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This paper provides a novel implementation of the intelligent water drops (IWD) method for resolving data aggregation issues in
heterogeneous wireless sensor networks (WSN). When the aggregating node is utilized to transmit the data to the base station, the
research attempts to show that the traffic situations of WSN may be modified appropriately by parameter tuning and algorithm
modification. IWD is used to generate an optimum data aggregation tree in WSN as one of its applications. IWD assumes that all
nodes in the environment are identical, resulting in identical parameter updates for all nodes. In practical scenarios, however,
diverse nodes with variable beginning energy, communication range, and sensing range characteristics are deployed. In order
to replicate the influence of heterogeneity in the environment, improved IID (IIWD) is offered as an enhancement to the
original IID. The suggested enhancement is appropriate for scenarios in which the aggregation node is utilized to transmit data
to the base station in heterogeneous configurations. In terms of residual energy, dead nodes, payload, and network lifespan, a
series of simulation results demonstrates that the proposed IIWD significantly improves the accuracy and effectiveness of the
IWD method in comparison.

1. Introduction

The study of nature to model the solution of practical prob-
lems with a computer is gaining great popularity as a result
of its multiple applications for tackling optimization-related
issues. There are several explorable algorithms, and intelligent
water drops (IWD) is one of these nature-inspired algorithms
that has recently been implemented. IWD algorithm takes into
account the dynamics followed by water droplets in order to
route their pathways to the lake or ocean through rivers. The

algorithm employs the process occurring between river water
droplets and riverbed dirt. The IWD method, proposed by
Hosseini [1], has been successfully used to tackle several
optimization-related issues and provides benefits such as an
active feedback mechanism and a high degree of resilience
[2]. IWDs are formed from natural water droplets and collab-
orate to discover the greatest solution to any given problem.
The IWD method can be used to solve problems involving
maximization or minimization [3, 4]. The treatments are as
follows: The IWD algorithm builds objects in stages. As a
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result, IWD is a population-based beneficial algorithm. In the
IWD algorithm, two basic ways are used to build IWDs: dirt
and velocity are attributes. Both of these characteristics may
change throughout the course of a lifetime [5, 6]. The Interna-
tionalWomen’s Day an IWD flows from a source to a destina-
tion. The IWD begins its trip with 0 initial velocity dirt.
During its voyage, it goes through the environment from
which it originated. It accelerates and some dirt is eliminated
[7, 8]. The method employs several iterations in which water
droplets attempt to uncover the optimum path from source
to destination on a bed of environment particles. In order to
do this, the node(s) create control packets that go to the desti-
nation. These packets, known as IWDs, have two primary
characteristics: velocity and dirt. The environment consists
mostly of the dirt of the environment bed. The environmental
movement of IWD is governed by the following principles:

(i) The velocity of IWD decreases near a high soil bed
and vice versa

(ii) High-velocity IWD accumulates more soil than a
low-velocity IWD

(iii) The soil in the environment is eroded more by a
high-velocity IWD than a low-velocity IWD

Further, IWD has been used to create optimal aggregation
tree and has also been proven to achieve the energy efficiency
in homogeneousWSN, given the lack of critical attention paid
to heterogeneity [9]. Furthermore, there are several applica-
tions of WSN, where the deployed nodes possess different
characteristics with regard to communication range, sensing
range, battery, and sensing services. It is possible to refer to a
wireless sensor network as dynamic if it is able to handle the
following two atomic operations: node-move-in and node-
move-out, which, respectively, refer to nodes leaving an exist-
ing network and nodes entering into an existing network. The
primary IWD algorithm has proved to be efficient in discover-
ing the optimal path in the sensor network. However, it does
not incorporate the effect of heterogeneity in the network,
which is introduced due to distinctive characteristics of the
nodes.

The heterogeneity of the node’s features offers applications
with flexibility and improves network operations within pre-
determined cost restrictions. For instance, if a network is
installed with fewer high-energy nodes, the network may sur-
vive for a longer period of time, but the sensing range will be
constrained. In contrast, deploying a network with a greater
number of low-energy nodes would reduce the network’s life-
span while increasing its sensing range. However, a mixture of
nodes with varying energy levels may achieve a perfect balance
between network longevity and sensing range [10, 11]. Exper-
imentation on energy-based heterogeneous node deployment
demonstrates a substantial increase in sensing performance.
In addition, the cost analysis of hybrid sensor networks verifies
these networks’ cost effectiveness [10].

In this paper, we suggest using the IWD technique to
construct an efficient data aggregation tree in heterogeneous
WSN. Heterogeneity in WSN is determined by the initial
energy of the network’s nodes. Thus, the words low nodes

and high nodes are used to categorize nodes based on
energy. Low nodes indicate low-energy sensor nodes, while
high nodes indicate high-energy sensor nodes.

2. Problem Statement

The WSN is modelled as a join of two graphs:G =G1 +G2,
where G1 is ðVn, EnÞ and Vn =Vl

S
Vh. Here, Vn represents

all the sensing nodes, and Vl represents the low nodes and
Vh represents the high nodes. Also, En

S
eij, where eij is the

edge connecting the node i to node j, which is based on the
premise that if the distance between the node and the neigh-
boring node is less than the predefined communication range
R of the node i. However, G2 is ðVa, EaÞ, where Va represents
the set of aggregation nodes and Ea represents the edges con-
necting the aggregation nodes to the base station (BS).

The problem can be stated as to find a subset Gopt ⊂G1,
where Gopt = ðVopt, EoptÞ, where Vopt ⊂Vn,where Vopt are the
optimal number of low-energy and high-energy sensing nodes
and Eopt ⊂ En, minimizing the hop count from the sensing
nodes to the aggregation nodes. The problem can be solved as
a constrained optimization problem, having the nonlinear pro-
gramming form as Minimize f ðXÞ, where X = fx1, x2, x3 ⋯ ::
xng subject toR, where R is the cost function subject to the fol-
lowing constraint:

R =〠hlh + hha: ð1Þ

Here, hhs denotes the hop count from low-energy nodes to
high-energy nodes and hsa represents the hop count from high
energy nodes to the aggregation nodes.

Assumption: All the aggregation nodes, Va, are connected
directly to the BS.

3. Related Work

This section depicts the key features of the current routing
protocols in WSN. Because WSNs differ from other networks
such as MANETs (mobile ad hoc networks) and mobile net-
works, routing is particularly complex. The main task of
WSN is sensing, collecting, and delivering the information
for further processing. Many methods have been developed
in this area [12, 13]. Furthermore, according to a complex net-
work theory, predicting connection quality in wireless sensor
networks is akin to predicting link quality in social networks.
The routing problem of a network determines the quickest
route (also known as the optimum path) between the trans-
mitter and the destination [14, 15]. Signal strength changes a
lot on mobile and ad hoc networks, causing a lot of route fail-
ures and lowering performance. Several ideas have been pro-
posed to estimate the signal strength-based link availability
projection for best routing [16, 17]. This link information
may be utilized to calculate the connection breakdown time
and, as a result, either repair the existing route or locate a
new one for the packets. The reduction of packet losses and
end-to-end latency improves performance [18, 19]. Because
of specific WSN characteristics, the routing algorithms in
WSN vary from conventional networks in numerous ways.
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WSN sensor nodes are energy restricted and cannot be
recharged owing to their special application requirements.
Furthermore, the major uses of WSN are to detect data, ana-
lyzes it, and then broadcast it to the BS. As a result, routing
towards the BS is a critical job, and multiple algorithms have
been presented [20], aimed at distinct circumstances or situa-
tions owing to their unique characteristics. In terms of infra-
structure building and maintenance approach, the routing
algorithms in WSN may be divided into three broad classes:

Flooding and gossiping [21] do not need to retain topolog-
ical information in advance and build routing paths after net-
work setup or the commencement of network activity. The
flooding-based routing algorithm transmits the observed data
to all adjacent nodes and continues this process until the data
reaches the base station. In contrast, routing systems based on
gossiping randomly choose a limited number of neighbors
and relay messages to them until the BS is reached. In contrast
to the flooding technique, the gossiping approach reduces the
quantity of data packets transferred across the network but cre-
ates the data packet implosion problem, which incurs additional
expenses forWSN. Independent of network activities, proactive
routing algorithms design and maintain the routing architec-
ture continually. BS establishes and transmits the path to all
sensor nodes to all network nodes. During network operations,
the sensor nodes retain this information and use it to route data
packets over these channels. In MANET, the proactive DSDV
[22] protocol is used, but for WSN, a variety of tree-based
methods [23] are offered (e.g., one-phase pull diffusion [24]).
The intelligent interaction of wireless sensor networks (WSN)
and mobile ad hoc networks (MANET) with the Internet of
Things increases its user appeal and commercial viability [25,
26]. By merging wireless sensor and mobile networks with the
Internet of Things, it is possible to develop new MANET-IoT
devices and IT-based networks. This technology facilitates user
mobility while decreasing network implementation expenses
[27, 28]. One of the fundamental principles of Internet of
Things systems is the networking of intelligent objects and their
compliance with communications technology. Wireless net-
works (wireless sensor networks (WSN), whose characteristics
include sensing, data collecting, heterogeneous connectivity,
and data processing, play a major role in the Internet of Things
(IoT) system [29, 30]. Paths are continuously maintained dur-
ing network operations, although at a great cost of resources.
Several evolutions of the classical methods, such as BVR [31],

VRR [32], and S4 [33], are provided, providing enhancements
to the classical approaches in terms of reduced resource utiliza-
tion, a quality required for realistically scaled WSN.

Reactive routing algorithms generate routing pathways
as necessary. The architecture for routing is constructed by
the sensing nodes that must convey data to the base station,
not previously. In MANETs, the most used reactive routing
method is AODV [34], whereas in WSN push diffusion [35],
in FRA [36] and LRDE [37] are the most prevalent. These
techniques save resources during times of inactivity but
incur the cost of identifying pathways for each originating
node.

The following significant category of routing algorithms
contains hybrid algorithms, which integrate both reactive
and proactive network behaviors based on network circum-
stances. Several hybrid routing techniques for MANETs now
exist. Zone routing protocol (ZRP) [38] is the first hybrid
method utilized in MANETs. The ZRP protocol splits the
network into zones, and inside these zones, routes are
decided proactively, while outside of these zones, routes are
established reactively. ZRP has a lower routing overhead
benefit. However, zones are determined statically in ZRP.
Therefore, the SHARP protocol [39] presented an enhance-
ment based on the dynamic generation of zones. The zones
are only generated around nodes that generate a consider-
able amount of incoming data, which decreases routing
overhead along with jitter and loss rate. However, in the
context of WSN, the routing strategy that incorporates a
hybrid adaptive solution has not yet been extensively
deployed. In addition, MANET routing techniques are inap-
plicable to WSN owing to its fundamental properties.

Figure 1 [40] depicts a thorough overview of routing
methods in WSN based on node heterogeneity. Significant
benefits of adopting energy-based node heterogeneity in
WSN include increased throughput and decreased latency.
However, heterogeneity reduces the hop count among the
sensor nodes and the sink; hence, the delivery rate in hetero-
geneous WSN is greater than homogeneous WSN.

Broadly, there are three primary types of heterogeneity,
namely, energy, computational, and link heterogeneity.
Energy heterogeneity focuses on nodes’ diverse battery power.
Higher-end nodes get more energy. Few nodes have higher
computing capacity than others in computational heterogene-
ity. Complex data processing and memory-intensive processes
need powerful nodes. Connection heterogeneity focused on
link bandwidth between nodes. Long-distance nodes are pro-
vided a high-bandwidth transmission connection to ensure
reliable data transfer. Most WSNs employ energy heterogene-
ity since it uses the least resources. Computational and con-
nection heterogeneities hinder WSN without energy
heterogeneity. Figure 2 illustrate the types of heterogeneity.

Energy heterogeneity is split into three types based on
node power levels: two-level, three-level, and multilevel.
Two-level defines regular and advanced nodes. Normal,
advanced, and super nodes are specified in three-level net-
works. Multilevel randomizes energy distribution in nodes.
Recent routing techniques have been developed to improve
WSN performance [41, 42]. Cluster-based and tree-based
routing protocols are the main types.

Hybrid

Routing protocols

Flooding &
gossiping

Proactive Reactive

Figure 1: Taxonomy of routing protocols in WSNs.
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LEACH is a clustering routing technique that forms
clusters and elects cluster leaders to communicate with the
BS [43–45]. LEACH does not consider residual energy while
choosing a cluster head [20, 46, 47]; hence, it performs
poorly in diverse environments [48]. As a result, stable elec-
tion protocol (SEP), a clustering routing protocol, was
devised. Cluster heads are chosen using a weighted probabil-
ity [49]. SEP’s two-level heterogeneous network performed

well. Multilevel heterogeneous WSNs could not use the rout-
ing protocol properly. This led to the DEEC algorithm for
multilevel heterogeneous networks [50]. In DEEC, cluster
heads were chosen based on the average network energy
and sensor node energy. Other clustering-based routing pro-
tocols include EDFCM [51], an enhancement of DEEC, REP
[52], and EEPCA [53].

The second type of routing protocols is tree-based,
wherein nodes are organized as trees and root node does
the data aggregation and further transmitting it to the BS.
Tree-based techniques suit aggregation needs [54] like forest
fire, industrial, event, health, and other monitoring systems.

Data aggregation in tree-based protocols is optimized for
energy efficiency. Finding an optimum aggregation tree is NP-
hard [55], similar to Steiner tree, weighted set cover issue [56].
DD [57] identifies the quickest routing channels to transport
data packets throughout the network and opportunistically
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Figure 2: Types of heterogeneity in WSN.
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Figure 3: Data aggregation tree in heterogeneous WSN.

Table 1

Type of packet Source ID Next hop ID IWD soil IWD velocity

Table 2: Simulation parameters.

Parameters Values Description

N 300 Total number of nodes

S 5 − 30 Total number of source nodes

R 10-12m Communication energy

Einit 0:5 J Initial energy of each node
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aggregates them. However, DD is not considered efficient since
the aggregation nodes are chosen randomly and may be distant
from the source nodes. GIT is an approximation approach sug-
gested to build an energy-efficient route in an ideal aggregation
tree [58]. Krishnamacharya et al. [59] also demonstrated the
advantages of data aggregation.

Liao et al. [60] devised ant colony optimization (ACO)
method, which simulates ant foraging behavior. These ants
drop pheromone to designate a trail for the colony to follow.
The ant colony method is used by Schurgers et al. [61] to
aggregate data. Wu et al. [62] improved the chance of locat-
ing aggregation nodes in WSN exploiting ACO by widening
search area surrounding routing pathways. These works out-
perform standard approaches in energy conservation.

4. System Model

The system model used here takes into account the random
distribution of stationary sensor nodes in a monitoring region.
Here, there are three distinct kinds and configurations of
nodes: sensor nodes, aggregator nodes, and the base station
(BS). The sensing node collects data and transmits it at regular
intervals to the aggregation node. However, sensing nodes are
designed to be of two types: low nodes (representing low-
energy sensing nodes) and high nodes (representing high-
energy sensing nodes). Figure 3 depicts the aggregation tree
for data. The aggregator node aggregates data and transmits
it to the BS. The BS should be installed outside of the network,
and it should transfer the processed data to the control center.

The heterogeneous WSN thus categorizes nodes as low
nodes (), high nodes (), and aggregator nodes (). The upper
nodes contain tenfold more energy than the low nodes. The
communication model used in this study is the first-order
radio model, whereas the sensing model previously applied
was the deterministic sensing model [63]. This model
implies that each node participates in the sensing process.
The detected data is compared to aThreshold, whose value
is predetermined. If the detected data exceeds the defined
threshold, the data is sent to the next node. Consequently,
sensing coverage is the total of the sensing coverage of all
network nodes. However, the difference lies in predefined
communication and sensing ranges. Subsequently, the com-
munication and the sensing range of ‘Nh,’ ‘Nl,’ and ‘Na’ are
abbreviated as ‘Rch,’ ‘Rsh’; ‘Rcl,’ ‘Rsl’; and ‘Rca,’ ‘Rsa‘ respec-
tively. In addition, the ranges are defined in incremental
order as ‘Rca > Rch > Rcl’ and ‘Rsa > Rsh > Rsl.’

5. Preliminaries

The primary IWD algorithm is based on the evidence that
water drops always find the shortest route towards lake or
ocean. Despite encountering obstacles and constraints, water
drops always find an optimal path trailing twists and turns.
Correspondingly, the environment is also affected as the water
drops move from one place to another. In the same way, the
environment also tries to alter the nature of the water drops.
In a way, both water drops and environment have a tendency
to influence each other. The environment here refers to the
soil bed of the river. When the drops move fast, they tend to
remove more soil from the soil beds than when they are slow.
Drops that are trying to find an optimal path are called intel-
ligent water drops (IWD). The three essential parameters that
define the path taken by the water drops are velocity
(VelocityIWD), Soil (SoilIWD), and Soil of the river bed
SoilEdge. These parameters change as the data packet moves
from source node to destination. The change of the velocity
is updated by a parameter ΔVelIWD, which is calculated as fol-
lows:

ΔVelIWD tð Þ = av
bv + cv soil i, jð Þ½ �2 , ð2Þ

where av, bv, and cv are constants that are application
dependent. soilði, jÞ is the soil on the bed of edge between node
i and node j. During the initialization phase, each edge is
assigned an equal amount of this parameter. The velocity
can be evaluated as

VelIWD
t+1ð Þ = velIWD

t +ΔVelIWD
t+1ð Þ: ð3Þ

The decrease in the soil of an edge is calculated as

Δsoil i, jð Þ = as
bs + cs time i, jð Þ½ �2 , ð4Þ

where as, bs, and cs are the application dependent con-
stants, which specify the relationship between the weight of
the edges and the time that a data packet takes to move from
a node i to j. The time taken is given by

time i, jð Þ = HUD i, jð Þ
Vel IWDð Þ , ð5Þ

where HUDði, jÞ is the heuristic function defined for an
application for calculating the hop counts on the path.

HUD i, jð Þ = 〠
k∈Rj

hsj + hjd , ð6Þ

where Rj represents the routing nodes in the neighbor-
hood of node j, and hkj and hjd represents the hop count from
source node s to node j and from node j to destination node d
or the BS, respectively.

Table 3: IIWD parameters.

Parameters Values Description

Initsoil 1000 Initial soil of edge

Initvel 200 Initial velocity of an IWD

av , bv , cv 1,0.01,1 Velocity updating parameters

as, bs, cs 1,0:01,1 Soil updating parameters

ρn 0:9 Local soil updating parameter
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6. IWD Algorithm for Heterogeneous Network

In homogeneous environments, the IWD method may be
used to produce an optimum data aggregation tree solution.
Sensing nodes with data produce IWD to search for path-
ways linking to the base station or the closest aggregator
node. These IWDs produce an aggregate tree by generating
pathways using the approach described in Section 2. Here,
it is proposed that the low node will locate a way to the high
node, which will then transfer the data to the base station or
aggregator nodes. Since a result, the energy consumption of
low nodes will be decreased, as they will be required to find a
way to the closest high nodes. Nonetheless, there are
instances in which the route constructed by this IWD lacks

a connection point and hence cannot discover other nodes
visited by other IWDs. In such a case, the chance of con-
structing an ideal tree will be diminished. To update the soil
in this situation, the IWD packet is transmitted to the neigh-
bors of all modes. When a high node receives an IWD
packet, it broadcasts an updated soil packet to its neighbors.
Each neighboring node u updates the soilðu, vÞ based on the
information received. The packet format of IWD is as shown
in Table 1.

In the table, type of packet determines whether it is a data
packet or a control packet. Source ID is the ID of the source
node generating the IWD. Next hop ID is the next neighbor-
ing node. IWD soil and IWD velocity are the updated param-
eters of IWD on the path for a particular IWD. However, there
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Figure 4: (a) Energy Consumption for transmitting control packets (Joule). (b) Energy consumption for transmitting data packets (Joule).
(c) Energy consumption of the network (Joule).
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exists a condition when an IWD cannot find any nodes that
are visited by other nodes.

The algorithm for the heterogeneous network proceed as
follows. Initially, all the aggregation nodes store the identity
of the BS and broadcast their ID(s) to the network. Each
sensing node stores the aggregation ID along with the infor-
mation of next hop neighbors and the soil value of all the
paths. Initially, all the paths are assigned equal values. Later,
these values are updated as the IWD traverses on that edge.
The edge connecting the node to the BS is assigned a lesser
value of soil so that the additional gain in the velocity can
be achieved. Additionally, lower soil value of an edge repre-
sents lesser number of hop counts, thus attracting more
IWDs on this path. Because of this proposed modification,
the probability of IWD to reach an aggregation node is
higher, when a high node receives a soil update packet, an
update message to all the neighboring nodes is sent and
hence, following this approach, IWD reaches the aggrega-
tion nodes faster. In a way, high node increases the velocity
of the IWD. Thus, the velocity parameters of the neighbor-
ing nodes of the high nodes are evaluated from the follow-
ing:

velIWD = InitVel + av
bv + cv soil k, jð Þ½ �2 : ð7Þ

Additionally, the soil of the edge between the high node
and the aggregation node is updated as follows:

Δsoil k, jð Þ = as

bs + cs HUD a, ið Þ/velIWD
� � : ð8Þ

Here, equation is defined from the node i to the aggrega-
tion node, representing the hop counts from the node i to

the aggregation node a.

Δsoil k, jð Þ = 1 − ρnð Þsoil a, ið Þ − ρn 1 + hdk − hdj

À Á
Δsoil a, ið Þ,

ð9Þ

where ρn is the local soil updating factor for the path con-
necting to the aggregation node. By updating these values
repeatedly, the probability of IWD to reach the aggregation
nodes becomes higher, and hence, the IWD reaches the
aggregation node faster, reducing the delay. By enhancing
the probability of all the neighboring nodes, the soil of the
path is declined notably, thus making IWD reach faster to
the destination. The algorithm starts with the initialization
of static parameters as, bs, cs, and av , bv, cv, and then follows
the steps mentioned below, going through several iterations:

The sensing node generates a control packet named
IWD with initial values of velocity and soil viz. Initvel and
Initsoil.

(1) A neighboring node is selected randomly by calculat-
ing the probability values, which is inversely propor-
tional to the soil of the edges. The probability value
which is inversely proportional to the soil of the edge
is calculated as

PIWD i, jð Þ = soil i, jð Þ
∑k∉vc IWDð Þsoil i, kð Þ , ð10Þ

where vcðIWDÞ is the subset of the nodes, which IWD
should not visit in order to satisfy the application constraints

(2) If the next hop node is a high node, therefore, the
velocity is updated from Equation (7); otherwise, it
is updated from Equation (2)

(3) Similarly, the soil of the edge for high node is
updated from Equation (8); otherwise, it is updated
from Equation (4)

(4) The process continues till the state of complete ter-
mination is reached, which is when the IWD either
reaches an aggregation node or a BS

This IWD algorithm described above can build a data
aggregation tree with aminimum number of hop count in het-
erogeneous setup. Once an aggregation node is found, the
steps mentioned above updates the amount of soil in its neigh-
borhood and hence increases the likelihood of selecting the
best aggregation. Thereby, enhancing the chances of IWD
moving through this aggregation node whenever it reaches
its neighborhood in the next round.

6.1. Assumptions

(1) IWDs will try to find paths to the nearest aggrega-
tion nodes instead of BS

(2) All the aggregation nodes are connected to the BS
directly, i.e., using single-hop
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(3) Each node maintains an information table contain-
ing the details of neighbors and the soil

(4) Sensor nodes are deployed uniformly in the field of
square dimension

(5) Sensor nodes and BS are stationary

(6) The heterogenous nature of WSN is defined in terms
of node energy

(7) BS is supposed to be equipped with a battery source
and hence it is not energy limiting like the other
deployed nodes

7. Results and Discussions

C++-based simulator is used to mimic the state-of-the-art
ant colony optimization (ACO), IWD and the proposed
IIWD. This simulator models’ actual events like as collisions,
carrier sensing, latency, network lifespan, and backoff. For
aggregator nodes, the proposed requirements are consistent
with iPAQ motes since they compute quicker, use less
power, and have a greater sensing and communication range
[64, 65], while the proposed specifications for sensing nodes
are consistent with MICA2 sensor nodes [66, 67]. The per-
formance of a 100-node network randomly spread across a
100 × 100m2 region with single sink is evaluated. The total
number of aggregation nodes picked for a specific simula-
tion cycle ranges from 5 to 30. The data packet is of 250
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Figure 6: (a) Packets received at BS of WIWD vs. IWD. (b) Packets dropped of WIWD vs. IWD. (c) Packets sent to BS of WIWD vs. IWD.
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bytes and the control packet is of 8 bytes, with transmission
frequencies of 100Hz and 10Hz, respectively. Every time the
configuration is executed, 30 random deployments are taken
into account and the mean of the results is calculated. When
simulation starts, random nodes are distributed throughout
the network with sink node at the center position. Once
positioned, nodes exchange messages to begin routing.
Table 2 displays simulation parameters.

Parameters for the proposed IIWD algorithm are pre-
sented in Table 3. The values are taken according to the
parameters provided in [9]. The evaluation metrics are as
follows: total energy consumption (J) and network lifetime
(rounds, which are discussed in the subsequent section.

7.1. Total Energy Consumption: Analysis. Total energy con-
sumption is the sum of the energy spent transmitting control
packets, sending data packets, and the network’s total energy
consumption. The total energy consumption is the sum of
the energy used by all network nodes in a particular round.
Various simulations are run with a variety of source node
counts. The fundamental IWD, the ACO, and the proposed
IIWD algorithm are compared. As shown in Figure 4, the
average energy consumption for sending control packets is
slightly higher than that of ACO and IWD (a). This may
be a result of the increased number of control packets trans-
mitted to refresh the edge soil. As demonstrated in Figure 2,
the average energy consumption for transmitting data
packets through IIWD is slightly less than that of IWD
and ACO Figure 4(b). This is because the number of hops
necessary for data transmission has dropped. In addition, it
can be determined from Figure 4(c) that IIWD’s overall
energy usage is less than that of IWD and ACO since its
routing function provides greater aggregation options. Con-
sequently, the network’s total energy consumption is dra-
matically reduced.

7.2. Network Lifetime. A comparison is made between the
performance of IIWD and ACO and IWD in terms of net-

work lifespan calculated as the time until the first node runs
out of energy as shown in Figure 5. The notion of updating
the velocity of all IWDs along the designated path expedites
the delivery of packets to aggregation nodes, hence extend-
ing their lifespan. IIWD has showed the greatest improve-
ment in network lifespan. This improvement is due to the
algorithm’s suggested method, which minimizes the total
number of data packets transmitted in the network, conse-
quently reducing energy consumption of the nodes. As all
aggregation nodes are directly linked to the BS, the resulting
routing pathways are shorter. The results illustrate the effi-
cacy of the proposed strategy for extending network life.

7.3. Payload. Payload is determined by comparing the actual
number of data packets delivered at the base station as
shown in Figure 6(a) vis-à-vis number of packets supplied
by the source nodes. Typically, payload consists of the actual
data transported over a network for an application. The pri-
mary concern addressed in this paper is that the payload
varies based on the aggregation process used. The effective-
ness of aggregation in WIWD in a heterogeneous environ-
ment is determined using payload parameter. Figure 6(b)
depicts the number of data packets received at the base sta-
tion for varying numbers of rounds. In the WIWD method,
payload, or the total amount of packets delivered over the
network, is around 70 percent fewer than in the IWD algo-
rithm. The fewer data packets sent may be ascribed to the
aggregating procedure. Figure 6(c) provide details of packets
sent to BS Instead of being routed immediately to the base
station, the data packets are passed to the aggregation node,
which aggregates them before sending them to the base sta-
tion. Thus, the total number of rounds remains the same
despite a modest reduction in the amount of data packets
transferred to the base station.

7.4. Number of Alive Nodes. The proposed WIWD algorithm
shows significant improvement in the number of alive nodes
with respect to the total number of nodes. Since the nodes
create paths to the aggregation nodes and send data packets
up to these aggregation nodes, the nodes tend to stay longer
and subsequently improve this performance metric vis-a-vis
IWD. Here, the same logic implies that the incorporation of
high-end nodes and the concept of waterfall in the network
enhance the number of alive nodes in the network. Remark-
ably, the number of alive nodes in the WIWD increases by
almost 40% Figure 7.

8. Conclusion

The suggested optimization model seeks to crystallize the
different aspects that affect the sensor network’s heterogene-
ity. The study draws on prior understanding of efficient
routing algorithms for homogenous networks. In the context
of this study, aggregator nodes insert new packet entries with
regard to time and pop depending on the freshness factor
defined by packet length for each node. Incorporating het-
erogeneity into a network may increase the total energy con-
sumption and network longevity, according to the findings
of this study. This method has been seen to save both the
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residual energy of the nodes and the average energy of the
network. This is evident from the results of the studies con-
ducted to determine the performance of the IIWD. The tech-
nique outperforms prior algorithms due to the fact that the
route selection performed by its routing function offers
superior aggregation alternatives. The threshold of the
nodes’ remaining energy is used to determine which aggre-
gation node is chosen. The findings demonstrate that the
network’s longevity has also been greatly enhanced.

9. Future Scope

The issue which leaves room for further investigation is that
of time synchronization. There lies great scope for future
research while exploring strategies for weak and strong time
synchronization that may be experimented on, to further
streamline the aggregation process with the BS.
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