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ABSTRACT Ultra-dense heterogeneous networks, as a novel network architecture in the fifth-generation

mobile communication system (5G), promise ubiquitous connectivity and smooth experience, which take

advantage of multiple radio access technologies (RATs), such asWiFi, UMTS, LTE, andWiMAX. However,

the dense environment of multi-RATs challenges the network selection because of the more frequent and

complex decision process along with increased complexity. Introducing artificial intelligence to ultra-

dense heterogeneous networks can improve the way we address network selection today, and can execute

efficient and intelligent network selection. Whereas, there still exist difficulties to be noted. On one hand,

the contradiction between real-time communications and time-consuming learning is exacerbated, which can

result in slow convergence. On the other hand, the black-box learningmode suffers from oscillation due to the

diversity of multi-RATs, which can result in arbitrary convergence. In this paper, we propose a model-driven

framework with a joint off-line and on-line way, which is able to achieve fast and optimal network selection

through an alliance of machine learning and game theory. Further, we implement a distributed algorithm at

the user side based on the proposed framework, which can reduce the number of frequent switching, increase

the possibility of gainful switching, and provide the individual service. The simulation results confirm the

performance of the algorithm in accelerating convergence rate, boosting user experience, and improving

resource utilization.

INDEX TERMS Game theory, heterogeneous networks, machine learning, model-driven, network selection.

I. INTRODUCTION

Although the fifth-generation mobile communication

system (5G) standardization is ongoing, the ultra-dense het-

erogeneous characteristic has been prominent to satisfy the

explosive traffic and promise ubiquitous connectivity and

smooth experience in the fifth-generation mobile communi-

cation system [1]. Ultra-dense heterogeneous networks are

The associate editor coordinating the review of this manuscript and
approving it for publication was Tomasz Trzcinski.

composed of a large number of small base stations with differ-

ent radio access technologies (RATs), which takes advantage

of multiple RATs, such as UMTS, LTE, WiFi, and WiMAX,

and brings multiplexing gain by parallel transmission across

multi-RATs [2]. Ultra-dense heterogeneous networks make

the base stations closer to the terminals for an improvement

in network capacity, which also facilitates access among dif-

ferent RATs [3], [4]. Meanwhile, according to the statistics,

there will be 11.6 billion intelligent terminals by 2021, which

are equipped with multiple interfaces, such as WiFi, 3G, 4G,
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and blue-tooth [5].With multiple interfaces, the terminals can

access to different networks with different RATs.

Recently, to give full play to the advantage of ultra-dense

heterogeneous networks, network selection is of particular

importance and has greatly attracted attention in the academia

and industry community [6]–[10]. Network selection can be

performed by taking either a network-centric or user-centric

approach [11]. In the network-centric approach [12]–[16],

there is a central controller that chooses networks for the users

to achieve the global optimum. In the user-centric approach

[17]–[21], each user chooses the network by itself. The

former can get better performance with global information,

while the latter can provide better individual service with less

overhead.

However, typical challenges for network selection caused

by ultra-dense heterogeneous networks need to be noted and

addressed, such as:

• complex decision: Due to the dense deployment of

a large number of base stations with different RATs,

there exists more complex network selection process for

the terminals, which may result in high decision delay.

Therefore, more complex network selection process is a

main challenge.

• frequent switching: It is easy for a terminal to be

closed to several base stations in the ultra-dense hetero-

geneous networks. Because of the time-varying channel,

the received signals from different base stations by the

terminal may alternatively exceed. Conventional net-

work selection approaches based on maximum received

signal strength may cause serious frequent switching

among the adjacent base stations, which results in high

switching delay and high signal overhead. Therefore,

frequent switching is a severe challenge.

• useless switching: The performance of the base station

to be switched is not expectable, and thus the terminal

may switch frequently if it switches to a dissatisfied

base station. For example, a terminal has to switch again

if it switches to a heavy-load base station and suffers

from worse user experience. The useless switching may

result in a waste of resources and poor user experience.

Therefore, the unexpected switching performance is a

significant challenge.

• individual service: Due to the heterogeneity and diver-

sity of users’ demands, it is not satisfied for the termi-

nals to be served with the same mode. Heterogeneous

and individual service for specific users is an inevitable

challenge.

These challenges make the traditional network selection

approaches no longer valid and call for trustworthy ones to be

developed [3]. Therefore, how to develop efficient network

selection approach, especially in the ultra-dense heteroge-

neous networks, is an essential and urgent issue.

With the development of artificial intelligence, intelligence

has been a key feature of 5G [22]. Introducing artificial intel-

ligence to ultra-dense heterogeneous networks can improve

the way we address network selection today, and can execute

efficient and intelligent network selection. At the same time,

different from the existing access network architecture, 5G

will adopt user-centric access network architecture, which

will endow terminals with stronger capacity to satisfy the

diverse communication demands. Terminals with intelligence

have been a pioneer for evolving artificial intelligence, and

also a commercial opportunity in the industrial community.

On the one hand, it has become a major trend to transfer intel-

ligent processing capability from the cloud to the terminals

which means user-centric, due to the drive of privacy, latency,

and reliability. On the other hand, the heterogeneous demands

of different terminals also prompt the trend from network-

centric to user-centric. Thus, we focus on user-centric net-

work selection combined with artificial intelligence in this

paper.

By introducing intelligence to the terminals, typical chal-

lenges for network selection in the ultra-dense heterogeneous

networks can be solved.

• By taking full use of prior information, it is realizable

for the terminals to learn from the complex environment,

which is able to simplify and accelerate decision pro-

cess. For example, the terminal which is usually located

in a fixed region can make a fast decision based on the

experience it has learned in advance.

• By intelligence, the terminals can use time-varying air

interface received matrix indicators (RMIs) to predict

a time-varying-tolerant indicator for determining the

base station with good service. In this way, the ter-

minals can relieve the impact of time-varying channel

and access more stable base station based on the pre-

dicted indicator, which can significantly reduce frequent

switching. For example, the terminal can predict the

link quality using multiple RMIs such as reference sig-

nal received power (RSRP), reference signal received

quality (RSRQ), and received signal strength indica-

tor (RSSI), which is more credible to be referred to

perform the network selection.

• In order to make a gainful switching, the terminals

can predict or expect the switching performance before

executing a strategy, which is able to avoid useless

switching. For example, the terminals can predict if the

network to be switched is heavy-loaded, and further

decide whether to connect to or not.

• Due to introducing the intelligent capability to each

terminal, the network selection is implemented by each

terminal based on its own preference. For example, dif-

ferent users can produce customized network selection

strategies based on their own behavior patterns. There-

fore, heterogeneous and individual service for specific

users can be achieved.

Machine learning is an important part of artificial intel-

ligence to accomplish intelligent tasks [23]–[29]. The main

categories for machine learning algorithms are supervised,

unsupervised, and reinforcement learning [23]. Supervised

learning, such as neural networks and decision trees, requires

a supervisor, what is the expected output for each input,
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to guide the agent. Unsupervised learning, such as K-means,

has no need for a supervisor or expected output. Reinforce-

ment learning, such as Q-learning and actor-critic, applies a

reward mechanism to reflect the interaction with the environ-

ment. The system using reinforcement learning can update

itself continuously, while the systems using supervised and

unsupervised learning, in general, are static.

In this paper, we focus on intelligent user-centric net-

work selection in the ultra-dense heterogeneous networks.

Although some works have been done, introducing intelli-

gence to the terminal for network selection in the ultra-dense

heterogeneous networks is still at the beginning level.

We summarize the main contributions of this paper as

follows.

• We propose a model-driven learning framework consist-

ing of feature-learning, game-modeling, and strategy-

learning, which jointly exploits the diversity of both

game theory and machine learning. The proposed

model-driven framework adopts a joint off-line and on-

line way, which can overcome the challenge between

real-timing communication and time-consuming learn-

ing. Based on the framework, intelligent, fast, and effi-

cient network selection can be fully implemented by the

terminal itself.

• We develop a distributed algorithm at the terminal

side based on the proposed framework, in which

feature-learning and game-modeling are used to assist

strategy-learning so as to improve user experience and

accelerate convergence rate. More specifically, termi-

nals utilize feature-learning to mine the complex cor-

relation between multiple indicators and link quality.

In this way, the shortage of only using a single and highly

stochastic indicator in the current approaches can be

effectively overcome, which can reduce frequent switch-

ing. In strategy-learning, terminals can make a decision

considering the link quality and the load, which can

avoid terminals to access heavy-loaded base stations.

Before actually performing a strategy, terminals can

previously estimate the performance to avoid ineffective

switching. In addition, game theory is used to achieve

fast and optimal convergence.

• We evaluate the performance of the proposed algo-

rithm in a system-level platform constructedwith python

and simpy. We verify that the convergence rate can be

accelerated by introducing game theory, and the fre-

quent switching can be reduced by introducing feature-

learning. Also the user experience can be enhanced with

the combination of feature-learning, game-modeling,

and strategy-learning. Simulation results confirm that

the algorithm can achieve the user average delay reduc-

tion of 1.7 ms and the resource utilization ratio improve-

ment of 9% than Q-learning.

The paper is organized as follows. We survey the

works related to intelligent user-centric network selection

in Section II. Section III introduces the system model and

presents amodel-driven framework. Section IVfirstlymodels

the network selection problem as a non-cooperative game

and prove the convergence, and then proposes an intelligent

algorithm for network selection to overcome the shortage

of game solution. We present the evaluation in Section V.

Followed by the conclusions in Section VI.

II. RELATED WORK

In this section, we survey and discuss the works that related

to intelligent user-centric network selection. We survey the

works based on multiple RMIs, data-driven, and model-

driven, and discuss how our proposed approach advances the

state of the art.

A. RELATED WORK BASED ON MULTI-RMIs

Conventional network selection based on single-RMI in

the industry community may result in frequent switching,

which causes high switching delay and poor user experience.

In recent researches, the network selection considers more

than one RMI in order to well reflect the communication

scenario. Moon et al. [30] study network selection with the

consideration of load in cellular networks using population

game. Except for the traditional SINR RMI, the proposed

algorithm considers the load status broadcasted by BS and

the transmitting power. Based on the practical physical layer

data rate and the weight of users, the QoE of users in dense

networks has been considered in [31]. The authors model

the network selection as transfer-matching game to optimal

the users’ QoE. More notably, this paper offers a modeling

approach for users’ QoE. Mar et al. [32] study the antenna

selection problem in MIMO system. To fully reflect the

character of channel, the paper take CQI, mobility, SINR

and received antennas into consideration. This paper adopts

an adaptive fuzzy neural network method to deduce the rule

of antenna selection, which enhance the intelligence and

adaptation of selection. To overcome the shortage of single-

RMI, Lin et al. [33] study network selection with one user

and two based stations and are devoted to solving the frequent

switching problem based on multi-RMIs. The contribution of

the paper is that the authors propose a prior-free algorithm

which utilizes link quality to control the handoff.

The motivation is that single-RMI is inadequate to express

the actual channel quality, and thus the decision based on

single-RMI is not accurate. One reason is that there exits

inherent measurement error for single-RMI. Another rea-

son is that the actual channel quality or other high-level

indicators depend on multi-RMIs [30], [31]. Due to the

nonlinear and complex correlation between multi-RMIs and

the link quality or specific indicators, artificial neural net-

works or its derivation is often used to learn the correlation

in [32] and [33].

Corresponding to [30]–[33], in our paper, we focus on an

ultra-dense heterogeneous network with multi-agent. More-

over, we take into account the influence of both the channel

link and the switching performance on frequent switching,

which is more efficient to avoid frequent switching in the

ultra-dense heterogeneous networks.
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B. RELATED WORK BASED ON DATA-DRIVEN

Data-driven intelligent network selection approaches have

been developed in the academic community [34]–[36]. Data-

driven means that the approaches are achieved by roughly

putting machine learning algorithm and big data together.

El Helou et al. [34] study the network-assisted net-

work selection problem between two orthogonal frequency

division multiple access-based RATs in the heterogeneous

cellular networks. Policy iteration algorithm is used to obtain

optimal policies, which can jointly improve user experience

and network performance. Further, a Q-learning-based algo-

rithm is introduced to solve the information-incomplete prob-

lem. Perez et al. [35] study the network selection problem

between a macro base station and dense WiFi access points.

A Q-learning algorithm with improved reward mechanism,

taking into account the load, the duration, and the signal-

to-noise-ratio, is achieved to decide the optimal selection.

Both papers use Q-learning to constantly generate network

selection strategy, and the data collected in the procedure of

communication is used to modify the Q-learning.

Different from [34] and [35], Perez et al. [36] propose

a cognitive framework, in which the terminals firstly learn

the varying environment for establishing states and then

learn an optimal strategy. Based on the proposed framework,

K-nearest neighbors and Q-learning are jointly used for net-

work selection in heterogeneous networks. The K-nearest

neighbors is used for mining the character of users and

network’s state. What’s more, rather than pre-specified,

the device itself can learn and label the state autonomously.

Yang et al. [37] adopt multiple machine learning techniques

jointly to enhance the prediction accuracy of network traffic.

As a conclusion, except using for decision, many machine

learning techniques are also used for prediction or regression

in communication [36], [37].

The data-driven approaches face the problem that the

absence of theory for making the performance expectable

and the result explainable. The pure black-box framework

of machine learning limits the long-term development of

intelligence, which makes the intelligence difficult to be

standardized and productization. The contradiction between

real-time communications and time-consuming learning is

also non-negligible [37]. Moreover, in fact, the approaches

in [34]–[36] are not perfectly fitted to the actual multi-agent

scenario because the design of state for each agent is inde-

pendent of others’ strategies. In addition, different RATs

are assumed to adopt the same mechanism and provide co-

localized service, which is inconsonant with the realistic

system. Different from [34]–[37], we propose a model-driven

learning framework based on game theory andmachine learn-

ing, which can achieve fast convergence and make the result

explainable by theoretical analysis.

C. RELATED WORK BASED ON MODEL-DRIVEN

Model-driven means that the machine learning algorithms are

strengthened and guided by theoretical analysis. In general,

model-driven approaches can be achieved by taking either

a field-experience or theory-analysis way. In the field-

experience way, the model is built based on the accumulated

knowledge in the field. The theory-analysis way usually uses

modeling tools, such as game theory, to describe the model.

Game theory is a theoretical tool to model the complex

problems in complex scenarios [38], [39]. Yang et al. [38]

use coalition game to model the cooperative behaviors among

small cells. More significantly, the paper proposes an incen-

tive mechanism to form the cooperative coalitions. In [39],

the hierarchical game is adopted to depict the behavior

between the resource providers and resource requesters, and

solve resource allocation problem in virtualized networks.

Moreover, thanks to game theory, there exists an equilib-

rium to expect and guarantee network performance for those

algorithms.

Several model-driven intelligent network selection

works have been done using game theory and machine

learning [40], [41]. Naghavi et al. [40] firstly model the net-

work selection problem among the users as a non-cooperative

game and obtain the network selection strategy that can result

in the highest gain for each selection. Then, the convergence

of the game is proved with the sufficient condition that the

utility function is strictly decreasing. Next, a Q-learning

algorithm is used to deal with the limited information. What

is noteworthy is that the state and the reward of the pro-

posed Q-learning algorithm is guided by the non-cooperative

game to achieve the optimal strategy of network selection.

Nguyen et al. [41] develop a network selection framework

and a Hart’s reinforcement learning algorithm to deal with

slow convergence, high overheads, and undesirable equilib-

rium of the current network selection algorithm. Game theory

is used to guide the action of Hart’s reinforcement learning

algorithm to obtain optimal strategy and achieve a fast con-

vergence rate. The game theory in [40] and [41] are used

for theory-analysis. As a presentative of field-experience,

Morozs et al. [42] propose a reinforcement learning based

dynamic spectrum access algorithm and offer Q-learning

a heuristic guidance with prior knowledge. In both ways,

the game theory shows a good property to guarantee and

accelerate the convergence of learning.

The approach in [40] assumes that different RATs adopt the

same mechanism, and all the users connected a same network

is assumed to get the same rate. Corresponding to [40], in our

paper, we describe the distinctions among different RATs and

analyze the impact of different RATs’ mechanisms on users’

rate. Further, different from [41], we develop a reinforcement

learning with feature-assisted and game-guided framework to

achieve efficient, fast, and gainful network selection.

III. SYSTEM MODEL AND FRAMEWORK

In this section, we firstly introduce the system model in

the ultra-dense heterogeneous networks. Then, we present a

model-driven learning framework based on machine learning

and game theory.
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A. SYSTEM MODEL

We consider an ultra-dense heterogeneous network with

multi-RATs, such as WiFi, UMTS, LTE, and WiMAX,

as shown in Fig. 1. There are N serve nodes (SNs) andM ter-

minals. In general, the base stations with different RATs serve

as SNs. LetMj (t) denote the number of terminals connected

to SN j at time t , and
N
∑

j=1

Mj (t) = M . Each terminal accesses

an appropriate SN for better service. The SNs that belong

to different RATs are interference-free by using different

bands, and the SNs that belong to the same RAT experience

interference due to the frequency reuse. In today’s intelligent

terminals, each RAT has its own radio chip (transmit and

receive chain), but only one RAT is used to route the traffic

at any specific time. Thus, each terminal uses a single RAT at

any given time, and each user is equipped with one terminal.

FIGURE 1. System model.

In Fig. 1, the communication link represents that the ter-

minal is a subscriber of the associated SN. For example,

UE2 and UE3 are the subscribers of LTE1, and UE4, UE5,

and UE6 are the subscribers of WiFi1. The received signal

represents that the terminal is located in the server area of

the SN. For example, UE1 is located in the common server

area of LTE1, UMTS1, and WiFi1, and can receive signals

from LTE1, UMTS1, and WiFi1. UE7 is located in the com-

mon server area of LTE2, UMTS2, WiFi2, and WiMAX1,

and can receive signals from LTE2, UMTS2, WiFi2, and

WiMAX1. The heavy-loaded SN, such as WiFi1, represents

the SN serves a lot of users. The middle-loaded SN, such

as LTE1, represents the SN serves a few users. The lightly-

loaded SN, such as UMTS1, represents the SN serves fewer

users. In Fig. 1, UE7 chooses an appropriate SN to con-

nect to among LTE2, UMTS2, WiFi2, and WiMAX1. How-

ever, if the received signals are similar, UE7 may frequently

switch among neighboring SNs due to the time-varying

channel. Moreover, UE1 chooses an appropriate SN to con-

nect to among LTE1, UMTS1, and WiFi1. If UE1 chooses

WiFi1 because of maximum received signal strength, the user

TABLE 1. Table of notations.

experience may be worse than UMTS1 due to the heavy-load

of WiFi1.

B. A MODEL-DRIVEN FRAMEWORK

As shown in Fig. 2, we present a model-driven learn-

ing framework with a joint off-line and on-line way,

which jointly explores the diversity of both game theory

and machine learning. Model-driven means applying the-

oretic analysis to black-box machine learning algorithm.

As observed, the framework is segmented into three parts

including feature-learning, game-modeling, and strategy-

learning, in which feature-learning and strategy-learning are

based on machine learning, and game-modeling is based on
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game theory. In our framework, model-driven means apply-

ing game-modeling to strategy-learning. Feature-learning is

an off-line way and strategy-learning is an on-line way. The

model-driven framework with a joint off-line and on-line way

has obvious advantages as follows.

• The model-driven framework with a joint off-line and

on-line way is able to overcome the challenge in the cur-

rent technology that the framework only depending on

massive data may not be standardized and productized.

The reason is that the data in the wireless communica-

tions is with small sample properties, and the black-box

framework using machine learning makes it difficult to

expect the performance and explain the result, which can

be dealt with theoretical guidance.

• The model-driven framework with a joint off-line and

on-line way is able to overcome the challenge in the

current technology that the framework faces the con-

tradiction between real-time communication and time-

consuming learning. The reason is that the joint off-line

and on-line way can reduce the decision delay, and

the model-driven way can guarantee and speed up the

convergence.

• The model-driven framework with a joint off-line and

on-line way can be fully deployed and implemented at

the terminal side, which can realize intelligent, fast, and

efficient network selection by the terminal itself.

FIGURE 2. A model-driven framework.

In Fig. 2, feature-learning is implemented by supervised

learning algorithms, such as random forest and neural net-

works. We use feature-learning to learn the link quality to

deal with the frequent switching, such as UE7 in Fig. 1. The

motivation is that the link quality depends on multi-RMIs

and cannot be evaluated well with single-RMI by a given

equation for all cases. Moreover, the correlation between

multi-RMIs and the link quality is complex and nonlinear.

The input is multi-RMIs, such as RSRP, RSRQ, RSSI, signal

to interference plus noise ratio (SINR), bit error rate (BER),

and round-trip-time (RTT), and the output is the link quality.

The terminal can adjust or modify the feature-learner when

the environment changes or with a certain period. Game-

modeling is used for modeling and analysing the network

selection problem in a complex scenario based on game

theory. We use game-modeling to model the multi-agent

network selection in the ultra-dense heterogeneous networks

and obtain essential convergence conditions for reaching

an equilibrium. By theoretical guidance, the shortages that

slow and arbitrary convergence can be solved, and fast and

optimal convergence can be achieved. Strategy-learning is

implemented by reinforcement learning algorithms, such as

Q-learning and actor critic. We use strategy-learning to deter-

mine the optimal network selection strategy. Not only the link

quality but also the SN’ load is considered to make a decision,

which can avoid accessing to heavy-loaded SN and resulting

in poor user experience, such as UE1 in Fig. 1. The terminal

can continuously update strategy-learner.

IV. INTELLIGENT NETWORK SECTION

In this section, we firstly describe the network selection prob-

lem as a game problem, and then theoretically analyze the

conditions to achieve the equilibrium. Through the analysis,

we obtain a necessary convergence condition for network

selection in the ultra-dense heterogeneous networks so as

to guarantee the existence of equilibrium. However, if a

user intently gets the best strategy using the game solution,

it should obtain the information of all the users, which would

lead to heavy signaling overhead. Thus, to overcome the

shortage of game solution, we further propose an intelli-

gent solution for network selection, which is guided by the

equilibrium condition obtained from theoretical analysis to

guarantee the convergence. That is, we use game solution

to guide machine leaning solution and use machine learning

solution to improve game solution.

A. NETWORK SELECTION GAME

We model the network selection problem in the ultra-dense

heterogeneous networks as a non-cooperative network selec-

tion game. The players are terminals, and the strategies are

the choice of SNs. At time t , for ∀i ∈M, the utility function

of terminal i connected to SN j is

Ui,j (t) = Ti,j (t) , (1)

where Ti,j (t) denotes the throughput of terminal i connected

to SN j at time t . The throughput obtained by terminal i

on SN j depends on the terminal’s connected to network,

the terminal-specific metric (e.g., instantaneous rate), and the

other terminals sharing the same SN.

Depending on the different medium access control (MAC)

protocols used by different RATs, the throughput that a user

received may be different [43]. We divide the throughput

models into two classes based on the MAC protocols.

1) WiFi-MODE

In this mode, the terminals who access the same network

can receive the same throughput. An referable example of

such MAC protocol is the distributed coordination function

implemented in 802.11, in which a WiFi SN offers fair

throughput to the subscribed terminals [44], [45]. In the

downlink, the throughput of the subscribed terminals lies on

the queuing technique used on the SN. Round robin is a
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common technique to be used [11]. Therefore, the obtained

throughput Ti,j (t) of terminal i connected to SN j at time t is

denoted as

Ti,j (t) =
L

Mj(t)
∑

i′=1

L
Ri′,j(t)

=
1

Mj(t)
∑

i′=1

1
Ri′,j(t)

, (2)

where L is the size of packet. i′ denotes any terminal. Ri,j (t)

is the instantaneous rate of terminal i connected to SN j at

time t . The rate Ri,j (t) lies on the channel condition and the

selected modulation and coding scheme at time t .Mj (t) is the

number of terminals connected to SN j at time t . The mode is

suitable for modeling the RATs with fair throughput, such as

WiFi.

2) CELLULAR-MODE

In this mode, the throughput obtained by the terminals may be

different and depends on the number of terminals accessed to

the same SN. The examples of suchMACprotocol are orthog-

onal frequency division multiple access and proportional fair

scheduling [11], [46]. Ti,j (t) is denoted as

Ti,j (t) =
Ri,j (t)

Mj (t)
. (3)

The mode is applied to model time/frequency/time-frequency

fair RATs, such as 3G, 4G, and WiMAX.

If the terminal accesses the WiFi network, the obtained

utility is based on (2). Otherwise the utility is based on (3)

when accessing the 3G/4G/WiMAX network.

We denote the strategy of terminal i as πi, and the strategy

set as 5i. The strategy profile for all terminals is π =

(π1, π2, . . . , πi, . . . , πM ) and the strategy profile set is 5.

Definition 1: We define the obtained utility as Ui,πi if

terminal i chooses strategy 5i. Given the strategies of other

terminals, each terminal chooses the best strategy. If the

strategy profile π∗ is a Nash equilibrium, we have

Ui,
(

π∗i ,π∗−i

) ≥ Ui,
(

πi,π
∗
−i

), ∀i ∈ M , πi ∈ 5i, (4)

where π−i is the strategy profile for all terminals except

terminal i.

At any specific time, the rational or best response strategy

of the terminal is to switch the connection to a SN that results

in a higher utility. In order for terminal i to make a switching

at time t + 1 from SN j to SN k , we definite the expected

switching gain as U
j→k
i (t + 1). Then, we have

U
j→k
i (t + 1) =

Ui,k (t + 1)

Ui,j (t)
, (5)

where Ui,j (t) is the obtained throughput of terminal i con-

nected to SN k at time t . Ui,k (t + 1) is the expected through-

put of terminal i switching to SN k at time t+1.U
j→k
i (t + 1)

denotes whether the switching can bring higher through-

put or not. The terminal would perform a switching when

the throughput after switching is higher than the one before

switching. Thus, the expected gain U
j→k
i (t + 1) should

satisfy

U
j→k
i (t + 1) ≥ µ, (6)

where µ is a threshold and µ ≥ 1.

The expect throughput Ui,k (t + 1) is roughly computed

based on (2) or (3). Based on [47], we estimate the instan-

taneous rate of terminal i connected to SN k at time t + 1

by

Ri,k (t + 1) = Blog2
(

1+ γi,k (t + 1)
)

, (7)

where B is the system bandwidth, γi,k (t + 1) is the received

SINR of terminal i on SN k at time t + 1. The same way is

applied to estimate the instantaneous rate of other terminals.

The 802.11u and access network discovery and selection

function (ANDSF) are used to obtain the information on

the number of terminals on other RATs and their instanta-

neous rates [48]. The WiFi Alliance proposes the Hotspot

2.0 standard based on 802.11u, which provides a mecha-

nism to inform the terminal of information without requiring

the terminal to contact the SN. The ANDSF is deployed

in the core network and communicates with the terminals

through specific interface. Thus, each terminal can evaluate

its expected throughput if it determines to make a switching.

To make the switching more efficient, the expected

throughput should be closed to the available throughput.

However, if multiple terminals switch to the same SN at

the same time, the expected throughput and the available

throughput may be greatly different, which may cause the

situation that the received signal is strong while the user

experience is poor. Thus, we consider tominimize the number

of concurrent switches to a SN. We consider the terminal

switch with probability ρ, which depends on the congestion

in the network and acts similarly to the 802.11 contention

window mechanism. Similar to the binary exponential back-

off in the 802.11 distributed coordination function, when

terminal i observes that concurrent switches to a SN happens,

it sets its probability as

ρ = ρχi , (8)

where χi is the number of past consecutive concurrent

switches observed by terminal i.

B. CONVERGENCE TO GAME EQUILIBRIUM

In this section, we first analyze the convergence of the net-

work selection game in which all SNs belong to WiFi-mode.

Next, we consider the convergence of the network selec-

tion game in which all SNs belong to cellular-mode. Then,

we discuss the convergence of the network selection game in

which all SNs are with a mixture of the WiFi-mode and the

cellular-mode.

1) CONVERGENCE WITH SINGLE-MODE

Theorem 1: The non-cooperative network selection game

based on WiFi-mode can converge to a Nash equilibrium.
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Proof: The proof is based on [49]. For simplicity, we use

Ui as the utility of terminal i. We sort the utilities of all

terminals as

U1 ≤ U2 ≤ . . . ≤ Ui ≤ . . . ≤ UM . (9)

The users connected to the same SN can obtain the same

throughput, while the users connected to different SNs may

receive different throughput. We define a function G on the

sorted utility as

G = U1 × S
M−1+U2×S

M−2+. . .+Ui×S
M−i+. . .+UM ,

(10)

where S → ∞, and satisfy S ≫ Ui,∀i ∈ M . Assuming that

terminal imakes a switching from SN j to SN k , the through-

put of all the users in both SN j and SN k will vary. The

throughput of all the users in SN j increase due to the leaving

of terminal i, while the ones in SN k decrease due to the

accessing of terminal i. However, the obtained throughput for

terminal i on SN k should be higher than the one on SN j;

otherwise the switch will not occur.

For further explaining it, we provide an illustrative exam-

ple. We consider a network with 2 SNs and 5 terminals,

in which terminal 1, terminal 2, and terminal 3 are the

subscribers of SN j, and terminal 4 and terminal 5 are the

subscribers of SN k . We sort the utilities asU1 = U2 = U3 <

U4 = U5, and thus we have

G = Uj ×
(

S4 + S3 + S2
)

+ Uk ×
(

S1 + 1
)

. (11)

If terminal 3 makes a switching from SN j to SN k , the con-

ditions U1 = U2 < U3
′ = U4

′ = U5
′, Uj

′ > Uj, Uk
′ < Uk ,

Uk
′ > Uj, and G

′ = Uj
′ ×

(

S4 + S3
)

+Uk
′ ×

(

S2 + S1 + 1
)

should be satisfied. Thus, we have

G′ − G > 0. (12)

Therefore,G is strictly increasing. Since the number of ter-

minals and SNs are limited, G does not indefinitely increase

and would be steady finally, which means all switchings

would terminate at some points. Since the users can no longer

increase its utility by unilaterally changing its strategy, the ter-

minate is a Nash Equilibrium.

Theorem 2: The non-cooperative network selection game

based on cellular-mode can converge to a Nash equilibrium.

Proof: The proof is based on contradiction and is fol-

lowed the one in [11]. We assume that a loop exists in the

network selection process, which means that the initial state

is equal to the end state. Between any two consecutive states,

the throughput inequality denotes that the next throughput is

larger than the previous throughput. Due to the characteristic

of loop, whenever a user leaves a network, he will come

back to this network later. If we collect all the throughput

inequalities within the cycle and multiply them together, all

terms will cancel each other. Then, we have 1 > 1. Because a

loop state sequence can not exist, the game would terminate

at an equilibrium and no terminal can obtain higher utility

by unilaterally changing its strategy. If the terminal could,

the state would alter and it would not be an equilibrium.

Therefore, it is a contradiction and there exists a Nash equi-

librium.

2) CONVERGENCE WITH MIXED-MODE

Unlike the single-mode network, there exists infinite

oscillation in the mixed-mode network [18]. Based on [18],

the hysteresis mechanism is introduced to solve the infinite

oscillation phenomenon and guarantee the convergence.

Definition 2 (Hysteresis Mechanism): Suppose that termi-

nal imakes a switching from a mode of SNs to another mode

of SNs. In order for terminal i to switch back to a SN in the

previous mode, the expected throughput should be greater

than the corresponding hysteresis value. The hysteresis value

hvi of terminal i in a given mode depends on its last achieved

throughput in that mode prior to switching to a different mode

of SNs.

FIGURE 3. Network selection in the mixed-mode networks (a) and
establishing the virtual SNs (b).

We classify all SNs into two modes based on the through-

put modes, as shown in Fig. 3 (a). Terminal i switches from

theWiFi-mode to the cellular-mode, after performing a series

of switches within the cellular-mode, if terminal i wants to

switch from the cellular-mode to the WiFi-mode, the follow-

ing condition should be satisfied to perform switching.

Ui,d > Ui,c&Ui,d > Ui,a, (13)

where Ui,d denotes the throughput of terminal i connected to

SN d . The same meanings to Ui,c and Ui,a. Here Ui,a is the

hysteresis value hvi of terminal i in the Wifi-mode, which is

defined in Definition 2.
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Theorem 3: Based on the hysteresis mechanism described

in Definition 2, a non-cooperative network selection game

with a mixture of the WiFi-mode and the cellular-mode can

converge to a Nash equilibrium.

Proof: The proof is based on contradiction [18]. The

set of SNs and connected terminals are defined as the system

state of the network. Assuming that there is an infinite loop in

the system state evolution, which means that the initial state

is equal to the end state at intervals. Assuming that the loop

starts when a terminal switches from amode to another mode.

UE i and UE m in Fig. 3 (a) are such terminals that switch

from one mode to another mode, and returns back to the pre-

viousmode after awhile (to form a loop). Consider the second

iteration of this loop. Due to the repetition, the terminals have

historical knowledge in both classes.

We first assume that there is one virtual SN for each depar-

ture and return of any terminal in the WiFi-mode. The virtual

SN serves only one specific terminal, and provides an average

throughput which is equal to the average value of before

leaving theWiFi-mode and immediately after returning to the

WiFi-mode. For example, in Fig. 3 (b), the virtual SN v serves

the terminal i and provides the throughput Ui,v =
Ui,a+Ui,d

2
.

Based on the hysteresis mechanism, we have

Ui,d > Ui,v > Ui,a, (14)

where terminal i connected SN v obtains gain after leaving

SN a, and also obtains gain after leaving SN v.

We then consider terminal m switching from the cellular-

mode to theWiFi-mode. Due to the loop, terminalm switches

back to the cellular-mode after a period of time. Since we

consider the second iteration of the loop, terminal m has

historical knowledge of the WiFi-mode. Thus, we assume

terminal m switches to the WiFi-mode from a virtual SN v′,

which provides the throughputUi,v′ =
Ui,e+Ui,f

2
. Based on the

hysteresis mechanism, we have

Ui,f > Ui,v′ > Ui,e, (15)

where terminal m connected SN v′ obtains gain after leaving

SN e, and also obtains gain after leaving SN v′.

Each virtual SN only accommodates one terminal, and

thus it can belong to either the WiFi-mode or the cellular-

mode. We can assume all virtual SNs belong to the WiFi-

mode. Consider the WiFi-mode and all virtual SNs, we can

conclude that there is a loop in the WiFi-mode. However,

there is no loop in the single-mode network, which has been

proved in Section IV-B.1. Thus, it is a contradiction. The

non-cooperative network selection game with a mixture of

the WiFi-mode and the cellular-mode can converge to a Nash

equilibrium.

C. INTELLIGENT RFEQG ALGORITHM

As mentioned before, we model the multi-agent net-

work selection as a non-cooperative game, as presented in

Section IV-A, and then analyze the Nash equilibrium in

Section IV-B. However, it should obtain the information of

all the users, which would lead to heavy signaling over-

head. In this subsection, we use the convergence conditions

got from game theory to strengthen traditional Q-learning

and tackle the network selection problem. Meantime, the

Q-learning overcomes the shortage of game theory. Based

on the proposed framework in Section III, we firstly elabo-

rate feature-learning and strategy-learning, and then propose

RFEQG to provide good service with less signaling overhead.

1) FEATURE-LEARNING

Network selection in the industrial community is mainly

based on max-RSRP, which causes inherent inaccuracy [33].

If the received RSRP of a terminal from different SNs are

closed and may alternatively exceed due to the time-varying

channel, the terminal may frequently switch among different

SNs and result in high handover delay and a waste of network

resources. The reason is that the actual link quality depends

on multi-RMIs besides RSRP. However, the associated func-

tion is nonlinear and complex. Thus, we utilize machine

learning to mine the nonlinear correlation between the link

quality and multi-RMIs, such as RSRP, RSRQ, RSSI, SINR,

and BER.

We use packet success ratio (PSR) as the estimation of

the link quality. We define PSR as the probability of suc-

cessfully transmitted packets to the total transmitted packets.

The size of each packet is L, and each packet is transmitted

on multiple resource blocks. Only when all resource blocks

used to transmit one packet are successful, the packet is

transmitted successfully. The error-transmitting probability

of resource block is denoted as p. Let X zi (t) = 1 denotes

the packet z of terminal i is successfully transmitted at time

t , or failed if X zi (t) = 0. Due to the transmission of resource

blocks obeying independent identical distribution, we can

approximate PSR with the expected value E
(

X zi
)

based on

the weak large number law [33], which can be formulated as

E
(

X zi
)

= (1− p)y, (16)

where y is the number of resource blocks for transmitting the

packet z and p is the error-transmitting probability of resource

block. y depends on L and the bits per resource block, which

is given by

y =
L

ς
, (17)

where ς denotes bits per resource block, which depends on

the selected modulation and coding scheme.

To measure PSR in a realistic system, we construct a

practical platformwith python. In this platform, we count that

the number of the successful packets of user i every 10 ms is

z+, and the number of the failed packets is z−. Thus, E (Xi)

can be computed based on the weak large number law by

E (Xi) =
z+

z+ + z−
. (18)

Random forest (RF) [50] is chosen to learn the complex

correlation between multi-RMIs and PSR because of its fast

VOLUME 7, 2019 21653



X. Wang et al.: Intelligent User-Centric Network Selection: Model-Driven Reinforcement Learning Framework

decision rate, less computational resource, and good adapt-

ability for small-sample learning. RF belongs to a bagging

algorithm of ensemble learning [51], which can be used to

deal with classify or regression problems. RF is an ensem-

ble technique that trains several classifiers by random-back-

sampling data on the original data set. Then, it uses the set of

trained classifiers to classify the new samples, and obtains the

final result from all classifiers using the majority votes or the

mean. In this way, it is significantly enhanced in accuracy

and generalization for the trained model comparing with one

single decision-making model.

Classification and regression tree (CART) [52] is chosen as

decision tree to generate several classifies in RF. The process

of constructing a RF is roughly as follows: 1) Generate the

training data set by multiple sampling from the original data

set with a random-back-sampling method. 2) Train decision

tree model using CART. 3) Split decision tree using the

information gain ratio or Gini index. 4) Form RF using the

multiple decision trees. The accuracy of RF mainly depends

on its parameters, including the number of decision trees,

the maximum number of features, the minimum number of

samples, the ratio of train set to total data set, and the size of

total data set. Different settings have different influences on

the accuracy of RF. The RF algorithm for feature-learning is

detailedly showed in Algorithm 1.

Algorithm 1 RF Algorithm for Feature-Learning

Input: i, Listi, FS
List

i

Output: PSRList
i

1: Initialization.

2: while True

3: Obtain the trained RF learning machine fi
4: Compute PSRList

i
based on (21) using fi constructed by

CARTs

5: end while

When the terminals have a request for transmitting traffic,

the terminals firstly detect and get the service list vector

which is composed of the adjacent and serviceable SNs. The

list vector can be gotten by ANDSF which can inform the ter-

minals of the information about LTE/WiFi/WiMAX by the

way of pull or push. The list vector Listi (t) of terminal i at

time t can be denoted as

Listi (t) = [1, 2, . . . , j, . . .]. (19)

Supposing that D-dimensional RMIs are considered to esti-

mate PSR, and thus the feature vector FSList
i

(t) of terminal i

at time t can be denoted as

FS
List

i
(t) = {x1 (t) , x2 (t) , . . . , xd (t) , . . . , xD (t)} , (20)

where xd (t) is the d th feature vector at time t in the fea-

ture space, and xd (t) =
(

. . . , xkd (t) , . . . x
j
d (t) , . . .

)T
. For

example, xkd (t) and x
j
d (t) can represent the received RSRP

from SN k and SN j by terminal i at time t , respectively.

The terminals obtain the RMIs by pilot signal measurement

for 3G/4G SNs and carrier sense for WiFi SNs. Therefore,

we construct input-output as

PSR
List

i
(t) = fi

(

FS
List

i
(t)

)

, (21)

where PSRList
i

(t) is the link quality vector for the SNs in the

Listi (t) estimated by terminal i at time t . fi is the RF-learner

trained and used by terminal i.

2) STRATEGY-LEARNING

At time t , each terminal generates the optimal network selec-

tion based on strategy-learning. Q-learning [53] is chosen

to implement strategy-learning due to its low complexity

and efficiency. Q-learning belongs to reinforcement learning,

which enables the agent to decide the optimal action from

its own experience. However, traditional Q-learning is not

suitable for the network selection problem we address in the

ultra-dense heterogeneous networks. On the one hand, tradi-

tional Q-learning may be slow and arbitrary convergence, and

even may be not workable in the multi-agent scenario. This

is because it is fit for the situation that the states of agents are

independent of each other, or the situation that there is only

one agent. While the states of agents we consider in our paper

are dependent of each other. Generally, game theory and shar-

ing Q-table are main ways to deal with the multi-agent sce-

nario. On the other hand, there exists infinite oscillation in the

heterogeneous mixed-mode networks [18], which also makes

traditional Q-learning misconvergence. We have discussed

and analyzed in Section IV-A and Section IV-B that game

theory can be used to avoid infinite oscillation and enable the

mixed-mode network selection game converge. Based on

the hysteresis mechanism and selfish behavior deduced from

the game theory, we develop an enhanced Q-learning with

game theory (EQG) algorithm as shown in Algorithm 2.

In Algorithm 2, the agent is terminal i, ∀i ∈ M. Each

terminal decides the network selection based on not only the

link quality PSRList
i

but also the SN’ load LoadList
i

. The state

of terminal i at time t can be denoted as

si(t) =
(

List (t) ,PSRList
i

(t) ,LoadList
i

(t)
)

, (22)

where LoadList
i

(t) = [n1, n2, . . . , nj, . . .] is the load vector

of the SNs in Listi (t). The load can be gotten by terminal i

based on ANDSF and Hotspot 2.0 in 802.11u standard.

The action of terminal i at time t is to choose an appropriate

SN from the service list. Thus, the action can be showed as

ai(t) = List (t) , (23)

where ai (t) = j denotes that terminal i chooses SN j from

List (t) to connect to at time t .

The reward of terminal i at time t is the achieved through-

put after performing ai (t), and

Re
s,a
i (t) = Ui (t) , (24)

where Ui (t) denotes the achieved throughput by terminal i

after performing ai(t) at time t . If terminal i connects to SN j
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Algorithm 2 EQG Algorithm for Strategy-Learning

Input: i, Listi, RSRP
List

i
, LoadList

i

Output: ai
1: Initialization: Qi, hvi, si
2: while True

3: if rand () > ε, ε is the exploration rate

4: Select ai randomly.

5: else

6: Select ai = argmax
ai

Qi (si, ai).

7: end if

8: if
Ui,ai
Ui,j

> µ, j is the last action

9: if class (ai) = class (j)

10: if rand () < ρχi

11: ai = ai
12: if Concurrency happens

13: χi = χi + 1

14: else

15: χi = 0

16: else

17: ai = j

18: else

19: if Ui,ai > hvi [class (ai)]

20: if rand () < ρχi

21: hvi [class (j)]← Ui,j
22: ai = ai
23: if Concurrency happens

24: χi = χi + 1

25: else

26: χi = 0

27: else

28: ai = j

29: else

30: Qi (si, ai) = 0

31: ai = j

32: end if

33: Execute ai, obtain R
s,a
i , observe si

′

34: Calculate Q
s,a
i

35: Calculate Q
s,a
i

36: si← si
′

37: end while

at time t , the achieved throughput Re
s,a
i (t) = Ui,j (t), where

Ui,j (t) are based on (2) with the WiFi network and (3) with

the 3G/4G/WiMAX network.

The state-action value function is computed based on

Q
s,a
i (t) = (1− α)Q

s,a
i (t)

+α

[

Re
s,a,s′

i (t)+ γ max
ai(t+1)

Q
s′,a′

i (t+1)

]

, (25)

where s′ is the next state after performing a, and a′ denotes

all actions when staying state s′. α is the learning rate, and γ

is the discount factor.

Firstly, terminal i initializes its Q-table, hysteresis vector,

and state. The hysteresis vector of terminal i consists of

the hysteresis value of terminal i in the WiFi-mode and the

cellular-mode, respectively. Then, from Line 3 to Line 7,

the terminal choose the action according to ε-greedy algo-

rithm. Next, the terminal makes a estimation for the selected

action. Due to the selfish user, in Line 8 and Line 29,

the user estimates whether the switching can result in a higher

utility or not. In Line 9, Line 19, and Line 21, hysteresis

mechanism stated in Definition 2 is adopted. From Line 10 to

Line 17 and Line 20 to Line 28, probabilistic switching is

considered to avoid concurrency. Terminal i firstly judge

whether the selected SN belongs to the same mode with the

currently accessing SN. If it is, terminal i observes whether

concurrency happens and determine the final action. If it is

not, terminal i first judge whether the hysteresis mechanism

is satisfied, and then observes whether concurrency happens

and determine the final action. In Line 30, Q-value is set to

0 to penalize the action with bad utility, which can speed up

the convergence rate.

3) RFEQG ALGORITHM

We propose a distributed RFEQG algorithm combin-

ing feature-learning, game theory, and strategy-learning,

as shown in Algorithm 3, which is performed by each ter-

minal. Firstly, by accurately estimating the link quality with

Algorithm 1, the frequent switching and the switching delay

can be reduced. Thus, the user experience can be improved.

Next, based on Algorithm 2, not only the link quality but

also the load is considered to make a decision. Moreover,

the terminals perform switching that results in a higher util-

ity by expecting the utility before executing the strategy.

The exponential back-off mechanism is used to lessen the

concurrent switching, which avoids network congestion and

improves service quality. In addition, we also taking the

hysteresis mechanism inferred from game theory into account

to guarantee the optimal convergence and accelerate the con-

vergence rate. Based on Algorithm 3, user experience can be

significantly enhanced.

Algorithm 3 RFEQG Algorithm for User-Centric Network

Selection

Input: i, Listi, FS
List

i
, LoadList

i

Output: ai
1: Initialization

2: while True

3: Perform Algorithm 1

4: Perform Algorithm 2

5: end while

The proposed RFEQG algorithm consists of feature learn-

ing and strategy learning, and thus we analyze the complexity

of the two parts, respectively. In fact, it is relatively hard to

theoretically analyze the complexity of RF and Q-learning

duo to the uncontrollable convergence. Therefore, we adopt

the way of qualitative analysis to clarify the complexity. The

complexity of feature-learning mainly appears on the off-

line training of RF, which may need not to put too much
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concentration because it can be achieved using server. As for

the on-line operation in algorithm 1, it is just a series of if-

else judgements which possesses low complexity. In strategy

learning, we use game theory to speed up the learning and

convergence rate of strategy. In algorithm 2, the related oper-

ations with game theory are line 8, line 9, line 18, line 19,

and line 21. We can see there only exist some simple if-else

judgements, and the terminal only should store two scalar val-

ues when introducing hysteresis mechanism. Besides game

theory, we also useQ-learning to implement strategy-learning

due to its low complexity and high efficiency.We simulate the

convergence rate of strategy learning in Fig. 7 and Fig. 9 in

Section V, in which we can observe that our proposed strategy

learning achieves lower complexity than pure Q-learning.

Therefore, on the whole, the proposed RFEQG is with accept-

able complexity.

V. SIMULATION RESULTS AND DISCUSSIONS

In this section, we evaluate and demonstrate the effectiveness

of the proposed algorithm. We consider an ultra-dense het-

erogeneous network with two kinds of different RATs (LTE

and WiFi) in a square area of 80*80 meters. There are

4 SNs (2 LTE SNs and 2 WiFi SNs) and 15 terminals in the

square area. Each user is equipped with a terminal.The users

are distributed randomly within the square area. In another

words, average three to four users are covered with one

BS. To completely and particularly show the independent

intelligence and behavior of every terminal in the simulation,

we focus on a part of the whole ultra-dense network. From

another perspective, the LTE SNs’ path loss model is simu-

lated as COST 231 Walfish-lkegami model, which reflect the

non-light-of-sight propagation of the SNs, and the transmitter

of SNs is 30 dBm low power transmitter. The path loss model

is denoted as PL (dB) = −35.4+ 26log10 (d)+ 20log10 (fc).

The unit of d is meter and fc is the system frequency. The

simulation parameters are detailedly described as Table II.

The basic configurations are based on 3GPP TR36.814.

We use python and simpy to construct a simplified system-

level simulation platform in order to evaluate and verify the

TABLE 2. Table of simulation parameters.

performance of the intelligent network selection algorithm.

In our platform, we use simpy to implement discrete-event

simulation and construct multi-agent asynchronous networks.

The traffic arrival time interval of terminals obeys exponential

distribution. Every 10 ms, the terminals with traffic to be

transmitted trigger network selection and choose the best SN

to access. Then, the SN performs power allocation among

all resource blocks. Next, the SN determines modulation

scheme, code rate, etc.. We design two schedulers based

on (2) and (3), i.e., LTE scheduler andWiFi scheduler, to allo-

cate resource block for terminals every 1 ms. Finally, we eval-

uate the transmission performance with some metrics such

as the resource block error probability. We use the proposed

RFEQG algorithm to accomplish the network selection of the

platform.

A. CONVERGENCE

Fig. 4 shows the convergence of the proposed RFEQG algo-

rithm. We arbitrarily select 4 terminals from 15 terminals

as an illustration, including terminals 2, 3, 10, and 11. The

simulation is 5000ms. TheX-axis is simulation times, and the

Y-axis is network selection strategy. SN 0 and SN 2 are LTE

SNs, while SN 1 and SN 3 areWiFi SNs. We can observe that

the number of connecting to 4 SNs is almost the same when

the algorithm does not converge. The number of connecting

to non-optimal SNs is in close proximity to 0 when the

algorithm gradually converges. Meanwhile, the terminal can

steadily connect to the optimal SN. For example, the optimal

SN for terminal 2 is SN 3. Before 700ms, the algorithm

gradually converges, and the number of accessing 4 SNs for

terminal 2 is almost the same. After 700ms, the algorithm

gradually converges, the number of accessing SN 0, SN 1, and

SN 2 for terminal 2 drastically decreases and approached 0,

and the number of accessing SN 3 for terminal 2 distinctly

increases and is stable for a long time. We can see that

terminal 2 occasionally accesses other SNs besides SN 3.

This is because our algorithm considers exploration and

exploitationmechanism to avoid getting into the local optimal

solution. If other SNs still provide worse service, terminal 2

can quickly converge to the optimal SN again. The analysis

and conclusion apply to any other terminals.

B. PERFORMANCE EVALUATION

The accuracy of the RF algorithm which is used to evaluate

the link quality PSR is presented in Fig. 5. In the simula-

tion, we consider RSRP, SINR, BER, and the type of SNs

as the RMIs to evaluate PSR. The accuracy using RF to

evaluate PSRmainly depends on the number of decision trees,

the maximum number of features, the minimum number of

samples, the ratio of train set to total data set, and the size of

total data set. We initially set the number of decision trees

as 100, the maximum number of features as 2, the mini-

mum number of samples as 50, and the ratio of train set to

total data set as 0.8. The size of total data set is 20, 000 in

Fig. 5 (a), (b), (c), and (d). Fig. 5 (a) shows that different num-

bers of decision trees have different influence on the accuracy.
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FIGURE 4. The convergence of the proposed RFEQG algorithm.

FIGURE 5. The accuracy of RF algorithm versus different RF parameters.

We can see that the highest accuracy is 0.809651 when the

number of decision tree is 200. Fig. 5 (b) shows that the

highest accuracy is 0.809966 when the maximum number

of features is 3. Fig. 5 (c) shows that the highest accuracy

is 0.809388 when the minimum number of samples is 50.

Fig. 5 (d) shows that the highest accuracy is 0.809966 when

the ratio of train set to total data set is 0.8. Thus, the RF

parameters are set as Fig. 5 (e) to achieve the highest accuracy.

Based on the setting in Fig. 5 (e), Fig. 5 (f) simulates the

correlation of the accuracy and the size of total data set.

We can observe the highest accuracy is achieved when the

size of total data set is 200, 000. Thus, the RF we use in the

following is based on the parameters in Fig. 5 (e) and the size

of total data set is 200, 000.

We confirm the effectiveness of feature-learning with

the RF algorithm in Fig. 6. We select 2 terminals from

15 terminals as an illustration, in which terminal 12 fre-

quently switches among 4 SNs, especially between SN 0 and

SN 3, and terminal 1 is normal without frequent switching.

The simulation is 60, 000 ms. The X-axis is simulation times,

and the Y-axis is network selection strategy. UE12 (with

EQG) and UE1 (with EQG) indicate that the EQG algorithm

is used, while UE 12 (with RFEQG) and UE 1 (with RFEQG)

indicate that the RFEQG algorithm is used. Compared with

UE 12 (with EQG), we can observe that the frequent switch-

ing is obviously reduced for UE 12 (with RFEQG). This

is because by accurately estimating PSR, SN 0 can provide

better service compared with SN 3. In addition, we can

see that the number of accessing SN 1 and SN 2 is also

obviously reduced, and terminal 12 can keep connection to

SN 0 for a long time. Thus, by considering feature-learning

with RF, the frequent switching for terminals can be dras-

tically avoided. We can also find that feature-learning with

RF can reduce the number of accessing non-optimal SNs and

accelerate the convergence rate by comparing UE 1 (with

EQG) with UE 1 (with RFEQG). It can be concluded that

feature-leaning with RF has the ability of reducing frequent

switching, maintaining steady access to the optimal SN, and

accelerating the convergence rate. Therefore, the aims can

be achieved with feature-learning, including cutting down

the switching delay, improving the quality of service, and

lessening the resource waste.

Further, we represent the average delay of the user in Fig. 7.

The average delay means the statistic average of times and

users. The X-axis is simulation times, and the Y-axis is

average delay of the user. The simulation is 60, 000 ms, and

we make a statistic at intervals of 6, 000 ms. We compare

the performance of RFEQG algorithm with Q algorithm,

enhancedQ-learningwithout game (EQWG) algorithm, EQG

algorithm. The Q algorithm represents traditional Q-learning.

The EQWG algorithm takes into account the switching effect

and the concurrent switching, but without the hysteresis

mechanism obtained from game-modeling. The EQG algo-

rithm involves the switching effect, the concurrent switch-

ing, and the hysteresis mechanism. The RFEQG algorithm

involves the feature-learning, the switching effect, the con-

current switching, and the hysteresis mechanism. The delay

consists of the queue delay and the transmission delay. It is

easy to understand that the delay decreases with the growth

of simulation times, which is because terminals can gradually

receive better service with the convergence of the algorithm.

We can observe that the EQWG algorithm has an promi-

nent advantage over the traditional Q algorithm, which is

because the switching effect and the concurrent switching

are considered to guarantee the switching gain. The delay

reduction of almost 1.5 ms is achieved when the simulation

time is 30, 000 ms. It can also be found that lower delay and

faster convergence are achieved by comparing EQWG and Q

algorithms with EQG algorithm. Before 60, 000 ms, EQWG

and Q algorithms do not converge, while EQG algorithm

converges before 35, 000 ms. The reason is that the hysteresis

mechanism obtained by game-modeling can guarantee and

speed up the convergence rate. Moreover, the superiority of

the RFEQG algorithm is more obvious than all other algo-

rithmswhether it is in the convergence rate or in the low-delay
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FIGURE 6. The effectiveness of feature-learning with RF algorithm.

FIGURE 7. Comparison of the user average delay for different algorithms.

performance. RFEQG algorithm reaches the convergence

before 12, 000 ms. The minimum delay is about 0.6 ms for

each terminal with RFEQG algorithm, which means that each

terminal can obtain good service experience.

As shown in Fig. 8, the RB success ratio using different

algorithms after convergence are compared. The X-axis is

simulation times, and the Y-axis is RB success ratio. The

simulation is 60, 000 ms, and we make a statistic at intervals

of 10, 000ms. The RFEQG algorithm and theQ algorithm are

the same as Fig. 7. Themax-RSRP (MS) algorithm represents

the terminals connect to the network that can provide the

maximum RSRP. We can see that the RB success ratio with

the MS algorithm is always higher than the one with the

Q algorithm, and the promotion of the RB success ratio is

about 5% when the simulation times is 30, 000. While the

RB success ratio with the RFEQG algorithm is always higher

than the one with the MS algorithm, and the promotion of the

RB success ratio is about 4% when the simulation times is

30, 000. It can be calculated that the RB success ratio with

FIGURE 8. Comparison of the RB success ratio for different algorithms
after convergence.

FIGURE 9. Comparison of the non-optimal selection rate for different
algorithms.

the RFEQG algorithm is 9% higher than the one with the Q

algorithm when the simulation times is 30, 000. Therefore,

our proposed RFEQG algorithm, which jointly considers

feature-learning, strategy-learning, and game-modeling, has

an obvious advantage than the traditional Q algorithm and the

classicalMS algorithm. By intelligently selecting the network

by the terminal itself with the RFEQG algorithm, the network

resource and the user experience can be improved.

The total non-optimal selection ratio for terminals is illus-

trated in Fig. 9. The non-optimal selection ratio means that

the ratio of the terminals connecting to the SNs expect the

optimal SN. The X-axis is simulation times, and the Y-axis is

non-optimal selection ratio. The simulation is 60000 ms, and

wemake a statistic at intervals of 6000ms. The involved algo-

rithms are the same as Fig. 7. It is easy to understand that the

total non-optimal selection ratio decreases with the growth of

simulation times, which is because terminals can access to

the optimal SN when the algorithm converges. We can also
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observe that the EQWG algorithm has an prominent advan-

tage over the traditional Q algorithm, which is because the

switching effect and the concurrent switching are considered

to guarantee the switching gain. When the simulation time is

30000 ms, the EQWG algorithm achieves the ratio reduction

of almost 42% than the Q algorithm. Further, It can be found

that lower ratio and faster convergence are achieved by com-

paring EQWG algorithm with EQG algorithm. The reason

is that game-modeling can guide the terminals to make the

best decision, implementing the fast convergence. Moreover,

the superiority of the RFEQG algorithm is more obvious than

all other algorithms whether it is in the convergence rate or in

the performance. The supreme ratio reduction of almost 55%

is reached with RFEQG algorithm. We can observe there

exists fluctuation in RFEQG algorithm, which is due to the

influence of time-varying channel and load.

VI. CONCLUSIONS AND FUTURE WORK

We have studied the intelligent user-centric network selec-

tion problem in the ultra-dense heterogeneous networks.

We proposed a model-driven learning framework, which

combines machine learning and game theory, to achieve fast

and optimal network selection. Further, We implemented a

fully distributed intelligent network selection algorithm at the

user side based on the proposed framework. We introduced

feature-learning to mine and learn the nonlinear and complex

correlation between multi-RMIs and the link quality. By this

way, we could reduce frequent switching and switching delay.

Not only the link quality but also the load was considered

to select the strategy, which could avoid accessing heavy-

loaded SN. We also considered the switching effect and the

concurrency, which could reduce unnecessary signaling over-

head and guarantee switching effect. Game theory was used

to avoid the infinite oscillation of the network selection in the

mixed-model networks and guarantee the convergence. Sim-

ulation results confirmed the effectiveness of the proposed

algorithm in reducing frequent switching, reducing average

delay, enhancing user experience, and increasing resource

utilization. Moreover, game theory was demonstrated to have

a crucial impact on guaranteeing the convergence.

There also exist some other issues about network selection

to be studied for improving our work. In UDNs, user mobility

has a drastic impact on frequent hand-off and severe signaling

overhead. In future work, we can take the regular mobility

into consideration in the network selection.We can predict the

moving path and regard the location as the input of strategy

learning to reduce frequent hand-off.
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