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Abstract. The influence of air pollutants, especially aerosols,

on regional and global climate has been widely investigated,

but only a very limited number of studies report their im-

pacts on everyday weather. In this work, we present for the

first time direct (observational) evidence of a clear effect of

how a mixed atmospheric pollution changes the weather with

a substantial modification in the air temperature and rainfall.

By using comprehensive measurements in Nanjing, China,

we found that mixed agricultural burning plumes with fossil

fuel combustion pollution resulted in a decrease in the solar

radiation intensity by more than 70 %, a decrease in the sen-

sible heat by more than 85 %, a temperature drop by almost

10 K, and a change in rainfall during both daytime and night-

time. Our results show clear air pollution–weather interac-

tions, and quantify how air pollution affects weather via air

pollution–boundary layer dynamics and aerosol–radiation–

cloud feedbacks. This study highlights cross-disciplinary

needs to investigate the environmental, weather and climate

impacts of the mixed biomass burning and fossil fuel com-

bustion sources in East China.

1 Introduction

Air pollution and weather forecast are traditionally consid-

ered as two separate topics of interest in the field of atmo-

spheric science. Synoptic weather is known to be an impor-

tant factor driving air pollution episodes through processes

like turbulent mixing, long-range transport, photochemical

production and deposition (e.g., Hegarty et al., 2007; Ding

et al., 2009; Y. Zhang et al., 2013). Many efforts have been

put into developing methods of air quality prediction based

on numerical weather forecasts (Jacobson, 2001a; Otte et al.,

2005; Byun and Schere, 2006). However, only very few at-

tempts were performed to investigate the weather–air pollu-

tion relations on the other way round, i.e., to understand the

effects of air pollution on synoptic weather (e.g., Grell et al.,

2005, 2011).

Due to rapid industrialization and vast consumption of fos-

sil fuel (FF), China has been suffering from poor air qual-

ity for decades (He et al., 2002; Richter et al., 2005; Ding

et al., 2008; Tie and Cao, 2009). The eastern and north-

ern China plain, which contains more than half of the pop-

ulation of China and 10 % of the world, is characterized

with intense atmospheric pollution due to high amounts of

FF combustion (Richter et al., 2005; Chan and Yao, 2008;

Tie and Cao, 2009). During the last few years, many stud-

ies were conducted with a focus on air quality monitoring

and understanding reasons and consequences of air pollution
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from these anthropogenic pollutants (e.g., Zhang et al., 2003;

M. Zhang et al., 2013; Xu et al., 2008; Ding et al., 2013).

Meanwhile, this area is one of the most important agricul-

tural bases in China, and the agricultural activities, like inten-

sive seasonally burning activities of agricultural straw, could

cause mixed air pollution in this region (e.g., Wang et al.,

2004; Yuan et al., 2010; Zhang et al., 2011; Ding et al., 2013).

Many studies have shown that biomass burning (BB) smoke

can change synoptic weather significantly (Robock, 1991;

Andreae et al., 2004; Feingold et al., 2005; Grell et al., 2011),

and that the mixed aerosols from BB and FF pollution play

unique roles on changing regional even global climate (e.g.,

Jacobson, 2001b; Ramanathan et al., 2007). However, to the

best of our knowledge, studies of air pollution–meteorology

interactions in China mainly focused on FF pollutants (e.g.,

Zhang et al., 2007; Gong et al., 2007; Qian et al., 2009; Fan

et al., 2012), and there is a lack of direct observation evi-

dence showing the impact from either FF or BB pollution on

everyday weather.

In this study, we report an outstanding case observed in

western Yangtze River delta (YRD) of East China during the

intensive BB period in June 2012. Based on comprehensive

field measurement data, we explore the important connec-

tions between the mixed air pollution and synoptic weather

in this region by showing a significant weather modification

and failure in the prediction of air temperature and rainfall by

the state-of-the-art numerical models during a heavy episode

of extremely high concentration of particulate matter due to

agricultural burning and FF combustion. We briefly introduce

the experiment, data and modeling methodology in Sect. 2,

and perform detailed analysis and discussions in Sect. 3. A

summary and discussion on the implications are given in

Sect. 4.

2 Experiment, data and modeling

2.1 Field experiment

We performed an intensive field measurement of trace gases,

aerosols, fluxes and meteorological parameters in Nanjing

during May–June 2012 to characterize the impact of BB

activities on the environment in the western YRD of East

China. Aerosols and trace gases (O3, CO, SO2, NO, NOx

and NOy) were measured at the Xianlin “flagship” central

site of the Stations for Observing Regional Processes of the

Earth System (SORPES) (Ding et al., 2013), which is lo-

cated on the top a hill (about 40 m a.g.l.) 20 km east of subur-

ban Nanjing (118◦57′10′′ E, 32◦07′14′′ N). Ding et al. (2013)

gave detailed information on trace gases and PM2.5 mass

measurements, which have been continuously conducted at

the site since July 2011. Besides these parameters, scattering

and backscattering coefficients were measured with a neph-

elometer (Aurora 3000). Water-soluble ions of PM2.5 were

measured on-line with a time resolution of 1 h using Moni-

tor for Aerosols and Gases in Air (MARGA, Metrohm Co.)

(e.g., Du et al., 2010). Sub-micron particle sizing (6–800 nm)

was measured using the differential mobility particle sizer

(DMPS) (Aalto et al., 2001; Herrmann et al., 2013). Solar

radiation and sensible heat flux were measured at an urban

“satellite” flux site 15 km southwest of the Xianlin site, and

details about the instruments were given by Liu et al. (2009).

2.2 Meteorological modeling and weather forecast

products

To investigate the possible modification of weather dur-

ing the pollution episode, we conducted numerical weather

simulations using the Weather Research Forecasting (WRF)

model. We employed the WRF version 3.3.1 with the Ad-

vanced Research WRF (ARW) dynamics solver (Skamarock

et al., 2005), to conduct 24 h mesoscale meteorological sim-

ulation for each day during the study period. In this work,

the WRF-ARW model was run in three two-way nested do-

mains, with a horizontal grid size of 45, 15 and 5 km, cover-

ing East Asia, East China and the YRD region, respectively.

All domains have 37 terrain-following vertical sigma levels.

A Mellor–Yamada–Janjic turbulence kinetic energy scheme

was used for planetary boundary layer (PBL) closure, and a

Kain–Fritsch (new Eta) scheme was chosen for cumulus pa-

rameterization for all the domains except the finest one. A

similar model configuration has been applied in our previous

studies (e.g., Ding et al., 2009).

We used the NCEP Final Operational Global Analysis

(FNL) data on 1.0◦
× 1.0◦ grids and 26 vertical pressure lev-

els, prepared operationally every 6 h, to provide the boundary

and initial conditions for the WRF simulations. This product

is from the Global Data Assimilation System (GDAS), which

continuously collects observational data from the Global

Telecommunications System (GTS), and other sources, for

many analyses. The original data are available from the Re-

search Data Archive (RDA) (http://rda.ucar.edu) in data set

number ds083.2. We also used 12 h air temperature forecasts

data provided by the European Centre for Medium-Range

Weather Forecasts (ECMWF). The data were operationally

made by ECMWF atmospheric forecast model. The prod-

ucts have a horizontal resolution of 0.125◦
× 0.125◦ and a

temporal resolution of 6 h. Besides these simulation results,

we also referenced the daily weather forecasts report made

by the Chinese Meteorological Agency and Jiangsu Provin-

cial Meteorological Bureau. These forecasts were generally

made based on ensemble numerical modeling products and

referencing of global modeling products from ECMWF and

Japan Meteorological Agency, etc.
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Fig. 1. A Terra satellite true color image of East China on 10 June,

2012. Note: the satellite images were provided by MODIS Rapid

Response Subsets of NASA. The top left corner gives a photo of the

sun seen from the ground at 10:30 LT of 10 June 2012 in Nanjing.

3 Results and discussions

3.1 Chemical measurements

During 9–11 June 2012, a thick yellow haze blanketed Nan-

jing and adjacent cities in the west Yangtze River delta re-

gion. Satellite images showed a brown and a foggy belt over

Nanjing, Yangzhou and the north regions (see Fig. 1). Many

cities were in heavy haze with very low visibility. MODIS ac-

tive fire data clearly showed that the intensive burning activ-

ities occurred in the north of Anhui Province on 9 June 2012

(Fig. 2). Ding et al. (2013) briefly discussed weather and

air mass transport characteristics for this case, and clearly

showed the agriculture burning plumes transported from the

north to Nanjing and adjacent areas on 10 June 2012.

We observed extremely high PM mass and number con-

centrations together with high concentrations of trace gases

like CO, NOy, and SO2 from late afternoon of 9 June to the

morning of 11 June (Fig. 3). In late afternoon of 9 June, 2012,

the PM2.5 concentration experienced a sharp increase with a

5 min maximum up to 468 µg m−3 at 20:00 LT, followed by

the high concentration of PM2.5 mass with an average value

in excess of 200 µg m−3 that lasted for about 36 h. The total

mass concentration of PM2.5, together with the water-soluble

ions, also shows that carbonaceous matter contributed a large

fraction (about 50 %) of the mass during the pollution event.

A measurement of aerosol number size distribution during

the event shows high aerosol number concentrations, partic-

ularly in the nucleation mode sizes at 10–25 nm and in ac-

cumulation mode sizes at 100–200 nm, indicating emissions

of both ultrafine particles and larger particles (Fig. 4). The

concurrent measurement of aerosol optical properties shows

that the “dry” aerosol scattering coefficients reached up to

5000 Mm−1 during the pollution event (Fig. 3b). The real

aerosol scattering was even more pronounced considering the

Fig. 2. A map showing emission inventory of carbon monoxide and

fire events on 9 June 2012 in the study region. Note: CO emission

inventory was provided by Q. Zhang at Tsinghua University (Zhang

et al., 2009). The fire data are from MODIS Collection 5 Active Fire

Product provided by University of Maryland (Giglio et al., 2006).

hygroscopic growth of aerosol particles under conditions of

high relative humidity (Kulmala et al., 2001; Malm and Day,

2001; Liu et al., 2011).

The time series of water-soluble ions of PM2.5 given in

Fig. 3b also indicated a high concentration of sulfate (SO2−

4 ),

with an average value of about 40 µg m−3 during the pol-

lution episode. Previous studies have reported a high pro-

portion of sulfate in PM2.5 (20–30 %) in the eastern China

region because of the high consumption of coal (Zhou et

al., 2009; M. Zhang et al., 2013). Our measurements also

revealed a high proportion of sulfate (∼ 30 %) in the pre-

episode period, but a significant drop in this proportion dur-

ing the event, showing an anti-correlation with the KCl per-

centage (Fig. 3c). However, in the afternoon of 10 June, the

particulate sulfate fraction showed a remarkable increase, to-

gether with a plume of gas-phase SO2 and particulate sulfate

with a maximum of 23.5 ppbv and 69.9 µg m−3, respectively.

As biomass burning has smaller emission factors of SO2 and

sulfate compared with FF combustion, these results suggest a

mixture of pollution from FF combustion and BB plumes. A

high percentage of KCl (about 10 %) and carbonaceous mat-

ter (about 50 %) of the mass during the event confirmed that

Nanjing had been influenced by young BB smoke (Li et al.,

2003). Here the observed high sulfate associated with SO2

in the afternoon of 10 June was also probably due to com-

plex chemical reactions. For example, studies suggest that in

young smoke plumes heterogeneous chemistry of SO2 might

contribute to a fast formation of sulfate (e.g., Alvarado and

Prinn, 2009).

The scatterplots of KCl, sulfate and CO vs. PM2.5 mass

concentration for the episode and non-episode days given

in Fig. 5 suggest a remarkable difference in the chemical

www.atmos-chem-phys.net/13/10545/2013/ Atmos. Chem. Phys., 13, 10545–10554, 2013
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Fig. 3. (a) Solar radiation, sensible heat flux and relative humidity recorded at a urban flux site of SORPES. (b) PM2.5 mass, water-soluble

ions, aerosol scattering coefficient (at 650 nm) and SO2 measured at the SORPES Xianlin site. (c) Proportions of sulfate and KCl in the total

PM2.5 mass and the ratio of “blocked” solar radiation over the PM2.5 mass concentrations (R_SR/PM = (Ref_SR-SR)/PM2.5) at the Xianlin

Site. Note: a reference of clear-sky solar radiation (Ref_SR) was determined from the measured solar radiation in the afternoon of 13 June,

when Nanjing was cloud-free and with relatively low PM2.5 (∼ 50 µg m−3).

Fig. 4. (a) Aerosol size distribution measured with a differential

mobility particle sizer (DMPS), (b) integrated total particle num-

ber concentrations in the sub-micron size measured at the SORPES

Xianlin site.

composition of particulate matter during the episode and

non-episode days. Higher KCl / PM2.5 ratios and lower sul-

fate / PM2.5 and CO / PM2.5 ratios were evident during the

episode days, suggesting different emission and chemical

characteristics between the BB and FF combustion plumes.

Examination of the black ellipses in Fig. 5a–c, correspond-

ing to the data on the afternoon of 10 June, suggests that the

observed air masses had a clear signal of BB plumes (see

high KCl / PM2.5 ratio in Fig. 5a) and also signals from FF

combustion (see the marked data and the blue regression line

of SO2−

4 and CO vs. PM2.5 in Fig. 5b and c, respectively).

Fig. 5. Scatterplots of (a) KCl, (b) sulfate and (c) CO vs. PM2.5

mass concentration separately for the pollution episode (red) and

for the non-episode (blue) days between 7 and 15 June 2012. Note:

black ellipses mark the data for a period of 12:00–17:00 LT, 10 June.

These results further confirm that the pollution on 10 June

was caused by a mixture of particulate pollutants originating

both from the FF burning and from the BB activities.

3.2 Evidence of weather modification

The high concentrations of scattering and absorbing aerosols

could affect significantly the radiative transfer of solar radia-

tion during the episode. Both measured solar radiation inten-

sity and sensible heat flux showed very low values on 10 June

(128.5 and 21.6 W m−2 in average) in comparison with non-

episode days (580.9 and 172.4 W m−2 on average, see Fig. 3a

and Table 1). Interestingly, a weather forecast from the local

meteorological agency suggested a daily maximum air tem-

perature as high as 34 ◦C and formation of thunderstorms in

the afternoon of 10 June in Nanjing. However, the measured

daily maximum air temperature rose only up to 26.5 ◦C, and

no rainfall occurred in Nanjing and the surrounding cities

during that afternoon. The difference between the forecast

Atmos. Chem. Phys., 13, 10545–10554, 2013 www.atmos-chem-phys.net/13/10545/2013/
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and the observations indicates a modification of weather by

the air pollution.

In order to understand to what extent the air pollution

changed the regional and local meteorological conditions,

we compared the observed surface air temperature with WRF

simulations and NCEP FNL data for the three cities, Nanjing,

Yangzhou and Hefei, in the period of 8–11 June (Fig. 6a–c).

The simulations and data showed a good agreement with ob-

servations for the three cities when the heavy air pollution

was not present. However, a large difference in the air tem-

perature occurred in Nanjing on 10 June, with a daily maxi-

mum anomaly as large as 7.1 ◦C. At Yangzhou the difference

was 5.9 ◦C and 9.2 ◦C on 9 and 10 June, respectively. Even

larger differences were detected between the FNL data and

the observations. For Hefei city, which was not affected by

the pollution event during the four days, only a small dif-

ference (∼ 1.2 ◦C in average) was found between the sim-

ulated and observed air temperature. It needs to be pointed

out that the air pollution index (API) in Fig. 6a–c is a daily-

average value, and a nighttime sharp plume could produce a

high daily API. In addition, besides the pollutant concentra-

tions also the PBL height is an important factor influencing

the total optical depth of air pollution. For these reasons, the

highest API at Yangzhou on 9 June was associated with a

moderate modification of daytime air temperature.

Here our results suggest a much more substantial cooling

(5–10 ◦C) associated with extreme pollution events than pre-

viously observed (1–5 ◦C) under the influence of forest fire

smoke in remote areas like Amazon, Africa, Siberia and West

United States (Wexler, 1950; Robock, 1991; Carmona et al.,

2008). Since clouds also play an important role in the radia-

tive transfer (Andreae et al., 2004; Li et al., 2011a, b; Wang

et al., 2012), we calculated the ratio of “blocked” solar radia-

tion over PM2.5 mass (R_SR/PM). Figure 3c shows a similar

diurnal pattern of the ratio on 10 June with 8–9 June, but a

different one on 11 June when the high peaks of this ratio

were associated with thick clouds. These results suggest that

the substantial drop in the solar radiation intensity was asso-

ciated with atmospheric pollution rather than with clouds on

10 June. This could be confirmed with visual observations:

the sun was seen in the sky on that day, but it looked orange

in color during broad daylight in Nanjing (see the upper left

corner of Fig. 1).

To understand the difference in vertical air temperature

profiles further, we compared results from radiosonde mea-

surements, WRF simulations, FNL data and ECMWF 12 h

forecasts at Nanjing for 20:00 LT of 9–11 June (Fig. 6d). On

the pre- and post-event days, the numerical models agreed

quite well with the radiosonde data, but for 10 June a signif-

icant difference was apparent extending from the surface to

the 950 hPa level. Converting the temperature profile to the

corresponding potential temperature profile revealed a stable

boundary layer below 900 hPa, which corresponds approxi-

mately the lowermost 1 km of the PBL. This kind of an in-

verted potential temperature profile was very likely caused

Fig. 6. A comparison of (a) 2 m air temperature from the WRF sim-

ulation, FNL and from the observations, and a daily mean air pol-

lution index in Nanjing, (b) and (c) same as (a) but for Yangzhou

and Hefei City, respectively, and (d) comparisons of air temperature

vertical profiles from the WRF simulations, FNL data, ECMWF

forecast products and radiosonde measurement over Nanjing at

20:00 LT for 9–11 June 2012.

by the heat absorbed by the suspended aerosols like black

carbon in the upper PBL, whereas the lower PBL cooled

down due to reduced amount of solar radiation reaching

down to the surface. Previous studies have reported such

kinds of effects in smoke plumes and suggested that the up-

per level heating together with a surface cooling could in-

crease the PBL stability (Andreae et al., 2004; Feingold et

al., 2005).

Besides the direct effects and associated feedbacks out-

lined above, there are indications that aerosols affected

the precipitation pattern, especially convective precipitation.

Figure 7 shows a comparison of WRF-simulated and ob-

served 6 h rainfall over Jiangsu Province for the periods of

afternoon of 10 June and early morning of 11 June 2012.

For the afternoon of 10 June, it can be clearly seen that the

WRF simulation suggested a convective rainfall to occur in

Nanjing and the south region with a scale of about 100 km,

with the rainfall center passing by Nanjing around 14:00 LT,

corresponding to the sharp drop of air temperature shown

in Fig. 7a. The WRF simulations were consistent with the

weather predictions by the local meteorological agency.

However, the observations did not show any rainfall on

10 June in Nanjing or the surrounding regions until during

the early morning of 11 June when storms occurred in the

north of Jiangsu Province with 13 mm rainfall over 6 h, about

120 km away from Nanjing (see Table 2). The WRF simu-

lation predicted convective rainfall there, but the predicted

www.atmos-chem-phys.net/13/10545/2013/ Atmos. Chem. Phys., 13, 10545–10554, 2013
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Table 1. Solar radiation, sensible heat flux and PM2.5 mass for episode and non-episode days.

Items Episode day (10 June) Pre- and post-episode days

Maximum solar

radiation

128.5 W m−2 (12:00) Average: 580.9 W m−2

618.3 W m−2 (11:30, 9 June)

578.9 W m−2 (12:00, 11 June)

Maximum

sensible heat

flux

21.6 W m−2 (12:00) Average: 172.4 W m−2

177.0 W m−2 (12:00, 9 June)

167.8 W m−2 (13:00, 11 June)

PM2.5 mass 261 µg m−3 (12:00) Average: 85 µg m−3

104 µg m−3 (11:30, 9 June)

66 µg m−3 (12:00, 11 June)

Fig. 7. A comparison of observed and WRF-simulated amounts of

precipitation. (a, b) Observed 6 h total rainfall in Jiangsu Province

for the period of 12:00–17:00 LT on 10 June and 00:00–05:00 LT on

11 June, 2012, respectively. (c, d) WRF-simulated 6 h total rainfall

in the study region for the periods of 12:00–17:00 LT on 10 June and

00:00–05:00 LT on 11 June 2012, respectively. Note: unit of rainfall

is mm. The observed rainfall data were obtained from Jiangsu Au-

tomatic Meteorological Observation Network of Jiangsu Provincial

meteorological Bureau. Points A/A’, B/B’ and C/C’ are marked for

the statistics in Table 2.

pattern deviated from the observed one as the latter showed

a stronger rainfall in the coastal region and an isolated pre-

cipitation center north of Nanjing (see Fig. 7b and Table 2).

Previous studies in Amazon suggest that biomass-burning

plumes can cause a decrease or an increase of cloudiness de-

pending on the height of plumes (Feingold et al., 2005). Re-

search also suggests that a suppression of low-level aerosol

rainout/washout may cause intense thunderstorms and large

hail (Andreae et al., 2004; Rosenfeld et al., 2008). In this

case, the pollution seems to have both features depending on

the time of the day and location.

Table 2. Observed and WRF-simulated rainfall at points A/A’, B/B’

and C/C’ in Fig. 7.

Items WRF-

simulated

rainfall (mm)

Observed

rainfall (mm)

Point A/A’

(12:00–17:00, June)

12.0 0.0

Point B/B’

(00:00–05:00, 11 June)

0.0 13.5

Point C/C’

(00:00–05:00, 11 June)

6.2 22.0

The exact reasons for the modification of rainfall need

some more advanced modeling work based on on-line cou-

pled models (e.g., WRF-Chem) (Grell et al., 2005, 2011).

However, because of the lack of measurements of the spa-

tial and vertical distributions of aerosol concentrations and

their optical properties, it is a huge challenge to quantify

the mechanisms and processes influencing the rainfall mod-

ification in this case. Instead, we carried out a sensitivity

test using the observation nudging function of WRF Four-

Dimensional Data Assimilation (FDDA) (Liu et al., 2005)

to identify whether the PBL dynamics influenced the day-

time rainfall around Nanjing. By using the 2 m air temper-

ature at Nanjing nudged (with a default nudging coefficient

as 3E-4) during the simulation, the model produced an area

(∼ 25 000 km2) of lower air temperatures (5 ◦C lower than

the surrounding area) around Nanjing (see Fig. 8a). Under

such conditions, the daytime rainfall around Nanjing com-

pletely disappeared (Fig. 8b). These results give further ev-

idence that the increased daytime PBL stability and the re-

duced convection were the dominate causes for the burning

of the mesoscale convection system in that afternoon.

Atmos. Chem. Phys., 13, 10545–10554, 2013 www.atmos-chem-phys.net/13/10545/2013/
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Fig. 8. Simulated (a) 2 m air temperature at 14:00 LT, 10 June and

(b) 6 h total rainfall for the period of 12:00–17:00 LT on 10 June

using WRF-FDDA observation nudging with 2 m air temperature at

Nanjing.

4 Summary and implications

Here we have shown how significantly the intense air pollu-

tion modifies the local synoptic weather by influencing solar

radiation, sensible heat flux, air temperature and precipita-

tion. This leads to a crucial failure of daily weather forecast

under the condition of mixed agriculture burning plumes and

FF combustion pollutants. The above findings from this case

are suggestive of strong feedback between a heavy aerosol

loading, radiative transfer, air temperature profile/stability

and precipitation. We summarize the main processes and

their interactions in a schematic picture (Fig. 9). Here the

enhanced PBL stability initiated by the pollution suppresses

the vertical mixing and dispersion of the pollutants, resulting

in more intense pollution in the lower PBL. The cooling of

the PBL and resulting increase in the relative humidity am-

plify the feedback further by increasing the aerosol scatter-

ing coefficient through hydroscopic effects (Malm and Day,

2001; Liu et al., 2011). The changed PBL stability and the

mixed aerosols further modify cloud properties and precipi-

tation patterns. For the daytime modification of a storm, the

dynamic effects resulting from the increased PBL stability

and less convection seem to be the dominate factors. These

feedbacks between air pollution–boundary layer dynamics

and aerosol–radiation–cloud interactions suggest important

implications in the following aspects.

Firstly, from a weather forecast point of view, this case

clearly demonstrates that heavy and complex air pollution

could modify weather in a substantial way in China. Al-

though on-line coupled models have recently been developed

and improved, and may have the capability to address some

of these interactions and feedbacks (Giorgi et al., 2003; Grell

et al., 2005, 2011), their performance has not been suffi-

ciently evaluated in heavily polluted areas like East Asia. The

real-time changed emissions like man-made agricultural fires

also challenge the capability of numerical weather forecast.

Secondly, for the aspect of air pollution control measures,

the mechanisms shown in Fig. 9 suggests that changes in the

PBL stability caused by upwind regional plumes may fur-

ther enhance the accumulation of local anthropogenic pollu-

Fig. 9. A schematic figure for interactions of air pollution–PBL dy-

namics and aerosol–radiation–cloud interaction under a condition

of mixed agriculture burning plumes and fossil fuel combustion pol-

lutants. Note: yellow bands show the radiative transfer of solar ra-

diation. The brown solid and dashed lines mean the air temperature

profiles for episode and non-episode cases, respectively. The black

thin dashed line represents the top of fossil fuel combustion plume

under a non-episode condition. The plus (+) and minus (−) signs

mean enhancement and reduction of a target process, respectively.

tants in lower PBL and cause extreme air pollution around

the surface. Currently, complaints are often being heard that

off-line air quality forecast models sometimes significantly

underestimate the extremely high pollution concentrations in

megacities in the eastern and northern China. One of the

main reasons for this could be PBL–air pollution interac-

tions not included in the offline forecast models. Therefore,

for North and East China a fully coupled meteorology–air

quality model will be needed because this region faces fre-

quent heavy aerosol pollution and also a complex multi-scale

distribution of pollutant emission (i.e., from single city, city

clusters to regional scales, mixed BB/FF sources).

Finally, even though this study is an extreme case observed

until recently with advanced measurement techniques, statis-

tics of 11 yr (2002–2012) MODIS active fire data suggests

that there is a well-defined BB band located from central to

eastern China, which overlaps with the high rate of FF com-

bustion emission (Fig. 10). The seasonal variation of the fires

suggests that in June (mainly in the first two weeks of June),

the fire data have a portion of up to 70 % of the entire year

on average. Because early and middle June is the pre-plum

rains (Mei-yu) period (Fu, 1982) with strong radiation, this

makes eastern China one of the most unique regions in the

world for studying the impact of mixed BB and FF pollution

on the environment, weather and even regional climate.

This study further highlights the significant role of com-

prehensive measurements based on “flagship” station sug-

gested by Hari et al. (2009), and also suggests a way forward

of cross-disciplinary efforts, including meteorology and at-

mospheric chemistry and physics utilizing both observations

and modeling, in improving the understanding of the earth

www.atmos-chem-phys.net/13/10545/2013/ Atmos. Chem. Phys., 13, 10545–10554, 2013
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Fig. 10. A map showing anthropogenic emission inventory of CO

(Zhang et al., 2009) and averaged active fire data during 2002–2012

over Asia based on MODIS Collection 5 Active Fire Product. The

upper left corner shows seasonal variation of month percentage of

active fires during the 11 yr. Note: the color (from yellow to black)

and size of rhombuses represent the intensive of fires per grid.

system processes and their interactions in this monsoon re-

gion with intensive human activities.
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