skew normal (Gaussian) 

distribution is assumed, biased towards positive ranging 

errors. Elsewhere, a conventional symmetric normal 

distribution is assumed. 
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Terrain height aiding is inherent in generating the position 

hypotheses, enabling a single height to be associated with 

each horizontal position and thus avoiding the 

computational load of a 3D search area. The receiver 

clock bias is eliminated by differencing all pseudo-range 

measurements across satellites. 

 

Other likelihood-based 3DMA GNSS ranging algorithms 

based on candidate position hypothesis scoring have been 
described in the literature. However, they differ from the 

approach proposed here. In [26] and [27], pseudo-ranges 

predicted to be NLOS are corrected using path delays 

predicted from the 3D mapping. This is potentially more 

accurate, but the path delay computation is highly 

computationally intensive. In [24], a least-squares position 

solution is computed using only those signals predicted to 

be direct LOS and the candidate position is then scored 

according to its Mahalanobis distance from the least-

squares position solution. 

 

Figure 3 shows the likelihood-based 3D-model-aided 
ranging algorithm, comprising the following six steps: 

1. A circular search area of radius 40m is defined with its 

centre at the least-squares 3DMA ranging position 

solution. Within this search area, a grid of candidate 

positions is set up with a spacing of 1m. 

2. For each candidate position, the satellite visibility is 

predicted using the building boundaries precomputed 

from the 3D city model. At each candidate position, 

the highest elevation satellite predicted to be direct 

LOS is selected as the reference satellite. 

3. At each candidate position, the direct LOS range to 

each satellite is computed. Measurement innovations 

are then computed by subtracting the computed ranges 

from the measured pseudo-ranges and then 

differencing with respect to the reference satellite. 

 

 

 

Figure 3: Likelihood-based 3DMA GNSS ranging 

algorithm block diagram 

4. At each candidate position, the measurement 

innovation for each satellite predicted to be NLOS is 

re-mapped to a skew normal distribution. 

5. A likelihood score for each candidate position, p, is 

computed using 

 pppRp zCz z  
1

,

Texp  , (1) 

where zp is the vector of measurement innovations 

and Cz,p is the measurement error covariance matrix, 
computed using the direct-LOS-hypothesis 

measurement error standard deviations, which are the 

same for all candidate positions. 

6. A position solution is derived from the scores of the 

candidate positions using 
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where Ep and Np are the easting and northing 

coordinates of the pth candidate position. 

Full details of the algorithm will be presented in a 

forthcoming journal submission, currently under 

preparation. 

 

2.3. Shadow Matching 

 

Figure 4: Shadow-matching algorithm block diagram 

(adapted from [20]) 

 

The shadow matching algorithm is a modified version of 

that presented in [16]. Figure 4 shows the algorithm, 

comprising the following five steps: 

1. A circular search area of radius 40m is defined with its 

centre at the least-squares 3DMA ranging position 

solution. Within this search area, a grid of candidate 

positions is set up is set up with a spacing of 1m. 

2. For each candidate position, the satellite visibility is 
predicted using the building boundaries precomputed 

from the 3D city model. If the satellite elevation is 

above the building boundary at the relevant azimuth, 

the LOS probability predicted from the building 
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boundary, p(LOS|BB), is set to 0.85. Otherwise, it is 

set to 0.2. These values allow for diffraction and 3D 

model errors. 

3. The observed satellite visibility is determined from the 

GNSS receiver’s C/N0 or signal to noise ratio (SNR) 

measurements. From these, a probability that each 

received signal is direct LOS, p(LOS|SNR=s) is 

estimated using 

 












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



ssp

sssasasa

ssp

sSNRLOSp

maxmax

maxmin01

2

2

minmin

|

o

o

, (3) 

where the coefficients are listed in Table 1. 

4. Each candidate position is scored according to the 

match between the predicted and measured satellite 

visibility. For a given satellite, the probability that the 

predicted and measured satellite visibility match is 

 
  )|(|2

)|(|1

BBLOSpsSNRLOSp

BBLOSpsSNRLOSp
Pm 


  (4) 

The overall likelihood score, Sp, for each position, p, 

is then the product of the individual satellite 

probabilities.  

5. A position solution is derived from the scores of the 

candidate positions using 
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where Ep and Np are the easting and northing 

coordinates of the pth candidate position. 

 

Table 1: Coefficients for determining direct LOS 

probability from measured SNR.  

 

Coefficient u-blox EVK M8T Nexus 9 tablet 

po-min 0.25 0.16 

smin 23 dB-Hz 20 dB-Hz 

a0 -3.517 -0.9043 

a1 0.2411 (dB-Hz)-1 0.0563 (dB-Hz)-1 

a2 -0.003171 (dB-Hz)-2 -0.00015 (dB-Hz)-2 

po-max 0.89 0.94 

smax 31 dB-Hz 35 dB-Hz 

 

2.4. Position-Domain Integration 

The position-domain integration algorithm uses the error 

covariance matrices of the 3DMA ranging and shadow 

matching position solutions to compute a weighted 

average of the two positions using 
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a xCxCCCx ˆˆˆ
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where  Tˆˆˆ
aa

EN

a NEx  is the integrated position solution 

of the user antenna, a,  Tˆˆˆ
SS

EN

S NEx  is the shadow-

matching solution,  Tˆˆˆ
RR

EN

R NEx  is the 3DMA ranging 

solution, EN

SC  is the shadow-matching error covariance, 

and EN

RC  is the 3DMA ranging error covariance. 

 

For least-squares 3DMA GNSS ranging, the error 

covariance is calculated using the following steps: 

1. Compute a weighting matrix equal to the inverse of the 

measurement error covariance matrix, including the 

height aiding measurement and re-weighting from the 

direct LOS probabilities obtained from the 3D city 

model. 

2. Use the least-squares measurement matrix to obtain 

the error covariance of the Cartesian ECEF position 

solution. 

3. Transform the position solution error covariance 
matrix to the local navigation frame and extract the 

Easting and Northing components. 

Full details of this process are presented in [32]. 

 

For shadow matching and likelihood-based 3DMA 

ranging, an error covariance must be extracted from a 
likelihood surface that is non-Gaussian and potentially 

multimodal. The error covariance therefore needs to be 

larger for multimodal distributions than it is for unimodal. 

The error covariance is therefore calculated using the 

following steps: 

1. Compute an initial error covariance from the second 

statistical moments of the likelihood surface. 

2. Determine the directions of the maximum and 

minimum of the error ellipse corresponding to the 

initial error covariance. 

3. Compute the kurtosis of the likelihood surface along 

the maximum- and minimum-covariance directions. 

4. Rescale the error ellipse using the two kurtoses. 

Again, full details are presented in [32]. 

 

2.5. Hypothesis-Domain Integration 

Both shadow matching and likelihood-based 3DMA 
ranging can produce multimodal position distributions 

where there is a good match between predictions and 

measurements in more than one part of the search area. 

These will typically comprise the true position hypothesis 

and one or more false hypotheses. In general, the true 

position hypothesis will be consistent across the two 

positioning methods whereas the false hypotheses will not 

be. Hypothesis-domain integration therefore helps to 

eliminate false position hypotheses by computing a joint 

ranging and shadow matching likelihood surface prior to 

determining a position solution. Here, it is only applied to 
likelihood-based 3DMA ranging. 

 

The likelihoods are first combined using 

pSpRpp  , (7) 

noting that equal weighting of the two positioning 

methods is assumed here.  

 

The position solution is then obtained using 
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where Ep and Np are the easting and northing coordinates 

of the pth candidate position. 

 

 

 

 

Figure 5. Normalised log-likelihoods of candidate 

positions at test location 4W from likelihood-based 

ranging (top), shadow matching (middle) and hypothesis-

domain integration (bottom). The cross shows the true 
position. White areas are indoors 

 

Figure 5 shows example likelihood surfaces from 3DMA 

ranging, shadow-matching, and the hypothesis-domain 

integrated solution using a u-blox GNSS receiver at test 

site 4W (see Section 3 below). In this case, 3DMA 

ranging gives a clear position solution, but this is on the 

wrong side of the street. The shadow matching likelihood 

surface has a maximum that is closer to the true position 

in the across-street direction, but further away in the 

along-street direction. There are also high-scoring areas in 

the next street. The integrated likelihood surface has a 

clear maximum that is much closer to the true position 

than either 3DMA ranging or shadow matching. 

 

3. EXPERIMENTAL RESULTS 

 

GNSS measurements, comprising GPS and GLONASS, 

were collected in August 2016 using a u-blox EVK M8T 

GNSS receiver and a HTC Nexus 9 tablet. U-blox data 

collection was performed by interfacing the receiver to a 
Raspberry Pi (via USB) for data logging, where this latter 

was powered by a battery pack and configured as a WiFi 

hotspot to which a smartphone was connected (using the 

mobile SSH App) to configure the system and enable data 

logging. Figure 6 illustrates the u-blox-based hardware.  

 

The Nexus 9 data collection was performed using a 

purposely written App capturing both NMEA sentences as 

well as GNSS “raw data”, including GNSS satellite 

pseudo-ranges. This latter was possible as the tablet was 

running the latest Android operating system, version 7.0, 

also known as Nougat. The tablet device is illustrated in 
Figure 7. The tablet’s GNSS receiver and antenna are 

similar to those found on smartphones, so the results 

should be a good prediction of the performance of 

smartphones compatible with the Nougat GNSS interface.    

 

 

Figure 6. U-blox EVK M8T-based data logging hardware. 

 

 

Figure 7. Nexus 9 tablet running Android 7.0 (Nougat) 

Operating System and a dedicated App for raw GNSS data 

logging.  

Battery pack 

u-blox  

EVK M8T 

Raspberry Pi 

GNSS antenna 

Smartphone 
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Two rounds of data collection were performed using both 

devices at two different sites: at 18 locations in the City of 

London and 10 locations in Canary Wharf. Figures 8 –11 

illustrate these sites. The City of London area is typical of 

a traditional European city with narrow streets and 

buildings packed close together. The Canary Wharf area is 

representative of a modern city environment, found more 

commonly in North American and East Asian cities. The 

streets are wider and the buildings taller with more space 
between them. There is also a greater ratio of glass and 

steel to brick and stone than in the City of London district. 

 

 

Figure 8. Data collection sites in the City of London 

(GoogleTM earth). 

 

 

Figure 9. Part of data collection sites in the City of 

London – 3D view  (GoogleTM earth). 

 

 

Figure 10. Part of data collection sites in the City of 

London – 3D view (GoogleTM earth). 

 

 

Figure 11. Data collection sites in the Canary Wharf area -  

London – 3D view (GoogleTM earth). 

  
All tablet data collection was collocated with the 

corresponding u-blox data collection. The sites were 

paired with data collected on opposite sides of the street 

on the edge of the footpath next to the road. The truth was 

established to decimeter-level accuracy using a 3D city 

model to identify landmarks and tape measure to measure 

the relative position of the user from those identified 

landmarks. The two rounds of data at each site were 

separated by approximately 2 hours, ensuring that the 

satellite positions in the two datasets were independent. 

The first dataset was used for calibrating the shadow-

matching algorithm (Section 2.3) for the tablet and u-blox 
antenna and receiver characteristics using the procedure 

described in [16]; the coefficients are presented in Table 

1. The second dataset was then used for testing the 

positioning algorithms. 4 minutes of data were collected at 

each site on each round.  

 

A 3D city model of the area, from Ordnance Survey (OS), 

was used to generate the building boundary data used for 

the subsequent analysis. The model is stored in the Virtual 

Reality Modelling Language (VRML) format. Figure 12 

and 13 illustrate the 3D model used in this study. 
 

Tables 27 in the appendix present the RMS along-street, 
across-street and horizontal (2D) position errors for each 

test site and positioning method using the u-blox EVK 

M8T receiver and antenna. Figures 14 and 15 depict the 

combined RMS errors across the City of London and 

Canary Wharf sites, respectively. 
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Figure 12. The 3D model of City of London used in the 

experiments. 

 

 

Figure 13. The 3D model of Canary Wharf used in the 

experiments. 

 

Comparing the ranging-based positioning results, it can be 

seen that the position errors using least-squares 3DMA 

ranging are between a third and a half of those using 

conventional least-squares GNSS positioning. In the City 

of London, the likelihood-based 3DMA ranging algorithm 

is almost twice as accurate as the least-squares 3DMA 
ranging algorithm in the along-street direction, but only 

slightly better in the across-street direction. In the Canary 

Wharf, the likelihood-based 3DMA ranging algorithm is 

more than twice as accurate as the least-squares 3DMA 

ranging algorithm in both directions. 

 

In the City of London area, shadow matching in the 

across-street direction is more than 10 times as accurate as 

conventional GNSS positioning and nearly 3 times as 

accurate as likelihood-based 3DMA ranging. In the along-

street direction, shadow matching is slightly more 
accurate than conventional GNSS, but much less accurate 

than either 3DMA ranging algorithm. The same pattern is 

seen in the Canary Wharf results, but is much less 

pronounced. In the across-street direction, shadow 

matching is only 30% more accurate than likelihood-based 

3DMA ranging. In the along-street direction, likelihood-

based 3DMA ranging is more than twice as accurate as 

shadow matching, but least-squares 3DMA ranging is 

slightly less accurate. 

 

The reason for this difference in performance between the 

City of London and Canary Wharf sites is the building 

geometry. There is a much greater difference between 

along-street and across-street geometry in the City of 

London sites than in the Canary Wharf sites. 

 

Examining the overall horizontal position errors in the 

City of London, the two 3DMA ranging algorithms and 

shadow matching exhibit similar accuracies, however the 
integrated position solution is more than twice as accurate 

as that of any of the individual positioning algorithms. 

Thus, there is a clear advantage in using the intelligent 

urban position approach. With the Canary Wharf data, 

likelihood-based 3DMA ranging is 30% more accurate 

than shadow matching, while the hypothesis-domain 

integrated solution is 17% more accurate than likelihood-

based 3DMA ranging alone. In general, hypothesis-

domain integration leads to a 510% more accurate 
position solution than position-domain integration. 

 

 

 

 

Figure 14. u-blox City of London along-street, across-

street and overall horizontal RMS positioning. 
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Legend for Figures 14 – 16. 

 

 

 

 

Figure 15. u-blox Canary Wharf along-street, across-street 

and overall horizontal RMS positioning error. 

 

Figure 16 shows the combined RMS errors across all sites 

for each positioning method. It can be clearly seen that 

likelihood-based 3DMA ranging outperforms least-
squares 3DMA ranging and that the integrated solution is 

much more accurate than 3DMA ranging or shadow 

matching alone. Comparing the best solution, hypothesis-

domain integration, with conventional GNSS positioning, 

it can be seen that intelligent urban positioning is a factor 

of 7.1 more accurate using the u-blox receiver and 

antenna. 

 

 

 

Figure 16. u-blox all sites across-street and overall 

horizontal RMS positioning error. 

 

Tables 813 in the appendix present the RMS along-
street, across-street and horizontal (2D) position errors for 

each test site and positioning method using the HTC 
Nexus 9 tablet running Android 7.0 (Nougat). Figures 17 

and 18 depict the combined RMS errors across the City of 

London and Canary Wharf sites, respectively. 

 

It can immediately be seen that the Nexus 9 results are not 

as good as the u-blox results, with conventional GNSS 

positioning affected least and shadow matching affected 

most. This is due to the inferior characteristics of a tablet 

(or smartphone) antenna, compared to the u-blox antenna. 

As the tablet antenna has no polarization discrimination, 

the direct LOS ranging measurements are subject to 

greater multipath interference and it is more difficult to 
distinguish LOS from NLOS signals using SNR 

measurements. Conventional positioning is least affected 

because it is dominated by the NLOS ranging errors that 

3DMA positioning helps to minimize; these are not 

affected by the antenna design. 

 

Conventional GNSS positioning (Conv) 

Least-squares 3DMA GNSS ranging (LSR) 

Likelihood-based 3DMA GNSS ranging (LBR) 

Shadow Matching (SM) 

Position-domain integration (least-squares ranging) (PI-LS) 

Position-domain integration (likelihood-based ranging) (PI-LB) 

 Hypothesis-domain integration (likelihood-based ranging) (HI-LB)
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Comparing the different positioning methods and the 

different environments, the same trends as in the u-blox 

results are seen, but are less pronounced. With the City of 

London data, the hypothesis-domain integrated solution is 

37% more accurate than the best individual algorithm, 

likelihood-based 3DMA GNSS. With the Canary Wharf 

data, the integrated solution is only 15% more accurate 

than likelihood-based 3DMA GNSS. 

 
Figure 19 shows the combined RMS errors across all sites 

for each positioning method. Again, likelihood-based 

3DMA ranging outperforms least-squares 3DMA ranging 

and that the integrated solution is more accurate than 

3DMA ranging or shadow matching alone. Comparing the 

best solution, hypothesis-domain integration, with 

conventional GNSS positioning, it can be seen that 

intelligent urban positioning is a factor of 4.7 more 

accurate using the Nexus 9 tablet. 

 

 

 

 

 

Figure 17. Nexus 9 City of London along-street, across-

street and overall horizontal RMS positioning error. 

 

 

 

 

Figure 18. Nexus 9 Canary Wharf along-street, across-

street and overall horizontal RMS positioning error. 

 

 

Legend for Figures 17 – 19. 

 

An interesting area to focus on is site 8E. The 

conventional GNSS RMS positioning error is 63.8m using 

the u-blox receiver and 75.9m using the tablet. However, 
the IUP RMS errors are 7.7m with the u-blox receiver and 

8.7m with the tablet, a factor of 89 improvement in both 
cases. Figure 20 shows the position errors for each epoch 

from the u-blox data. The along-street direction was 

roughly north-south so the conventional GNSS position 

error is largest in the across-street direction. Thus, 

intelligent urban positioning was still effective even in the 

most challenging environments. 

 

Conventional GNSS positioning (Conv) 

Least-squares 3DMA GNSS ranging (LSR) 

Likelihood-based 3DMA GNSS ranging (LBR) 

Shadow Matching (SM) 

Position-domain integration (least-squares ranging) (PI-LS) 

Position-domain integration (likelihood-based ranging) (PI-LB) 

 Hypothesis-domain integration (likelihood-based ranging) (HI-LB)
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Figure 19. Nexus 9 all sites along-street, across-street and 

overall horizontal RMS positioning error. 
 

 

4. PRACTICAL IMPLEMENTATION 

 

There are four ways in which 3D-mapping-aided GNSS, 

including the intelligent urban positioning algorithms 

presented here, could be implemented in a practical 

system: 

 Post-processing of recorded data is suited to data 

collection applications such as mapping, and 

monitoring the movement of people, animals or 

vehicles for research purposes. 

 Real-time implementation on a remote server is suited 

to location-based services requiring a one-time 

position fix and to tracking applications with long 

update intervals. 

 Real-time implementation on a mobile device using 

pre-loaded mapping data is suited to professional 

navigation and continuous tracking applications within 

a limited area. 

 Real-time implementation on a mobile device using 

streamed mapping data is suited to consumer and 

professional navigation and continuous tracking 

applications. 

 

 

 

Figure 20. U-blox receiver position error at location 8E – 

street view 8E (top), conventional GNSS ranging 

positioning (middle) and hypothesis-domain integration 

(bottom). 

 

 

A practical real-time implementation of any 3DMA GNSS 

system requires the following [34]: 

 Real-time access to GNSS pseudo-range and SNR or 

C/N0 measurements; 

 Computationally efficient positioning algorithms; 

 Access to 3D mapping data; 

 A means of distributing the GNSS measurements and 

mapping data to the positioning algorithms. 

 

Survey receivers have always provided the necessary 
GNSS measurements, but are not practical for most 

3DMA GNSS applications. Obtaining them from 

consumer receivers has historically been problematic. 

However, today, receivers such as the u-blox M8T 

provide pseudo-range and SNR measurements from all 

GNSS constellations and a new interface provides access 

to this data through the application programming interface 

(API) on smartphones and tablets running the Android 

Nougat operating system that have a compatible GNSS 

chipset. 
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By using building boundaries instead of accessing the 3D 

mapping directly, the intelligent urban positioning 

algorithms presented here are able to run quickly. On a 

DELL Precision M2800 laptop computer (running the 

Microsoft Windows 7 operating system equipped with 

16GB RAM and a quad-core processor with a 2.5GHz 

base frequency) it takes about 233 ms to compute a 

position solution from one epoch of GNSS measurement 

data. A new smartphone or tablet has 2575% as much 
processing power as this laptop. Therefore, these 

algorithms should easily be able to run at 1 Hz on a 
mobile device.  

 

Highly detailed 3D mapping is expensive. However, 

simple block models, known as level of detail (LOD) 1, 

are sufficient for most 3D-mapping-aided GNSS 

implementations. Examples are shown in Figures 12 and 

13. Open Street Map provides freely available building 

mapping for the world’s major cities and many other 

places, much of it in 3D. Data is also available from 

national mapping agencies. Although coverage is not 

universal, it tends to be available in the dense urban areas 
where it is most needed. 

 

This leaves data distribution. For server-based positioning, 

existing assisted GNSS interfaces can be used to transmit 

pseudo-range and SNR measurements from mobile 

devices to a server. 

 

To run the positioning algorithms on a mobile device, 

mapping data is required. The terrain height data are 

easiest to handle. A 5m grid spacing is sufficient, 

corresponding to 40,000 points per km2. 12 bits is 
sufficient to describe the relative height of a point within a 

tile, while 4 bytes are needed for the height of each tile’s 

origin with respect to the datum. Thus, about 60 kB per 

km2 is needed, so 1GB of storage could accommodate 

about 17,000 km2 of data, much more with compression. 

Thus, this data could be pre-loaded in a mobile device. 

 

Building boundaries require a lot more data. To a 1 
precision, about 300 bytes are needed per building 

boundary. Assuming about half the space in a city is 

outdoor (building boundaries are not required for indoor 

locations), a 100100m tile would require 1.5MB of data 
without compression, so 1GB of storage would only 

accommodate about 7 km2 of data, maybe 70 km2 with 

compression. Thus, pre-loading is only practical for users 
that operate within a relatively small area. 

 

To stream building boundary data, only the search area is 

needed, which should be no bigger than 100100m, 
considering only outdoor locations. Furthermore, only 

azimuths corresponding to the current set of GNSS 

satellites are needed, which reduces the amount of data 

required to 90kB without compression. Less than a 

kilobyte of terrain height data would be needed. 3G 

mobile download speeds are higher than 500 kB/s (4 

Mbit/s). Therefore, streaming is easily practical and 

substantial data buffering could be accommodated to 

bridge gaps in communications coverage. Note that for 

continuous positioning, successive search areas will 

considerably overlap so it is not necessary to transmit a 

full set of mapping data at every epoch. 

 

5. CONCLUSIONS 

 

A full implementation of the intelligent urban positioning 

3D-mapping-aided GNSS concept has been presented, 
including a new likelihood-based 3DMA ranging 

algorithm and a hypothesis-based algorithm for 

integrating ranging with shadow matching. Both new 

algorithms have been shown to perform better than their 

predecessors. 

 

The IUP algorithms were tested using data recorded using 

a u-blox EVK M8T consumer-grade GNSS receiver and a 

Nexus 9 tablet at 28 locations across two districts of 

London, representative of both traditional and modern 

dense urban environments. The Nexus 9 tablet used the 

Android Nougat GNSS receiver interface, so is 
representative of future smartphones. With the u-blox 

receiver, the single-epoch RMS horizontal (i.e., 2D) error 

across all sites was 4.0 m using the IUP algorithms, 

compared to 28.2 m for conventional positioning, a factor 

of 7.1 improvement. Using the Nexus tablet, the IUP RMS 

error was 7.0 m, compared to 32.7 m for conventional 

GNSS positioning, a factor of 4.7 improvement. 

 

An analysis of processing and data requirments has shown 

that intelligent urban positioning is practical to implement 

in real-time on a mobile device or a server. 
 

6. FUTURE WORK  

 

The following work is planned for the next year: 

 Tests with a geodetic-grade GNSS receiver to 

determine the performance achievable with high-
quality user equipment. 

 Development of a real-time demonstration system 

using the Raspberry Pi and u-blox EVK 8MT 

platform. 

 Extensive testing to quantify the effects of different 

error sources on both shadow matching and 3DMA 

GNSS ranging. 

 Develop environmental context determination 

algorithms to determine from the GNSS measurement 

data when the receiver is in an environment where it 

can benefit from intelligent urban positioning, building 

on the work presented in [35]. 

 Development of a multi-epoch version of the 

intelligent urban positioning algorithms presented here 

for both static and dynamic applications. 

 

Longer term aspirations include: 

 Implementation of outlier detection to compensate for 

out-of-date mapping and transient effects, such as 

passing buses. 
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 Computation of real-time performance metrics to 

provide rudimentary integrity. 

 Integration of 3DMA GNSS with inertial sensors and 
other navigation technologies for added robustness. 

 Further development of the shadow-matching 

algorithms as discussed in [20]. 
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APPENDIX 

 

Table 2. Details of along-street positioning results using u-blox EVK M8T receiver – The City of London site.  

Algorithm 
Conventional 

GNSS 

Least-squares 
3DMA GNSS 

ranging 

Likelihood-
based 3DMA 
GNSS ranging 

Shadow 
matching 

Position-domain 
integration  

(least-squares 
ranging) 

Position-domain 
integration 

(likelihood-based 
ranging) 

Hypothesis-domain 
integration 

(likelihood-based 
ranging) 

Location 
Along-street 

RMS error (m) 
Along-street 

RMS error (m) 
Along-street 

RMS error (m) 
Along-street 

RMS error (m) 
Along-street 

RMS error (m) 
Along-street 

RMS error (m) 
Along-street 

RMS error (m) 

1N 10.8 3.6 2 8.5 4.8 2.9 2.3 

1S 11.4 3.5 1.9 9.4 3.9 2.3 2.1 

2N 6.5 2.8 1.2 5.6 3.7 1.5 1.3 

2S 6.6 2.8 1.2 10.1 3.3 1.7 1.4 

3N 10.3 2.9 1.3 8.6 3.5 1.6 1.4 

3S 7.7 3.1 1.5 9.8 4 1.9 1.7 

4W 6.7 2.6 1 4.8 3.2 1.2 1.1 

4E 6.4 2.8 1.2 5.7 3.6 1.5 1.4 

5W 5.6 2.5 0.9 6.3 4.2 1.3 1.1 

5E 5.9 3.2 1.6 7.3 4.5 2.2 1.8 

6N 10.2 3.5 1.9 6.5 4.7 2.1 2 

6S 9.4 3.5 1.9 14 5.2 2.4 2.2 

7N 11 3.6 2 5.9 4.5 2.2 2.1 

7S 11.8 5.8 4.2 8.1 6.9 4.4 4.3 

8W 25.4 7.9 6.3 11.6 8.6 6.5 6.5 

8E 23.1 8.5 6.9 11.8 10 7.2 7 
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9N 15.8 4.8 3.2 6 5.5 3.4 3.2 

9S 11.9 6 2.4 6.6 6.8 4.8 4.5 

Table 3. Details of across-street positioning results using u-blox EVK M8T receiver – The City of London site.  

Algorithm 
Conventional 

GNSS 

Least-squares 
3DMA GNSS 

ranging 

Likelihood-
based 3DMA 
GNSS ranging 

Shadow 
matching 

Position-domain 
integration  

(least-squares 
ranging) 

Position-domain 
integration 

(likelihood-based 
ranging) 

Hypothesis-domain 
integration 

(likelihood-based 
ranging) 

Location 
Across-street 

RMS error (m) 
Across -street 
RMS error (m) 

Across -street 
RMS error (m) 

Across-street 
RMS error (m) 

Across-street 
RMS error (m) 

Across-street 
RMS error (m) 

Across-street 
RMS error (m) 

1N 17.8 6.5 4.9 2.2 2.9 2.4 2.3 

1S 18.9 5.9 5.9 1.6 2.8 1.7 1.7 

2N 23.6 6.7 6.7 2.7 3.5 2.7 2.7 

2S 16.5 5.9 5.9 2 3 2.2 2.1 

3N 22.8 5.7 5.7 2.1 3.4 2.4 2.3 

3S 18.5 6.9 6.9 2 2.7 2.6 2.2 

4W 19.9 5.7 5.7 2.7 3.4 2.8 2.8 

4E 17.4 5.6 5.6 3 3.3 3.2 3.1 

5W 11.3 4.9 3.9 2.2 2.9 2.4 2.3 

5E 9.5 4.9 2.9 2.3 3 2.3 2.3 

6N 22.1 7.9 7.9 1.6 2.2 1.9 1.8 

6S 15.4 5.9 5.9 1.4 2.3 1.7 1.6 

7N 23.6 7.7 7.7 2.2 2.6 2.6 2.4 

7S 18.1 8.9 6.9 2.3 3.9 3.4 2.5 

8W 66.6 18.9 18.9 1.5 6.2 2 1.6 

8E 59.5 21.9 21.9 3.2 7.1 3.3 3.1 

9N 27.9 7.1 7.1 3 4.9 3.1 3.1 

9S 13 5.5 3.5 6.2 6 5.5 5.5 

 

Table 4. Details of horizontal positioning results using u-blox EVK M8T receiver – The City of London site.  

Algorithm 
Conventional 

GNSS 

Least-squares 
3DMA GNSS 

ranging 

Likelihood-
based 3DMA 

GNSS 
ranging 

Shadow 
matching 

Position-domain 
integration  (least-
squares ranging) 

Position-domain 
integration 
(likelihood-

based ranging) 

Hypothesis-domain 
integration 

(likelihood-based 
ranging) 

Location 
Horizontal 

RMS error (m) 

Horizontal 
RMS error 

(m) 

Horizontal 
RMS error 

(m) 

Horizontal 
RMS error 

(m) 

Horizontal 
RMS error (m) 

Horizontal 
RMS error (m) 

Horizontal 
RMS error (m) 

1N 20.8 7.4 5.3 8.8 5.6 3.8 3.3 

1S 22.1 6.9 6.2 9.5 4.8 2.9 2.7 

2N 24.5 7.3 6.8 6.2 5.1 3.1 3 

2S 17.8 6.5 6 10.3 4.5 2.8 2.5 

3N 25 6.4 5.8 8.9 4.9 2.9 2.7 

3S 20 7.6 7.1 10 4.8 3.2 2.8 

4W 21 6.3 5.8 5.5 4.7 3 3 

4E 18.5 6.3 5.7 6.4 4.9 3.5 3.4 

5W 12.6 5.5 4 6.7 5.1 2.7 2.5 

5E 11.2 5.9 3.3 7.7 5.4 3.2 2.9 

6N 24.3 8.6 8.1 6.7 5.2 2.8 2.7 

6S 18 6.9 6.2 14.1 5.7 2.9 2.7 

7N 26 8.5 8 6.3 5.2 3.4 3.2 

7S 21.6 10.6 8.1 8.4 7.9 5.6 5 

8W 71.3 20.5 19.9 11.7 10.6 6.8 6.7 

8E 63.8 23.5 23 12.2 12.3 7.9 7.7 

9N 32.1 8.6 7.8 6.7 7.4 4.6 4.5 

9S 17.6 8.1 4.2 9.1 9.1 7.3 7.1 
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Table 5. Details of along-street positioning results using u-blox EVK M8T receiver – Canary Wharf site.  

Algorithm 

Conventional 

GNSS 

Least-squares 
3DMA GNSS 

ranging 

Likelihood-
based 3DMA 

GNSS ranging 

Shadow 

matching 

Position-domain 
integration  

(least-squares 

ranging) 

Position-domain 
integration 

(likelihood-based 

ranging) 

Hypothesis-domain 
integration 

(likelihood-based 

ranging) 

Location 
Along-street 

RMS error (m) 
Along-street 

RMS error (m) 
Along-street 

RMS error (m) 
Along-street 

RMS error (m) 
Along-street 

RMS error (m) 
Along-street 

RMS error (m) 
Along-street 

RMS error (m) 

10W 14.8 6.1 2.6 9.2 7 3.5 2.7 

10E 16.4 6.7 2.8 9.8 7.4 3.9 3 

11S 16.7 6.8 2.9 5.3 6 3.5 3.2 

11N 16.4 6.7 2.8 6.1 6.5 3.3 3 

12S 15.6 6.3 2.7 6.7 6.6 3.4 2.9 

12N 15.9 6.5 2.7 7.7 7 3.1 2.8 

13S 19 7.7 3.3 6.3 7.2 3.9 3.6 

13N 21.8 8.8 3.8 8.5 8.7 4.3 4.1 

14S 22.8 9.3 3.9 6.3 7.5 4.4 4 

14N 21.9 8.9 3.8 6.9 7.3 4.1 3.9 

 

Table 6. Details of across-street positioning results using u-blox EVK M8T receiver – Canary Wharf site.  

Algorithm 
Conventional 

GNSS 

Least-squares 
3DMA GNSS 

ranging 

Likelihood-
based 3DMA 
GNSS ranging 

Shadow 
matching 

Position-domain 
integration  

(least-squares 
ranging) 

Position-domain 
integration 

(likelihood-based 
ranging) 

Hypothesis-domain 
integration 

(likelihood-based 
ranging) 

Location 
Across-street 

RMS error (m) 
Across-street 

RMS error (m) 
Across-street 

RMS error (m) 
Across-street 

RMS error (m) 
Across-street 

RMS error (m) 
Across-street 

RMS error (m) 
Across-street 

RMS error (m) 

10W 27.8 11.6 4.9 3.1 5.2 3.5 3.2 

10E 28.9 12.1 5.1 1.9 6.3 2.4 2.2 

11S 29.9 12.5 5.3 3.4 4.9 3.8 3.6 

11N 27.4 11.5 4.9 3.6 5.7 4.1 3.7 

12S 21.3 8.9 3.8 2.7 4.5 3.2 2.8 

12N 19.5 8.1 3.5 3 5.5 3.3 3.2 

13S 29.6 12.3 5.3 2.5 4.2 2.9 2.7 

13N 28.1 11.7 5 2.8 5.1 3.2 2.9 

14S 33.9 14.2 6.1 3.9 5.9 4.1 4 

14N 23 9.6 4.2 6.5 7.8 4.6 4.3 

 

Table 7. Details of horizontal positioning results using u-blox EVK M8T receiver – Canary Wharf site.  

Algorithm 
Conventional 

GNSS 

Least-squares 
3DMA GNSS 

ranging 

Likelihood-
based 3DMA 
GNSS ranging 

Shadow 
matching 

Position-domain 
integration  

(least-squares 
ranging) 

Position-domain 
integration 

(likelihood-based 
ranging) 

Hypothesis-domain 
integration 

(likelihood-based 
ranging) 

Location 
Horizontal 

RMS error (m) 
Horizontal 

RMS error (m) 
Horizontal 

RMS error (m) 
Horizontal 

RMS error (m) 
Horizontal 

RMS error (m) 
Horizontal 

RMS error (m) 
Horizontal 

RMS error (m) 

10W 31.5 13.1 5.5 9.7 8.7 4.9 4.2 

10E 33.2 13.8 5.8 10 9.7 4.6 3.7 

11S 34.2 14.2 6 6.3 7.7 5.2 4.8 

11N 31.9 13.3 5.6 7.1 8.6 5.3 4.8 

12S 26.4 10.9 4.7 7.2 8 4.7 4 

12N 25.2 10.4 4.4 8.3 8.9 4.5 4.3 

13S 35.2 14.5 6.2 6.8 8.3 4.9 4.5 

13N 35.6 14.6 6.3 8.9 10.1 5.4 5 

14S 40.9 17 7.2 7.4 9.5 6 5.7 

14N 31.8 13.1 5.7 9.5 10.7 6.2 5.8 
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Table 8. Details of along-street positioning results using Nexus 9 tablet – The City of London site.  

Algorithm 

Conventional 

GNSS 

Least-squares 
3DMA GNSS 

ranging 

Likelihood-
based 3DMA 

GNSS ranging 

Shadow 

matching 

Position-domain 
integration  

(least-squares 

ranging) 

Position-domain 
integration 

(likelihood-based 

ranging) 

Hypothesis-domain 
integration 

(likelihood-based 

ranging) 

Location 
Along-street 

RMS error (m) 
Along-street 

RMS error (m) 
Along-street 

RMS error (m) 
Along-street 

RMS error (m) 
Along-street 

RMS error (m) 
Along-street 

RMS error (m) 
Along-street 

RMS error (m) 

1N 12 5.1 3.6 10.1 7.3 4 3.7 

1S 12.5 5.3 3.8 10.6 8.1 4.1 3.9 

2N 10.1 4.2 3.1 12 5.9 3.5 3.3 

2S 8.6 3.6 2.6 12.3 6.3 2.9 2.8 

3N 12.9 5.3 3.9 14.5 7.9 4.3 4 

3S 11.5 4.8 3.5 13.1 8.1 4 3.7 

4W 8.5 3.5 2.6 10 6.9 3.2 2.8 

4E 6.9 2.9 2.1 8 4.7 2.9 2.5 

5W 30.1 12.5 9.1 33 15.9 10.5 10.1 

5E 28.5 11.9 8.6 33.9 17.3 9.1 8.8 

6N 12.5 5.2 3.8 15.2 9.9 4.2 4.1 

6S 10 4.2 3.1 15.3 6.7 3.5 3.7 

7N 14.1 5.8 4.2 18.1 8.8 4.3 4.5 

7S 15.9 6.6 4.8 20.4 10.5 5.7 4.9 

8W 30.2 12.5 9.1 34.7 19.2 10.3 9.6 

8E 26 10.8 7.8 30.6 13.5 8 7.9 

9N 16 6.7 4.8 6.7 6.7 5 4.9 

9S 12.7 5.2 3.8 7.1 6.7 4.4 3.9 

 

Table 9. Details of across-street positioning results using Nexus 9 tablet – The City of London site.  

Algorithm 
Conventional 

GNSS 

Least-squares 
3DMA GNSS 

ranging 

Likelihood-
based 3DMA 
GNSS ranging 

Shadow 
matching 

Position-domain 
integration  

(least-squares 
ranging) 

Position-domain 
integration 

(likelihood-based 
ranging) 

Hypothesis-domain 
integration 

(likelihood-based 
ranging) 

Location 
Across-street 

RMS error (m) 
Across-street 

RMS error (m) 
Across-street 

RMS error (m) 
Across-street 

RMS error (m) 
Across-street 

RMS error (m) 
Across-street 

RMS error (m) 
Across-street 

RMS error (m) 

1N 18.2 8.7 6.1 3 4.2 4.1 3.2 

1S 19.5 9.3 6.5 2.1 4.6 2.9 2.5 

2N 28 13.4 9.4 5.9 7.8 7 6 

2S 18 8.6 6 4.8 5.7 5.5 5 

3N 23.1 11 7.7 3.7 7.7 4.7 3.8 

3S 19.5 9.3 6.5 4.2 8.3 5.5 4.4 

4W 18.5 8.8 6.2 4.6 5.5 5.1 4.7 

4E 14.2 6.8 6.6 6 6.5 6.4 6.1 

5W 41 20 13.6 5.1 10.3 6.8 5.3 

5E 37.2 17.7 12.4 8.8 12.5 10.3 9.1 

6N 23.4 11.2 7.8 5.7 6.7 6.7 6 

6S 15.2 7.3 5.1 3.9 4.8 4.4 4.2 

7N 24.3 11.6 8.1 2.7 6.6 4.3 2.8 

7S 20.1 9.6 6.7 4.5 7.5 5.4 4.6 

8W 80 38.1 26.6 3.3 10.2 4.3 3.4 

8E 71.3 34 23.7 3.4 12.8 5.9 3.6 

9N 30.3 14.5 10.1 3.6 9.2 4.8 3.9 

9S 14 7.8 7.3 6.9 7.2 7.2 7.3 
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Table 10. Details of horizontal positioning results using Nexus 9 tablet – The City of London site.  

Algorithm 

Conventional 

GNSS 

Least-squares 
3DMA GNSS 

ranging 

Likelihood-
based 3DMA 

GNSS ranging 

Shadow 

matching 

Position-domain 
integration  

(least-squares 

ranging) 

Position-domain 
integration 

(likelihood-based 

ranging) 

Hypothesis-domain 
integration 

(likelihood-based 

ranging) 

Location 
Horizontal 

RMS error (m) 
Horizontal 

RMS error (m) 
Horizontal 

RMS error (m) 
Horizontal 

RMS error (m) 
Horizontal 

RMS error (m) 
Horizontal 

RMS error (m) 
Horizontal 

RMS error (m) 

1N 21.8 10.1 7.1 10.5 8.4 5.7 4.9 

1S 23.2 10.7 7.5 10.8 9.3 5 4.6 

2N 29.8 14 9.9 13.4 9.8 7.8 6.8 

2S 19.9 9.3 6.5 13.2 8.5 6.2 5.7 

3N 26.5 12.2 8.6 15 11 6.4 5.5 

3S 22.6 10.5 7.4 13.8 11.6 6.8 5.7 

4W 20.4 9.5 6.7 11 8.8 6 5.5 

4E 15.8 7.4 6.9 10 8 7 6.6 

5W 50.9 23.6 16.4 33.4 18.9 12.5 11.4 

5E 46.9 21.3 15.1 35 21.3 13.7 12.7 

6N 26.5 12.3 8.7 16.2 12 7.9 7.3 

6S 18.2 8.4 6 15.8 8.2 5.6 5.6 

7N 28.1 13 9.1 18.3 11 6.1 5.3 

7S 25.6 11.6 8.2 20.9 12.9 7.9 6.7 

8W 85.5 40.1 28.1 34.9 21.7 11.2 10.2 

8E 75.9 35.7 25 30.8 18.6 9.9 8.7 

9N 34.3 16 11.2 7.6 11.4 6.9 6.3 

9S 18.9 9.4 8.2 9.9 9.8 8.4 8.3 

 

 

Table 11. Details of along-street positioning results using Nexus 9 tablet – Canary Wharf site.  

Algorithm 
Conventional 

GNSS 

Least-squares 
3DMA GNSS 

ranging 

Likelihood-
based 3DMA 
GNSS ranging 

Shadow 
matching 

Position-domain 
integration  

(least-squares 
ranging) 

Position-domain 
integration 

(likelihood-based 
ranging) 

Hypothesis-domain 
integration 

(likelihood-based 
ranging) 

Location 
Along-street 

RMS error (m) 
Along-street 

RMS error (m) 
Along-street 

RMS error (m) 
Along-street 

RMS error (m) 
Along-street 

RMS error (m) 
Along-street 

RMS error (m) 
Along-street 

RMS error (m) 

10W 16.5 7.2 3.1 17.8 11.7 4.9 3.5 

10E 19.5 8.5 3.7 20.3 12.3 4.8 4 

11S 18.9 8.3 5.6 19.5 14.5 6.7 5.8 

11N 17 7.4 3.2 18.5 10.3 4.3 3.4 

12S 16.4 7.2 3.1 17.9 9.2 4.9 3.3 

12N 17.3 7.6 2.3 19 11.9 3.8 2.5 

13S 20.7 9 3.9 22.5 14.6 4.6 4.1 

13N 23.9 10.4 4.5 25.3 17.2 5.6 4.7 

14S 24.2 10.6 4.7 26.1 13.3 5.3 4.9 

14N 23.6 10.3 4.5 24.5 16.5 5.1 4.8 
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Table 12. Details of across-street positioning results using Nexus 9 tablet – Canary Wharf site.  

Algorithm 

Conventional 

GNSS 

Least-squares 
3DMA GNSS 

ranging 

Likelihood-
based 3DMA 

GNSS ranging 

Shadow 

matching 

Position-domain 
integration  

(least-squares 

ranging) 

Position-domain 
integration 

(likelihood-based 

ranging) 

Hypothesis-domain 
integration 

(likelihood-based 

ranging) 

Location 
Across-street 

RMS error (m) 
Across-street 

RMS error (m) 
Across-street 

RMS error (m) 
Across-street 

RMS error (m) 
Across-street 

RMS error (m) 
Across-street 

RMS error (m) 
Across-street 

RMS error (m) 

10W 20.3 8.7 6.9 5.4 6.6 6.2 5.5 

10E 18.9 7.8 8 6.3 7.1 7.1 6.4 

11S 44 18.8 8.4 5.9 8.8 6.3 6.1 

11N 38.9 16.6 12.8 10.3 12.3 11 10.4 

12S 26.6 10.5 7.8 6.4 7.7 7.1 6.5 

12N 19.9 7.6 6.9 4.1 5.2 4.9 4.3 

13S 26.1 11.2 6 3.9 6.6 5.1 4.1 

13N 22.5 9.6 6.9 5.4 7 6 5.5 

14S 29.6 12.6 8 6.7 8.9 7.6 6.8 

14N 20.2 8.9 6.7 5.3 7.3 6.3 5.5 

 

Table 13. Details of horizontal positioning results using Nexus 9 tablet – Canary Wharf site.  

Algorithm 
Conventional 

GNSS 

Least-squares 
3DMA GNSS 

ranging 

Likelihood-
based 3DMA 
GNSS ranging 

Shadow 
matching 

Position-domain 
integration  

(least-squares 
ranging) 

Position-domain 
integration 

(likelihood-based 
ranging) 

Hypothesis-domain 
integration 

(likelihood-based 
ranging) 

Location 
Horizontal 

RMS error (m) 
Horizontal 

RMS error (m) 
Horizontal 

RMS error (m) 
Horizontal 

RMS error (m) 
Horizontal 

RMS error (m) 
Horizontal 

RMS error (m) 
Horizontal 

RMS error (m) 

10W 26.2 11.3 7.6 18.6 13.4 7.9 6.5 

10E 27.2 11.5 8.8 21.3 14.2 8.6 7.5 

11S 47.9 20.6 10.1 20.4 17 9.2 8.4 

11N 42.5 18.2 13.2 21.2 16 11.8 10.9 

12S 31.2 12.7 8.4 19 12 8.6 7.3 

12N 26.4 10.7 7.3 19.4 13 6.2 5 

13S 33.3 14.4 7.2 22.8 16 6.9 5.8 

13N 32.8 14.2 8.2 25.9 18.6 8.2 7.2 

14S 38.2 16.5 9.3 26.9 16 9.3 8.4 

14N 31.1 13.6 8.1 25.1 18 8.1 7.3 
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