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ABSTRACT

In machine learning often a tradeoff must be made between
accuracy and intelligibility. More accurate models such as
boosted trees, random forests, and neural nets usually are
not intelligible, but more intelligible models such as logistic
regression, naive-Bayes, and single decision trees often have
significantly worse accuracy. This tradeoff sometimes limits
the accuracy of models that can be applied in mission-critical
applications such as healthcare where being able to under-
stand, validate, edit, and trust a learned model is important.
We present two case studies where high-performance gener-
alized additive models with pairwise interactions (GA2Ms)
are applied to real healthcare problems yielding intelligible
models with state-of-the-art accuracy. In the pneumonia
risk prediction case study, the intelligible model uncovers
surprising patterns in the data that previously had pre-
vented complex learned models from being fielded in this
domain, but because it is intelligible and modular allows
these patterns to be recognized and removed. In the 30-
day hospital readmission case study, we show that the same
methods scale to large datasets containing hundreds of thou-
sands of patients and thousands of attributes while remain-
ing intelligible and providing accuracy comparable to the
best (unintelligible) machine learning methods.

Categories and Subject Descriptors

I.2.6 [Computing Methodologies]: Learning—Induction

Keywords

intelligibility; classification; interaction detection; additive
models; logistic regression; healthcare; risk prediction

1. MOTIVATION
In the mid 90’s, a large multi-institutional project was

funded by Cost-Effective HealthCare (CEHC) to evaluate
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the application of machine learning to important problems in
healthcare such as predicting pneumonia risk. In the study,
the goal was to predict the probability of death (POD) for
patients with pneumonia so that high-risk patients could be
admitted to the hospital while low-risk patients were treated
as outpatients. In the study [3, 2], the most accurate mod-
els that could be trained were multitask neural nets.1 On
one dataset the neural nets outperformed traditional meth-
ods such as logistic regression by wide margin (the neural
net had AUC=0.86 compared to 0.77 for logistic regression),
and on the other dataset used in this paper outperformed
logistic regression by about 0.02 (see Table 2). Although
the neural nets were the most accurate models, after careful
consideration they were considered too risky for use on real
patients and logistic resgression was used instead. Why?

One of the methods being evaluated was rule-based learn-
ing [1]. Although models based on rules were not as accurate
as the neural net models, they were intelligible, i.e., inter-
pretable by humans. On one of the pneumonia datasets,
the rule-based system learned the rule “HasAsthama(x) ⇒
LowerRisk(x)”, i.e., that patients with pneumonia who have
a history of asthma have lower risk of dying from pneumo-
nia than the general population. Needless to say, this rule
is counterintuitive. But it reflected a true pattern in the
training data: patients with a history of asthma who pre-
sented with pneumonia usually were admitted not only to
the hospital but directly to the ICU (Intensive Care Unit).
The good news is that the aggressive care received by asth-
matic pneumonia patients was so effective that it lowered
their risk of dying from pneumonia compared to the general
population. The bad news is that because the prognosis for
these patients is better than average, models trained on the
data incorrectly learn that asthma lowers risk, when in fact
asthmatics have much higher risk (if not hospitalized).

One of the goals of the study was to perform a clinical trial
to determine if machine learning could be used to predict
risk prior to hospitalization so that a more informed decision
about hospitalization could to be made. The ultimate goal
was to reduce healthcare cost by reducing hospital admis-
sions, while maintaining (or even improving) outcomes by
more accurately identifying patients that need hospitaliza-
tion. As the most accurate models, neural nets were a strong
candidate for clinical trial. Deploying neural net models that
could not be understood, however, was deemed too risky —

1SVMs and boosted trees were not in common use yet, and
Random Forests had not yet been invented.
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if the rule-based system had learned that asthma lowers risk,
certainly the neural nets had learned it, too. The rule-based
system was intelligible and modular, making it easy to recog-
nize and remove dangerous rules like the asthma rule. While
there are methods for repairing the neural nets so they do
not incorrectly predict that asthmatics are at lower risk and
thus less likely to need hospitalization, e.g., re-train without
asthmatics in the population, remove the asthma feature,
modify the targets for asthmatics to “1” in the data to re-
flect the care they received (unfortunately confounding care
with death), the decision was made to not use the neural nets
not because the asthma problem could not be solved, but be-
cause the lack of intelligibility made it difficult to know what
other problems might also need fixing. Because the neural
nets were more accurate than the rules, it was possible that
the neural nets had learned other patterns that could put
some kinds of patients at risk if used in a clinical trial. For
example, perhaps pregnant women with pneumonia also re-
ceive aggressive treatment that lowers their risk compared
to the general population. The neural net might learn that
pregnancy lowers risk, and thus recommend not admitting
pregnant women, thus putting them at increased risk. In an
effort to “do no harm”, the decision was made to go forward
only with models that were intelligible such as logistic regres-
sion, even if they had lower AUC than other unintelligible
models. The logistic regression model also learned that hav-
ing asthma lowered risk, but this could easily be corrected
by changing the weight on the asthma feature from negative
to positive (or to zero).

Jumping two decades forward to the present, we now
have a number of new learning methods that are very ac-
curate, but unfortunately also relatively unintelligible such
as boosted trees, random forests, bagged trees, kernelized-
SVMs, neural nets, deep neural nets, and ensembles of these
methods. Applying any of these methods to mission-critical
problems such as healthcare remains problematic, in part
because usually it is not ethical to modify (or randomize)
the care delivered to patients to collect data sets that will
not suffer from the kinds of bias described above. Learning
must be done with the data that is available, not the data
one would want. But it is critical that models trained on
real-world data be validated prior to use lest some patients
be put at risk, which makes using the most accurate learning
methods challenging.

In this paper we describe the application of a learning
method based on high-performance generalized additive mod-
els [5, 6] to the pneumonia problem described above, and to
a modern, much larger problem predicting 30-day hospital
readmission. On both of these problems our GA2M models
yield state-of-the-art accuracy while remaining intelligible,
modular, and editable. We believe this class of models repre-
sents a significant step forward in training models with high
accuracy that are also intelligible. The main contributions of
this paper are that it: shows that GA2Ms yield competitive
accuracy on real problems; demonstrates that the learned
models are intelligible; demonstrates that the predictions
made by the model for individual cases (patients) also are
intelligible, and demonstrates how, because the models are
modular, they can be edited by experts.

The remainder of the paper is organized as follows. Sec-
tion 2 provides a brief introduction to GAM and GA2M.
Sections 3 and 4 present our case studies of training intelli-
gible GA2M model on the pneumonia and the 30-day read-

mission data, respectively. Section 5 discusses a wide range
of issues that arise when learning with intelligible models
and our general lessons for the research community.

2. INTELLIGIBLE MODELS
Let D = {(xi, yi)}

N
1 denote a training dataset of size N ,

where xi = (xi1, ..., xip) is a feature vector with p features
and yi is the target (response). We use xj to denote the jth
variable in the feature space.

Generalized additive models (GAMs) are the gold stan-
dard for intelligibility when low-dimensional terms are con-
sidered [4, 5, 6]. Standard GAMs have the form

g(E[y]) = β0 +
∑

fj(xj), (1)

where g is the link function and for each term fj , E[fj ] = 0.
Generalized linear models (GLMs), such as logistic regres-
sion, are a special form of GAMs where each fj is restricted
to be linear. Since the contribution of a single feature to the
final prediction can be easily understood by examining fj ,
such models are considered intelligible.

To improve accuracy, pairwise interactions can be added
to standard GAMs, leading to a model called GA2Ms [6]:

g(E[y]) = β0 +
∑

j

fj(xj) +
∑

i 6=j

fij(xi, xj). (2)

Note that pairwise interactions are intelligible because they
can be visualized as a heat map. GA2M builds the best
GAM first and then detects and ranks all possible pairs of
interactions in the residuals. The top k pairs are then in-
cluded in the model (k is determined by cross-validation).

There are various methods to train GAMs and GA2Ms.
Each component can be represented using splines, leading to
an optimization problem which balances the smoothness of
splines and empirical error [7]. Other representations include
regression trees on a single or a pair of features. Empirical
study showed gradient boosting with bagging of shallow re-
gression trees yields as components very good accuracy [5].
Interested readers are referred to [5, 6] for details.2

3. CASE STUDY: PNEUMONIA RISK
In this case study we use one of the pneumonia datasets

discussed earlier in the motivation [3]. This dataset has
14,199 pneumonia patients. To facilitate comparison with
prior work, we use the same train and test set folds from the
earlier study: the train set contains 9847 patients and the
test set has 4352 patients (a 70:30 train:test split). There
are 46 features describing each patient. These range from
history features such as age and gender, to simple measure-
ments taken at a routine physical such as heart rate, blood
pressure, and respiration rate, to lab tests such as White
Blood Cell count (WBC) and Blood Urea Nitrogen (BUN),
to features read from a chest x-ray such as lung collapse or
pleural effusion. See Table 1 for a complete list.

As discussed earlier, the goal is to predict probability of
death (POD) so that patients at high risk can be admit-
ted to the hospital, while patients at low risk are treated as
outpatients.3 10.86% of the patients in the dataset (1542 pa-
tients) died from pneumonia. The GAM/GA2M models are
2Code is available at https://github.com/yinlou/mltk.
3Hospitals are dangerous places, particularly for patients
with impaired immune systems. Treating low-risk patients
as outpatients not only saves money, but is actually safer.
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Patient-history findings

chronic lung disease - age C
re-admission to hospital - gender -
admitted through ER - diabetes mellitus -
admitted from nursing home - asthma -
congestive heart failure - cancer -
ischemic heart disease - number of diseases C
cerebrovascular disease - history of seizures -
chronic liver disease - renal failure -
history of chest pain -

Physical examination findings

diastolic blood pressure C wheezing -
gastrointestinal bleeding - stridor -
respiration rate C heart murmur -
altered mental status - temperature C
heart rate C

Laboratory findings

liver function tests - BUN level C
glucose level C creatinine level C
potassium level C albumin level C
hematocrit C WBC count C
percentage bands C pH C
pO2 C pCO2 C
sodium level C

Chest X-ray findings

positive chest x-ray - lung infiltrate -
pleural effusion - pneumothorax -
cavitation/empyema - chest mass -
lobe or lung collapse -

Table 1: Pneumonia attributes, grouped by
type. Continuous features that will be shaped by
GAM/GA2M models are marked with a “C”.

trained on this data using 100 rounds of bagging. Bagging is
done to reduce overfitting, and to provide pseudo-confidence
intervals for the graphs in the intelligible model.

The AUC area for different models trained on this data are
shown in Table 2. On this dataset logistic regression achieves
AUC = 0.843, Random Forests achieves 0.846, LogitBoost
0.849, GAM 0.854, and GA2M is best with AUC = 0.857.4

The difference in AUC between the methods is not huge (less
than 0.02), but it is reassuring to see the GAM/GA2Mmeth-
ods achieve the best accuracy on this problem. The im-
portant question is if the GAM/GA2M models are able to
achieve this accuracy while remaining intelligible?

Figure 1 shows 28 of the 56 terms in the GA2M model
for pneumonia. Unfortunately, the compact representation
necessary for the paper reduces intelligibility. For small
models like this with fewer than 100 terms we would pre-
fer to present all terms, possibly sorted by their importance
to the model. In the actual deployment, for each term we
would also show a histogram of data density for different
values of the feature, descriptive statistics about the fea-
ture, several different measures of term importance in the
model, and links to online resources that provide informa-
tion about the term, e.g., links to a hospital database, or
Wikipedia or WebMD pages that describe features, how they
are measured, what the normal ranges are, and what abnor-
mal values indicate. Because of space limitations we have
suppressed all of this auxiliary information (including some
axis labels!) and just present shape plots for some of the
more interesting terms. Presenting the terms in multicol-
umn format without the auxiliary information further hin-
ders intelligibility — the models are more readable when

4The GA2M model uses 10 of the 46∗45/2 = 1035 possible
pairwise interaction terms (k chosen by cross-validation).

Model Pneumonia Readmission

Logistic Regression 0.8432 0.7523

GAM 0.8542 0.7795
GA2M 0.8576 0.7833

Random Forests 0.8460 0.7671
LogitBoost 0.8493 0.7835

Table 2: AUC for different learning methods on the
pneumonia and 30-day readmission tasks.

presented in sorted order as a scrollable list of graphs plus
auxiliary information.

The 1st term in the model is for age. Age (in years) on the
x-axis ranges from 18-106 years old (the pneumonia dataset
contains only adults). The vertical axis is the risk score
predicted by the model for patients as a function of age. The
risk score for this term varies from -0.25 for patients with age
less than 50, to a high of about 0.35 for patients age 85 and
above. The green errorbars are pseudo-errorbars of the risk
score predicted for each age: each errorbar is ±1 standard
deviation of the variation in the risk score measured by 100
rounds of bagging. We use ±1 standard deviation instead
of the standard error of the mean because it is well known
that bagging underestimates the variance of predictions from
complex models. We believe it is safer to be conservative
than to present unrealistically narrow confidence intervals.
(See the top of Figure 3(a) for an enlarged version of this
graph, and the discussion in Section 5.5 for more detailed
analysis of the age feature.)

The 2nd term in the model, asthma, is the one that caused
trouble in the CEHC study in the mid-90’s and prevented
clinical trials with the very accurate neural net model. The
GA2M model has found the same pattern discovered back
then: that having asthma lowers the risk of dying from pneu-
monia. As with the logistic regression and rule-based mod-
els trained then, but unlike with the neural net models, this
term is easy to recognize and fix in the GA2M model. We
can “repair” the model by eliminating this term (effectively
setting the weight on this graph to zero), or by using hu-
man expertise to redraw the graph so that the risk score
for asthma=1 is positive, not negative. Because asthma is
boolean, it is not necessary to use a graph, and we could
present a weight and offset (RiskScore = w*hasAsthma +
b) instead. We prefer to use graphs for boolean terms like
asthma for three reasons: 1) it is necessary to show graphs
for features with multiple or continuous values such as age
as well as for interactions between features, and it is awk-
ward for the user to jump from terms presented as graphs to
terms presented as equations; 2) we find graphs provide an
intuitive display of risk where up implies higher risk, down
implies lower risk, and the magnitude of the change in risk is
captured by the distance moved; and 3) some users are not
as comfortable with numbers as they are with graphs, and
it is important that the model is intelligible to real users,
whatever their background.

The 3rd term in the model is BUN (Blood Urea Nitro-
gen) level. Most patients have BUN=0 because, as in many
medical datasets, if the variable is not measured or assumed
normal it is coded as 0. The model says risk is reduced
for patients where BUN was not measured, suggesting that
this test typically is not ordered for patients who appear
to be healthy. BUN levels below 30 appear to be low risk,
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Figure 1: 28 (of 56 total) components for the GA2M model trained on the pneumonia data. The line graphs
are terms that contain single features. The heat maps at the bottom are pairwise interaction terms. The
vertical scale on all line graphs are the same to facilitate rapid scanning of the relative contribution of each
term. The green errorbars are pseudo-errorbars from bagging. Boolean features such as asthma are presented
as graphs because this aids interpretation among other features that must be presented as graphs.
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while levels from 50-200 indicate higher risk. This is con-
sistent with medical knowledge which suggests that normal,
healthy BUN is 10-20, and that elevated levels above 30 may
indicate kidney damage, congestive heart failure, or bleeding
in the gastrintestinal tract.

The cancer term in the model is clear: having cancer sig-
nificantly increases the risk of dying from pneumonia, prob-
ably because it explains why the patient has pneumonia (ei-
ther from lung cancer, from immuno suppressive drugs used
to treat cancer, or from hospitalization associated with can-
cer) and/or because it explains the stage of cancer (terminal
stages of cancer frequently lead to failing health and being
bed-ridden, both of which can lead to pneumonia).

The next term in the model, chronic lung disease, and the
history of chest pain term that occurs later, are interesting
because the model suggests that chronic lung disease and a
history of chest pain both decrease POD. We suspect that
this may be a similar problem as asthma: patients with
lung disease and chest pain may receive care earlier, and
may receive more aggressive care. If further investigation
suggests this to be the case, both terms would be removed
from the model, or edited, similar to the asthma term.

The # of diseases (# of comorbid conditions) is a general
measure of illness. The graph suggests that having no dis-
eases other than pneumonia lowers risk, that risk increases
slowly as the number of comorbid conditions increases from
1-3, then is flat or decreases until it rises dramatically above
6, but the errorbars are large enough to be consistent with
risk being somewhat flat for 3-8 comorbidities.

Heart rate is an unusual looking graph. 91% patients
have rate=0, indicating it was not measured or assumed
normal. Risk is high for very low heart rates (10-30), and
for very high rates (125-200), but the model does not ap-
pear to discriminate between patients with heart rates 40-
120. On further inspection, there are no patients with heart
rate recorded between 40-120! Apparently all patients in
this range were considered “normal” and coded as 0. (Nor-
mal heart rate in adults is about 60-100, 40-60 for athletes,
and somewhat higher than 100 for patients with “White
Coat” Syndrome). The unusual shape of the graph for heart
rate has lead us to discover a surprising aspect of the data,
though it is not clear what risk we would want to model to
predict for rates between 40-120 where there is no data?

The respiration rate term is very clear: rate=0 (missing)
or 20-28 is low risk, and risk rises rapidly as breathing rate
climbs from 28-60. Normal respiration rate for adults is
16-20. In the body temperature term, temps from 36◦C-
40◦C are low risk (normal is 37◦C), risk is somewhat elevated
at low body temps (32◦C-36◦C), and greatly elevated for
temps above 40.5◦C (fever this high often is a sign of serious
infection). Having a fever above 41.5◦C increases the risk
score by a full point or more.5 Diastolic blood pressure also
can dramatically increase risk: low diastolic in the range 20-
50 (normal is 60-80) increase risk as much as a full point. %
bands is also a strong term (bands in a blood test are a sign
of bacterial infection—bacterial pneumonia is more deadly
than viral pneumonia): bands above 40% indicate elevated
risk, with bands above 80% indicating very elevated risk.

Before leaving pneumonia, let us examine one of the inter-
action terms. In the age vs. cancer term, we see that risk is
highest for the youngest patients (probably cancers acquired

5An increase in risk of 1 point more than doubles the odds
of dying. See Section 5.1.

in childhood but not cured when the patient reaches age 18),
and declines for patients who acquire cancer later in life, but
for patients without cancer risk rises as expected with age.
This is a classic interaction effect that likely results from the
difference between childhood and adult cancers.

Space prevents us from discussing each term individually,
or from discussing terms in great detail. See Section 5.5 for a
deeper dive on the age term. To summarize this section, the
GA2M model discovered the same asthma pattern that cre-
ated problems in the CEHC study, provides a simple mech-
anism to correct this problem, and uncovered other similar
problems (chronic lung disease and history of chest pain)
that were not recognized in the CEHC study but which war-
rant further investigation and probably repair. As hoped,
the GA2M model is accurate, intelligible, and repairable.

4. CASE STUDY: 30-DAY READMISSION
In this section we apply GA2M to a modern and much

larger dataset for 30-day hospital readmission. The data
comes from a collaboration with a large hospital. There
are 195,901 patients in the train set (2011-2012), 100,823
patients in the test set (2013), and 3,956 features for each
patient. Features include lab test results, summaries of doc-
tor notes, and details of previous hospitalizations. In this
problem, the goal is to predict which patients are likely to
be readmitted to the hospital within 30 days after being re-
leased from the hospital. All patients in this dataset have
already been hospitalized at least once, and the goal is to
predict if they will need to return to the hospital unusually
quickly (within 30 days). Hospitals with abnormally high
30-day readmission rates are penalized financially because
a high rate suggests the hospital did not provide adequate
care on the earlier admission, or may have released the pa-
tient prematurely, or did not provide adequate instructions
to the patient when they were released, or did not perform
adequate follow-up after release. In the data 8.91% of pa-
tients are readmitted within 30 days. For this problem we
use 10 iterations of bagging. Training the 10 models takes
2-3 days on a small cluster of 10 general purpose computers.
Table 2 shows the AUC for different models on this data.

In Section 3 we examined the GA2M model for the pneu-
monia problem. Unfortunately, the readmission dataset con-
tains almost 100 times as many features. Instead of trying
to examine the full model, we instead examine the predic-
tions made by the model for three patients. Two of these
patients have very high predicted probability of readmission
(p=0.9326 and p=0.9264), and one of the patients has a typ-
ical readmission probability (p=0.0873). This allows us to
demonstrate that the models are intelligible not only taken
as a whole, but that the predictions GA2M models make for
individual patients also are intelligible.

In Figure 2, each of the three columns is a patient, and
each row is a term in the model. Terms are sorted for each
patient (in each column) by the risk they contribute to that
patient for 30-day readmission. Space limits us to showing
the top 6 terms for each patient that contributed most to
risk. Patient #1 has a very high probability of readmission
within 30 days: p=0.9326. The four terms that contribute
most to their high probability of readmission are: their total
number of visits to the hospital is 40, they have been an in-
patient in the hospital 19 times in the last 12 months, they
have been in the hospital 10 times in the last 6 months, and
4 times in the last 3 months. This is not unusual: the most
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Figure 2: Top 6 terms (of 4456) in the GA2M for three patients. The patients on the left have high risk of
readmission. The patient on the right has moderate risk. Terms are sorted by their contribution to risk.
Blue lines highlight feature values and corresponding risk scores. Six terms cannot tell the full story for these
patients, but even these few terms provide insight into the patients and their risk of readmission.
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predictive terms in the 30-day readmission model measure
the number of visits patients have made in the last 12 month,
6 months, and 3 months to the ER, as an outpatient, and as
an inpatient. As we see with this patient, a large number of
recent inpatient visits (admissions) is associated with a high
probability of readmission.6 The next two terms suggest
why patient #1 may have been in the hospital often: this
patient has received large doses of amoxicillin (an antibiotic
used to treat infections like strep and pneumonia) and ver-
apamil (a treatment for hypertension and angina), i.e., they
have an ongoing infection that may not be responding to
antibiotics, and also probably have heart disease. The main
reason this patient is predicted to be likely to return is be-
cause they have been in the hospital often in the last year,
but the first few terms in the model also give us a hint of
the medical conditions that put them at elevated risk.

The terms that are most important for patient #2 (also
high risk: p=0.9364) are different from the terms that were
important for patient #1. The most important 6 terms
are preparations that the patient received during their last
visit: prednisone is a corticosteroid used as an imummo-
suppressant, etoposide in an anticancer drug, mesna is a
cancer chemotherapy drug, doxorubicin is a treatment for
blood and skin cancers, dexamethosone is another immuno-
suppressant steroid, and ondansetron is a drug used to treat
nausea from chemotherapy. Patient #2 has received doses
of each of these preparations that suggest cancer may not be
responding well to treatment and that they are receiving ag-
gressive chemotherapy. The contribution to risk from these
6 terms alone is greater than +1.5, i.e., these 6 terms alone
triple the odds of their being readmitted within 30-days.

Patient #3 has moderate risk: p=0.0873 (baseline rate
is 8.91%). This 6 terms that increase this patient’s read-
mission risk the most are: 1) the patient has endrometrial
carcinoma (a cancer common in post-menopausal women
that often can be treated effectively by hysterectomy with-
out radiation- or chemo-therapy); 2) a benign abdominal
tumor (malignant adenomatous neplasm =3); 3) a relaxant
typically prescribed to calm patients or reduce spasms; 4) a
fairly typical (i.e. low risk) hematocrit test result; 5) a pre-
cancerous non-invasive lesion in the breast; and 6) a small
number of outpatient visits suggesting they have been re-
ceiving treatment as an outpatient without needing to be
hospitalized (the inpatient and ER risk factors for this pa-
tient are all low). Patient #3 is a typical patient as far as 30-
day readmission is considered. They are post-menopausal,
have cancers that respond well to treatment if caught early,
the treatments themselves are relatively low-risk, and they
have not needed unusual medications or to be hospitalized
often in the last year.

The patients above provide a small glimpse of what the
GA2M model learned from a 200,000 patient train set with
4,000 features: we have only been able to examine three
patients, and have only looked at the top 6 terms for each
of these patients. To a medical expert, the sorted terms

6A large number of visits to the ER also is associated with
increased chance of readmission, but outpatient visits are
more interesting: a small number of recent outpatient visits
increases risk of readmission, but a very large number of
outpatient visits (100-200 in the last year) indicates lower
risk of readmission because the patient is receiving primary
care as an outpatient—many of these patients are dialysis
patients who visit the hospital 1-2 times per week.

RiskScore Probability RiskScore Probability

-5.0 0.0067 +5.0 0.9933
-4.0 0.0180 +4.0 0.9820
-3.0 0.0474 +3.0 0.9526
-2.0 0.1192 +2.0 0.8808
-1.0 0.2689 +1.0 0.7311
0.0 0.5000

Table 3: Risk scores (log odds) and the correspond-
ing probabilities.

for each patient present a comprehensive picture of the risk
factors that contribute to the probability of readmission pre-
dicted for a patient. The model is not causal — it does not
say that because the patient has X, they received treatments
A, B, and C, and we can see from the amount of A, B, and
C they received that they are not responding well. Instead,
it learns that high doses of A, B, and C are associated with
high risk or readmission, and it is up to the human experts
to infer the underlying causal reasons for the feature values
and the risk they predict. Nevertheless, compared to an un-
intelligible model such as an ensemble of 1000 boosted trees
or a complex neural net, the model is fairly transparent, and
the predictions it makes can be fully “understood”, both at
the per-patient level, and at the macro-model level.

5. DISCUSSION

5.1 How To Interpret Risk Scores
Each term in the intelligible model returns a risk score

(log odds) that is added to the patient’s aggregate predicted
risk. Terms with risk scores above zero increase risk; terms
with scores below zero decrease risk. The term risk scores
are added to a baseline risk, and the sum converted to a
probability. Both penumonia and 30-day readmission have
baseline rates near 0.1, which corresponds to TotalRiskScore
= -2.197. So patients with aggregate risk scores above -2.2
have higher than average risk, and patients with total risk
scores below -2.2 have lower than average risk scores. A pa-
tient with TotalRiskScore = 0 (including the baseline offset)
has quite high risk: p = 1/(1+exp(−1∗TotalRiskSccore) =
1/(1 + exp(0)) = 0.5. Table 3 shows a sample of total risk
scores and the corresponding probabilities.

5.2 Modularity
In the intelligible models discussed in this paper, the av-

erage risk score for each graph (i.e., each term: each feature
or pair of features) averaged across the training set is set
to zero by subtracting the mean score. A single bias term
is then added to the model so that the average predicted
probability across all patients equals the observed baseline
rate. This is done to make models identifiable and modular.
Because of this property, each graph can be removed from
the model (zeroed out) without introducing bias to the pre-
dictions. If all terms were removed from the model, the only
remaining term would be the bias term, and the probability
predicted for all patients would be the observed baseline rate
in the training set. Adding terms (graphs) to the model in-
creases the model’s discriminativeness without altering the
prior. This is important because it increases modularity and
makes it easier to interpret the contribution of each term:
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negative scores decrease risk, and positive scores increase
risk compared to the baseline risk.

5.3 Sorting Terms by Importance
If a model contains a modest number of terms (e.g., less

than 50), it is best to show terms in the model to experts
in the order they are most familiar with. Because experts
are often used to seeing features in logical groupings, inter-
pretation is aided by preserving these groupings when the
model is presented. However, when the number of terms
grows large, it becomes infeasible for experts to examine all
terms carefully. Term importance often follows a power-law
distribution, with a few terms being very important, a mod-
est number of terms being somewhat important, and many
terms being of little importance. When this is the case, in-
telligibility can be improved by sorting terms by a measure
of importance such as the drop in AUC when the term is
removed, or the skill of the term measured in isolation, or
the maximum contribution (positive or negative) that the
term can make for any patient. No one measure is correct
or best, and we find that a sort that reflects a combination
of these metrics seems to work well.

It is much easier to sort terms by importance when making
prediction for a single patient: because each term yields a
single risk score for each patient at the point where that
patient’s feature value lies on the term graph, it is possible to
sort terms by how much they increase or decrease risk for the
patient. This provides a well-defined ordering of the terms
for a patient from terms that increase risk most to terms that
decrease risk most. Often this ordering quickly identifies
the key patient characteristics that best explain the model’s
prediction, and which help experts quickly understand the
patient’s condition. This is the method we used to describe
the predictions made by the 30-day readmission model —
although that model contains more than 4000 terms, the
number of terms that are relevant for each patient are, in
practice, often quite small (e.g., less than 100).

5.4 Feature Shaping vs. Expert Discretization
Significant effort was made in the CEHC pneumonia study

to train accurate models with logistic regression and other
methods that could not handle continuous attributes. Med-
ical experts carefully discretized each continuous attribute
into clinically meaningful ranges used to define boolean vari-
ables. For example, the intervals for age were 18-39, 40-54,
55-63, 64-68, 69-72, 73-75, 76-79, 80-83, 84-88, and 89+. We
used these expert-defined intervals for the logistic regression
model reported in Table 2. We also trained a GA2M model
with these discretized features, and observed a drop in AUC
of about 0.01 on the test set compared to the GA2M trained
with the continuous features, suggesting that the GA2Mmodel
gains some of its accuracy by shaping continuous features
more accurately than expert discretization.

5.5 Deep Dive: Risk as a Function of Age
In this section we drill down on how the feature “Age”

is shaped by the pneumonia and 30-day readmission mod-
els. Age is present in both data sets and measured in years.
But the relevance of age to the two prediction tasks is very
different. In pneumonia, age is a critical factor that can ex-
plain why a patient has acquired pneumonia, and what the
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Figure 3: Risk as a function of Age for the Pneumo-
nia and 30-day Readmission problems.

outcome is likely to be.7 In 30-day all-cause readmission,

7Pneumonia is sometimes called “The Old Man’s Best
Friend”, not because pneumonia is good for elderly patients,
but because it often results in rapid death for patients that
otherwise could linger for months or years before their pri-
mary illness causes death.
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Figure 4: Selected splines in pneumonia dataset.

however, age is just one of thousands of factors that affect
a patient’s health and course of illness. Moreover, because
the prediction task is hospital readmission, not probability
of death, age represents a weaker, more generic characteriza-
tion of patient health and their likeliness to need additional
hospitalization within 30 days. If the patient is elderly, but
just had a successful hip replacement or kidney stone re-
moved, they are not likely to need to return to the hospital
within 30 days for this condition. Similarly, an elderly pa-
tient who was admitted to the hospital because of pneumo-
nia, but who is now being released because they responded
to treatment, is unlikely to need further care for pneumonia
within 30 days if they take proper medications. All-cause
readmission is very different from probability of death for a
specific condition such as pneumonia.

Figure 3(a) shows the risk profile for age in the pneumo-
nia model, and the distribution of age in the pneumonia
data. The majority of pneumonia patients are age 60-90.
Qualitatively, the risk of dying from pneumonia is low and
constant from age 18-50, rises slowly from age 50-66, then
rises quickly from age 66-90, and then levels off at very high
risk above age 90. The low-risk region to the left of age 50 is
remarkably flat, suggesting that the underlying trees rarely
if ever found it useful to split this region into subregions.
Note that the risk score for this region is -0.27, suggesting
that being young significantly reduces the risk of dying from
pneumonia. But risk slowly increases as age increases above
50, though the contribution to risk does not become positive
until about 70 years. Beyond 70 years old, the contribution
to risk rises rapidly from 0.0 at 70 to +0.20 at age 82 and
+0.35 at age 86. According to the model, the increase in
risk of going from 70 to 86 is larger than the decrease is risk
of going from 70 down to 50 or less.

Beyond the risk vs. age profile described above, there are
intriguing details in the graph. 1) There is a small jump
in risk at age 67, and again at age 86. The error bars are
reasonably tight around age 65-70, suggesting that the jump
in risk at 67 may be real. One possible explanation for this
is that in a dataset from the 90’s, many patients would have
retired at around age 65, and that this may yield differ-
ences in activity levels, health insurance, and willingness to
get access healthcare early enough to improve outcomes —
pneumonia responds well to treatment with antibiotics, but
can be life threatening if not treated. The 2nd jump in risk
around age 86 is harder to explain. It may be that practi-
tioners, either consciously or subconsciously, treat patients

older than 85 differently, and that this ultimately increases
their POD. Or the jump at 86 may be an artifact of the
model — the error bars at age 86 and above are larger. One
approach to investigating this issue further would be to train
on another sample sample of data (or on different subsam-
ples) to see if the rise at age 86 persists.8 2) There is an
apparent drop in risk above age 100. We suspect that this
drop probably is not real and may be due to mild overfit-
ting — there are very few patients age 95 and older, and the
error bars from age 90 to 106 are large and consistent with
risk being constant in this region.9 3) Surprisingly, there is
no evidence that risk, although very high, increases above
age 85. Either medical treatments are equally effective for
patients older than 85, or other medical conditions are more
likely to be responsible for death at this age than pneumo-
nia, or risk does increase above 85 and the model has failed
to learn it.

Figure 3(b) shows the age term and density for 30-day
readmission. One of the key differences between the pneu-
monia and 30-day readmission datasets is that pneumonia
dataset contains only adult patients age 18 and older, but
the readmission dataset contains patients of all age, includ-
ing newborn infants. The importance of age to 30-day read-
mission is very different. Age has little effect on readmission
between age 2 and 50, risk slowly increases from age 50 to 80,
and then increases a little more above age 80. The largest
increase in score is +0.03 at age 90 and above. There are
many reasons why age is less important for readmission than
for pneumonia: most patients independent of age would not
be released if the hospital thought they were likely to need
to be readmitted in less than a month, in this dataset there
are thousands of other more specific variables that can bet-
ter explain variance in the risk of readmission (the model
is more illness specific) than age, and some patients who
are very elderly will die at home (either unexpectedly or by
choice) and thus will not be readmitted.

8It is only because the model is so intelligible that we are
able to recognize and question such fine detail in the risk vs.
age profile. We assume that similar jumps in predicted risk
occur in other accurate models such as boosted trees as well,
but because those models are less intelligible the jumps are
not recognized or investigated.
9Or it might be due to successful agers, a rare but geneti-
cally identifiable class of people with traits that better en-
able them to survive into old age
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An interesting feature of the model for 30-day readmis-
sion is highlighted in Figure 3(c) where the x axis has been
expanded to show age 0-2. In this dataset newborn infants
are born into the hospital, and thus will be treated as read-
mitted if they need to be hospitalized within 30 days after
going home. In part because newborns would not be re-
leased if they were at risk, the risk score for newborns age
0-2 months is -0.04—this is a larger negative risk score than
the increase in risk for elderly patients. This suggests that
most newborns tend to be healthy when they are released
from the hospital and are less likely to need to be readmitted
within 30 days. But this reduction in risk from being new-
born diminishes after 2-3 months, and the model suggests
that infants age 3-15 months have slightly higher positive
risk of being readmitted to the hospital. Thus infants age 3-
15 months have higher risk of readmission than infants that
are younger or older, and it is not until age 45 that the risk
of readmission rises to this level again.

5.6 Shaping with Splines
Generalized additive models are often fit with splines [7].

Splines allow GAMs to be trained with careful control over
regularization and provide more principled error bars. Un-
fortunately, the spline methods tend to over regularize, yield
less accuracy than GA2M models, and yield risk profiles that
sometimes miss detail discovered by GA2Mmodels. Figure 4
shows three terms from a spline GAM model trained on the
pneumonia data. The 1st term is age, the 2nd is pH, and the
3rd is temperature. Although the splines capture the basic
trends (e.g., risk increases with age, pH risk is least around
7.6, and fever risk rises above 40◦C), the splines miss detail
learned by GA2M. For example, the GA2M model for age
is much more nuanced, and the spline model may not prop-
erly model temperature in the normal range 36◦C-38◦C. The
spline GAM model has accuracy closer to logistic regression
than GA2M, so the extra detail learned by GA2M increases
accuracy and probably reflects genuine structure.

5.7 Correlation Does Not Imply Causation
Because the models in this paper are intelligible, it is

tempting to interpret them causally. Although the models
accurately explain the predictions they make, they are still
based on correlation. If features were added to or subtracted
and the model retrained, the graphs for some terms that had
remained in the model would change because of correlation
with the features added or subtracted. Although details of
some of the shape plots are suggestive (e.g., does pneumonia
risk truly jump as age increases above 65, and again above
85?), it is not (yet) clear if some details like this are due to a)
overfitting; b) correlation with other variables; c) interaction
with other variables; d) correlation or interaction with un-
measured variables; or e) due to true underlying phenomena
such as retirement and change in insurance provider.

Perhaps the strongest statement we can make right now is
that the models are intelligible enough to provide a window
into the data and prediction problem that is missing with
many other learning methods, and that this window allows
questions to be raised that will require investigation and
further data analysis to answer. In future versions of these
models we hope to automate some of these analyses so that
it is clearer what features in the intelligible model are “real”
or due to random factors such as overfitting and spurious

correlation. Adding causal analysis to the models would be
tremendously useful, but is, of course, difficult.

6. CONCLUSIONS
We present two case studies on real medical data where

GA2Ms achieve state-of-the-art accuracy while remaining in-
telligible. On the pneumonia case study the GA2M model
learns patterns that previously prevented complex machine
learning models from being deployed, but because GA2M is
intelligible and modular it is possible to edit the model to re-
duce deployment risk. On the larger, more complex 30-day
hospital readmission task the GA2M model achieves excel-
lent accuracy while yielding a manageable, surprisingly intel-
ligible model despite incorporating over 4000 terms. Using
this problem we demonstrate how GA2Ms can be used to
explain the predictions the model makes for individual pa-
tients in a concise way that places focus on the most impor-
tant/relevant terms for each patient. We believe GA2Ms rep-
resent a significant step forward in the tradeoff between
model accuracy and intelligibility that should make it easier
to deploy high-accuracy learned models in applications such
as healthcare where model verification and debuggability are
as important as accuracy.
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