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Abstract. We investigate high-power terahertz (THz) generation in two-color

laser filamentation using terawatt (TW) lasers including a 0.5 TW, 1 kHz system,

as well as 2 and 30 TW systems both operating at 10 Hz. With these lasers, we

study the macroscopic effect in filamentation that governs THz output energy

yields and radiation profiles in the far field. We also characterize the radiation

spectra at a broad range of frequencies covering radio–micro-waves to infrared

frequencies. In particular, our 1 kHz THz source can provide high-energy

(>1 µJ), high average power (>1 mW), intense (>1 MV cm−1) and broadband

(0.01–60 THz) THz radiation via two-color filamentation in air. Based on our

scaling law, an ∼30 TW laser can produce >0.1 mJ of THz radiation with multi-

gigawatt peak power in ∼1.5 m long filamentation.
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1. Introduction

Strong terahertz (THz) pulse generation via ultrafast, two-color laser focusing in air has

attracted considerable attention for broadband THz spectroscopy, THz imaging and nonlinear

THz studies [1–25]. In this two-color scheme, an ultrashort laser’s fundamental and its

second harmonic pulses are focused in air (or any gas) to create a gaseous plasma via

multiphoton/tunneling ionization. This emits a THz pulse in the forward direction. Compared

to solid-state THz sources such as photoconduction in semiconductors [26, 27] or optical

rectification in nonlinear crystals [28–31], two-color laser mixing provides intense, broadband

THz pulses [15]. In particular, optical rectification in lithium niobate (LiNbO3) crystals with

tilted pulse front excitation provides extremely high THz energy (current record 125 µJ), but

the radiation spectrum is mostly limited to <1.5 THz [31]. By contrast, two-color laser mixing

is reported to provide ultra-broadband radiation up to 200 THz [15]. The source also produces

extremely low-frequency radiation (<0.01 THz) [19]. Basically, this produces electromagnetic

(EM) radiation ranging from radio-microwave to near-infrared frequencies. This provides an

attractive characteristic for broadband spectroscopic studies.

Microscopically, THz radiation in two-color mixing originates from ultrafast plasma

current generation during tunneling ionization [18–21], although there is still a debate on

the mechanism. Besides this microscopic picture, equally important is the macroscopic laser-

THz propagation effect. This is strongly coupled with femtosecond laser filamentation in air.

In general, filamentation occurs due to dynamic balancing between Kerr-induced beam self-

focusing and ionization-induced beam defocusing [32–34]. This results in a long filament

ranging from a few centimeters to several meters depending on the laser and gas parameters.

This filamentation naturally governs the macroscopic process of THz generation, making the

two-color mixing phenomenon more complex. Practically, this macroscopic effect determines

the far-field radiation profile [5, 23], polarization [24] and bandwidth [17], as well as THz

energy scaling [19, 23].

Previously, an off-axis phase-matching mechanism was proposed and demonstrated to

show this macroscopic effect in two-color filamentation [23]. We also showed that a long
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Figure 1. Schematic diagram of THz generation in two-color, femtosecond, laser

filamentation in air. A microscopic plasma current (blue dotted line), produced

by the two-color electric field (red solid line) via tunneling ionization, emits THz

radiation in all directions. However, the far-field THz radiation profile shown on

the detection plane is determined by macroscopic interference between the THz

waves emitted from the local THz sources distributed along the filament. This

provides an off-axis phase-matching condition, yielding conical THz radiation

profiles. This macroscopic propagation effect also broadens the two-color laser

and THz spectra via self-phase modulation and ionization-induced spectral

blueshifts.

filament emits conical (donut-shaped) THz radiation peaked at 4–7◦ off from the forward

axis depending on the radiation frequency. However, this phase-matching condition was

demonstrated for relatively short filaments (<7 cm) with laser energy limited to <5 mJ [23].

In this paper, we extend the study for much longer filaments with multi-terawatt (TW) laser

systems. In particular, we test THz energy scaling in long filamentation (1–60 cm) with 2 and

30 TW laser systems. Our scaling law predicts that the THz peak power can approach multi-

gigawatt (GW) by creating about a meter long filament with a 30 TW laser system.

In parallel, we have investigated high average power THz generation at a 1 kHz repetition

rate. For this, we have developed and used a cryogenically cooled Ti:sapphire amplifier capable

of delivering 15 mJ per pulse at 1 kHz. This produces high average power (>1 mW) THz

generation with >50 THz. Further enhancement toward 10 mW average power is also discussed.

Finally, we address an issue associated with focusing conical THz radiation into a small spot

size, which is of great importance for nearly all THz experiments.

2. Macroscopic model for terahertz (THz) generation in two-color filamentation

A schematic picture of two-color laser filamentation and simultaneous THz generation is shown

in figure 1. A femtosecond laser pulse (ω) is weakly focused onto a frequency doubling crystal
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such as beta barium borate (BBO), which generates a second harmonic pulse (2ω). In this in-

line scheme, the BBO crystal is often detuned from its optimal angle (ω polarization parallel

to the ordinary axis of the crystal) in order to produce an ω-field component parallel to 2ω

polarized along the extraordinary axis. In this scheme, ω becomes elliptically polarized after

passing through the crystal due to the birefringence in BBO [22]. Alternatively, the BBO crystal

can be tuned at the right angle for type-I phase matching, which results in crossed polarization

between ω and 2ω. This polarization state, however, can be converted into collinear by inserting

a dichroic half-wave plate just after the BBO crystal (not shown in figure 1). In this way, the

two-color laser fields can be linearly polarized in the same direction. Assuming this is the case,

the laser field EL at a point in the filament is expressed as

EL = Eω(t) cos(ωt) + E2ω(t) cos(2ωt + θ), (1)

where Eω(t) and E2ω(t) are the amplitudes of the fundamental and the second harmonic fields,

respectively, and θ is the relative phase between Eω(t) and E2ω(t) at a distance d from the

starting point of the filament. At the point, multiphoton/tunneling ionization occurs under the

combined laser field and a plasma current arises from the tunnel-ionized electrons drifting in

the combined laser field. Here, the local plasma current density is given by [20]

J (t) = −

∫

evd(t, t ′) dNe(t
′), (2)

where dN (t ′) is the density of free electrons produced by the laser field in the interval between

t ′ and t ′ + dt ′, and vd(t, t ′) is the drift velocity of those electrons at t. An ultrafast current surge

at the point emits THz radiation in all directions, like dipole radiation from a point source, with

the far-field scaling as ETHz ∝ dJ (t)/dt . In the classical plasma current model, far-field THz

radiation peaks at θ = ±π/2, while minimal THz radiation occurs at θ = 0 [18]. The described

plasma current model is also confirmed by numerical simulations [35].

The relative phase θ between the two-color laser fields, however, changes along the

filament as

θ = ω(nω − n2ω)d/c + θ0, (3)

where nω and n2ω are the refractive indexes of the air–plasma filament at ω and 2ω frequencies,

respectively, c is the speed of light in vacuum and θ0 is the initial relative phase at the starting

point of the filament. Here, the refractive index of the weakly ionized (Ne ≪ Nc) air filament

is given by nfilament = nair + 1nplasma + 1nKerr, where 1nplasma ≈ − 1

2
(Ne/Nc) (1 + iν/ω)−1, Ne is

the electron density, Nc is the critical density, and ν is the electron–ion collisional frequency that

is negligible for the electron density of our interest (ν ≪ ω). Because of this filament dispersion,

the relative phase θ changes from 0 to π over a distance ld, where ld = (λ/2) (nω − n2ω)−1 is the

dephasing length for ω and 2ω. Here, λ is the optical wavelength at ω. For pure (no plasma)

atmospheric air (∼1019 cm−3), ld = 25 mm at λ = 800 nm. For a filament with an electron

density of Ne = 1016 cm−3 in atmospheric air, ld ≈ 20 mm. As this relative phase varies along

the filament, the local THz amplitude and polarity also change along the filament as shown in

figure 1 (see the red oscillating curve along the filament). Because of this oscillating THz source

polarity, far-field THz radiation is not simply emitted in the forward direction [36].

In general, the THz far field, E(r, �), is obtained by integrating the contributions from all

source points distributed along the filament as [23]

E(r, �) ∝

∫

V

d3r′ P̃ (r′, �) eikTHz|r−r′|

|r − r′|
, (4)
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where P̃ (r′, �) ∝ Ã (r′, �) sin (θ(z′)) exp
(

ing kTHzz′ − i�t
)

is the nonlinear THz polarization,

and Ã ∝ dJ (r ′, �)/dt is the local THz amplitude at frequency �, determined by the

microscopic plasma current model [18–20]. At a distance far longer than the filament length

(|r − r′| ≫ |r′|), the far-field THz intensity profile is approximated as [23]

|E(r, 2,�)|2 ∝ | Ã(r
′, �)|2

(πa2)2l2

r 2
(κ2

1 + κ2
2 + 2κ1κ2 cos(2θ0 + π))

(

2J1 (β)

β

)2

, (5)

where κ1,2 = sin(α1,2)/α1,2, α1,2 = kTHzl[ng ± Ŵ/(2ld) − cos(2)]/2, β = 2πaλ−1 sin(2), Ŵ is

the THz wavelength and the last term in equation (5) represents circular diffraction. The

third term in equation (5) provides a phase-matching condition for efficient THz generation.

Here, maximum THz generation is achieved with α1,2 = 0. This provides the angle for phase

matching, 2p, given by cos(2p) = 1 − Ŵ/(2ld) for weakly ionized plasma filaments (ng ≈ 1).

The phase-matching angle 2p can also be obtained from the condition necessary for constructive

interference between two oppositely polarized THz waves as shown in figure 1. This condition

is satisfied when the path length difference becomes Ŵ/2, which provides the same phase-

matching angle. For example, a filament length of l = 70 mm, 1 THz radiation (Ŵ = 300 µm)

peaks at 2 = 7◦ with a conical radiation profile as shown in figure 1.

The total THz yield obtained from the entire filament length is given by
∫

|E (r, 2,�)|2 sin 2 d2. This scales quasi-linearly with the filament length [23]. This implies

that we can enhance the output THz energy by increasing the filament length while maintaining

the local THz strengths the same. This condition remains still valid for multi-filamentation.

For example, two filaments separated by d (of the order of hundreds of micrometers) in

the transverse direction would produce THz waves in phase and those two waves interfere

destructively in the far field at an angle of θd = sin−1(Ŵ/(2d)). Compared with the phase-

matching angle, 2p = cos−1(1 − Ŵ/(2ld)), θd at which destructive interference occurs due to

multi-filamentation is much larger than the phase-matching angle 2d because d ≪ ld. Thus

multi-filamentation plays little or no role in determining the far-field THz radiation profile. The

total plasma volume, however, will contribute to the output THz yield.

3. THz energy scaling with high-power laser systems

3.1. THz energy scaling with a 2 TW laser operating at 10 Hz

A 2 TW Ti:sapphire laser system capable of delivering ∼3 cm of beam diameter, 800 nm,

100 mJ, 50 fs pulses, at a 10 Hz repetition rate is used for THz generation. The experimental

setup is shown in figure 2(a). In addition to far-field THz measurements, a 5 mm diameter,

single-loop wire (B-dot probe) is used to monitor the near-field, low-frequency THz waveforms.

Basically, this can probe the local THz amplitudes and polarities. Previously, it was shown that

the B-dot signal is strongly correlated with far-field THz radiation [19].

For B-dot measurements, ∼50 mJ of laser energy is used to create >300 mm long filaments

with f = 2 m focusing. A 0.1 mm thick BBO crystal (type-I) is placed in the beam path

(∼120 mm after the focusing lens) to generate collinear second harmonics. A B-dot probe is

placed and scanned in the air plasma filament as shown in figure 2(a). A 0.5 GHz, 5 giga-

sample/s oscilloscope is used to measure the induced voltage across the ends of the B-dot coil.

According to Faraday’s law, the induced voltage is given by V = −
∫

Ḃ · ds, where Ḃ (B-dot)

is the time derivative of the magnetic field, which arises from a transient current in the plasma

New Journal of Physics 15 (2013) 075002 (http://www.njp.org/)
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Figure 2. (a) Experimental setup for B-dot probe and THz energy measurements.

(b) Peak-to-peak B-dot signal as a function of its position d along the plasma

filament. (c) THz yield measured with a pyroelectric detector as a function

of filament length made with six different focal length lenses. Four different

transmission filters are used for THz detection at various bands (Si for <20 THz,

Ge for <10 THz, HDPE or Teflon for 0.1–3 THz) [40]. For clarity, the yields

for HDPE and Teflon are multiplied by a factor of 2. Here, the laser energy is

fixed at 60 mJ. The maximum THz energy is 7 µJ obtained with ∼10 cm long

filamentation. (d) THz yield as a function of the iris position for three filaments

produced by f = 1, 1.5 and 4 m focusing. Here the iris blocks THz radiation

emitted before the aperture, which controls the effective filament length.

according to Ampere’s law, ∇ × Ḃ = µ0J̇. Thus, the induced voltage (B-dot signal) represents

the peak rate of electric current change where the probe is located [37]. Here we note that the

plasma current, produced by detuned type-I phase matching, is generally elliptical [24]. This has

a circular current component along the B-dot loop direction. To observe variations in the local

plasma current with increasing filament length, the B-dot probe is scanned along the filament.

As shown in figure 2(b), the B-dot signal (or local THz radiation) indeed oscillates with varying

d (or θ ) and the oscillation period is estimated to be ld ∼ 20 mm. This corresponds to an electron

density of Ne ∼ 1016 cm−3, consistent with other measurements [38, 39].

We also examine THz energy scaling and saturation in two-color filamentation with laser

energy up to 60 mJ. In particular, we investigate laser energy coupling into filaments under

various external focusing conditions. Figure 2(c) shows the output THz energy as a function

of the filament length, varied from 1 to 60 cm with several focal lengths: f = 15, 20, 25, 100,

150 and 400 cm. Here the THz energy is measured with a pyroelectric detector with various
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Figure 3. (a) Experimental setup for THz radiation from monomers and/or

clusters ionized by a femtosecond two-color pulse in a vacuum chamber. Argon

clusters are formed in an elongated gas jet via adiabatic expansion of high-

pressure gas into vacuum. (b) THz yield from gaseous nitrogen jets as a function

of laser energy at 14 bar backing pressure. (c) THz yields as a function of

nitrogen gas and argon cluster targets with increasing backing gas pressure.

THz filters (Si, Ge, HDPE and Teflon). A silicon filter is used to block unwanted optical and

infrared light. In addition to the Si filter, additional filters are used to characterize THz profiles

at different frequency bands: a germanium wafer is used to detect THz frequencies mostly at

<10 THz, whereas a 3 mm thick Teflon window is used as a low-pass filter to detect <3 THz.

The yield increases with the filament length and peaks at 7 µJ with f = 100 cm focusing. With

a focusing lens shorter than 100 cm, the input laser energy is not efficiently absorbed in creating

a plasma filament, mainly due to strong ionization-induced defocusing [25]. This leads to laser

intensity clamping in filamentation [32–34] and thus sets the maximum laser intensity for THz

generation in air. On the other hand, when focused with a lens longer than 100 cm, the laser

energy starts to spread out over the filament. This drops the local plasma-current amplitude,

consequently yielding less THz radiation. This trend is consistent with the previous report [13].

We have also changed the effective filament length by scanning a pinhole aperture along

the filament as shown in figure 2(a). The iris blocks the THz emitted before the aperture while

not affecting the THz emitted after the aperture. Figure 2(d) shows the measured THz energy

New Journal of Physics 15 (2013) 075002 (http://www.njp.org/)
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as a function of the aperture position for filaments made with three focal length lenses ( f = 1,

1.5 and 4 m). It shows that the total THz yield increases with the filament length, confirming

off-axis phase matching up to ∼50 cm long filamentation.

3.2. THz generation from gaseous and clustered plasma with a 30 TW, 10 Hz laser

We have also used a 30 TW (35 fs, 1 J) Ti:sapphire laser system for THz generation. Here we

have conducted the experiment in a vacuum chamber (see figure 3(a)). In particular, we have

tested gas/cluster jets for THz generation. An off-axis mirror (not shown) was used to focus

incoming laser pulses onto elongated (∼2 cm long) gas jets. Here, clusters—van der Waals-

bonded aggregates of up to ∼107 atoms—are formed in a condensing supersonic nozzle flow

into vacuum [41]. In this experiment, two types of gas species, argon and nitrogen, are used. The

emitted THz energy is collected by a parabolic mirror and focused into a pyroelectric detector.

A silicon filter is placed in front of the detector.

Figure 3(b) shows THz output energy for nitrogen at 14 bar backing pressure and room

temperature. The output yield increases with laser energy up to 100 mJ but soon drops after

100 mJ. This saturation is attributed to strong THz absorption in dense plasma [19] and/or

plasma-induced laser defocusing in filamentation [25]. Here, the scaling test was limited to

<200 mJ because of severe material damage and strong supercontinuum generation in the BBO

substrate. Overall, the measured THz energy is much weaker than that obtained with the 2 TW

laser in long filamentation. This is because the gas jet (or filament) length is limited to ∼2 cm.

Figure 3(c) shows THz yields as a function of gas backing pressure for nitrogen and argon.

Both gases show strong saturations with increasing gas pressure, consistent with the previous

reports [10, 19]. One interesting feature is that argon produces less THz energy compared

to nitrogen. This contrasts the previous result performed for gas-phase targets [6, 19], where

argon provides a higher THz yield compared to nitrogen. This is because the current argon jets

produce much more and larger clusters compared to nitrogen in our experimental condition. This

implies that clusters are not an efficient target for THz generation in two-color photoionization.

Although a large fraction of laser energy up to 90% can be absorbed in a gas of clusters, the

emitted THz radiation may be vastly absorbed by supercritical clustered plasmas.

3.3. High average power THz generation with a 0.5 TW, 15 mJ pulse−1, 1 kHz laser

For high-peak and high-average-power THz generation, we have developed and used a

cryogenically cooled Ti:sapphire amplifier. Figure 4(a) shows a photograph of our amplifier that

delivers 800 nm, 15 mJ, 30 fs pulses at a 1 kHz repetition rate. A 6 mJ, ∼150 ps (uncompressed)

seed pulse from a commercial Ti:sapphire laser system (Legend Elite USX, Coherent Inc.) is

amplified to 15 mJ in a 5 mm × 5 mm × 5.5 mm Ti:sapphire crystal pumped by a frequency-

doubled (527 nm) Nd:YLF laser (Evolution HE, Coherent Inc.) providing 45 W at 1 kHz. To

minimize thermal lensing in the gain medium caused by high-power pumping, the crystal rod is

cooled down to ∼60 K with a cryogenic refrigerator (PT-90, Cryomech Inc.). In order to avoid

condensation at low temperature, the crystal rod is placed inside a vacuum chamber pumped

down to 10–7–10–8 Torr with a turbo pump (V-81M) backed up by a scroll pump (Varian,

Agilent Technology Inc.). The amplification operates in the gain saturation regime for energy

stability. This provides ∼18 mJ uncompressed energy per pulse. We observe a small amount of

spectral redshift in the amplification. This, in principle, can be improved by tilting the spectral
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Figure 4. (a) Photography of a homebuilt cryogenically cooled Ti:sapphire

amplifier capable of producing 15 mJ, 30 fs, 800 nm pulses at a 1 kHz repetition

rate for high average power THz generation. (b) Measured THz output energy

as a function of input laser energy with three different filter sets. For clarity, the

yields for HDPE and Teflon are multiplied by a factor of 2 and 15, respectively.

The maximum THz energy is ∼1 µJ pulse−1 at 1 kHz. (c) THz radiation spectrum

measured by FTIR.

flattening filter in the regenerative amplifier and slightly blue-shifting the seed pulse. After

amplification, the pulse duration is compressed back to <30 fs in a grating-based compressor

with 84% transmission efficiency. This provides ∼0.5 TW peak power at 1 kHz.

Using the cryogenic amplifier system, we have generated THz radiation via two-color

filamentation in air and tested THz energy scaling. The input laser energy is varied with a

combination of a half-wave plate and a thin film polarizer. The THz pulse produced is collected

and focused by a pair of off-axis parabolic mirrors into a pyroelectric detector (SPI-A-62THZ,

Spectrum Detector Inc.).

Figure 4(b) shows measured THz output energy with increasing laser input energy. Three

THz filters are used for detection at different frequency regions. The three lines in figure 4(b)

show that the majority of radiation occurs at high frequencies. Note that the Teflon signal is

rescaled by 15 times for clarity. In addition, the low-frequency radiation (<3 THz) saturates

quickly whereas the high-frequency signal (Si filter) continues to increase with increasing input

energy up to ∼11 mJ, providing THz energy of ∼1 µJ pulse−1.
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Figure 5. (a) Experimental setup for measuring THz far-field radiation profiles.

The pyroelectric detector (not shown) is raster scanned over 3.5 cm × 5 cm on a

screen at ∼20 cm away from the filament. (b) Two-color (800 and 400 nm) laser

beam surrounded by a blue-shifted (600–700 nm) supercontinuum. (c) Measured

THz profile. Here, both blue-shifted conical and THz radiation profiles are not

symmetrical due to our imperfect beam condition.

Figure 4(c) shows a typical first-order interferometric field autocorrelation and the

corresponding THz spectrum measured by Fourier transform infrared spectroscopy (FTIR) [19].

It shows radiation up to ∼60 THz with an input pulse duration of ∼30 fs. Even broader

bandwidth ranging up to >100 THz is reportedly achieved by using a shorter (<20 fs) pulse

duration [12, 15]. In our case, the majority of radiation occurs at high frequencies and peaks at

22 THz. This source is capable of providing 1 µJ pulse−1, >60 THz pulses at 1 kHz and can be

readily used for broadband nonlinear THz studies.

4. THz radiation profiles in long filamentation and refocusing

The previous section shows that high-energy THz radiation can be produced by an elongated

filament which naturally forms a line source. Due to off-axis phase matching in filamentation,

the line source emits conical THz radiation. In this section, we discuss such radiation profiles

and in particular the issue of refocusing conical radiation into a small spot size.

Figure 5(a) shows an experimental layout for measuring a THz radiation profile in the far

field. With f = 1.5 m focusing with 5 mJ laser energy, a >7 cm long filament is produced. A

pyroelectric detector mounted on a two-dimensional (2D) motorized stage is raster scanned to

measure the radiation profile. In addition, various THz transmission filters are placed to study

high and low THz radiation profiles. Figure 5(b) shows the laser (800 and 400 nm) beam profile,

surrounded by blue-shifted (600–700 nm) conical radiation, on a screen ∼20 cm away from the

source filament. By contrast, the THz profile, obtained with a Teflon transmission filter, shows
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Figure 6. THz ray tracing calculation of an ∼7 cm long filament source and

measured THz radiation profiles obtained (a) 8 mm before, (b) near and (c) 8 mm

after the focal plane, all obtained with a 3 mm Teflon filter before the detector.

Unlike the far-field profiles shown in figure 5, the focused radiation peaks on

axis.

a donut-shaped structure. This off-axis radiation profile is attributed to the phase-matching

condition in long filamentation [23]. Figure 5(c) shows an off-axis angle of 4–7◦ at 1–3 THz

radiation, consistent with the theoretical phase-matching angle.

We also measure the profiles of THz radiation when refocused by a pair of parabolic

mirrors. Figure 6 shows the radiation profiles obtained at three different axial positions: (a) 8 mm

before, (b) at and (c) 8 mm after the focal plane, all with a 3 mm thick Teflon filter. The minimum

spot size is ∼1.5 mm at 1–3 THz frequencies. Unlike the conical radiation shown in figure 5(c),

the refocused THz intensity is peaked on axis (see figure 6(b)). This transition can be explained

by ray tracing under geometric focusing as shown in figure 6. The refocused profile is bell-

shaped, favorable for real applications, but the spot size inevitably increases with the filament

length when the radiation from a line source is collected and focused by an off-axis parabolic

mirror alone. In this case, the focused spot size scales as D ∼ lfcos−1[1 − Ŵ/(2ld)], where lf is

the filament length and Ŵ is the THz wavelength. For an ∼7 cm long filament with 2p ∼ 5◦, the

minimum spot size is calculated to be <1.5 mm, which agrees well with our measurements.

This implies that THz energy benefits from long filamentation but not for THz refocusing.

Ultimately, this affects the THz field strength at the focus. However, this refocusing problem

can be corrected by collimating the far-field THz radiation with an axicon lens. More details are

presented in section 6.

5. Ultra-broadband THz spectrum

Two-color photoionization can generate EM radiation at an extreme broad range covering RF

to extreme ultraviolet (EUV). At first, an ultrafast photocurrent induced by two-color ionization

creates EM radiation with a large bandwidth. Here the timescale for the current surge is much
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(c) (d) (e) 

(a) 

(b) 

Figure 7. (a) Mechanisms for broadband EM radiation generation in two-color

photoionization and radiation spectra measured with the (b) B-dot probe, (c)

EOS in ZnTe, (d) EFISH and (e) FTIR techniques at broad frequency ranges.

shorter than the laser pulse duration because tunneling ionization occurs mostly around the peak

intensity. For an ∼30 fs (FWHM) laser pulsewidth, for example, the total ionization process

extends over as short as ∼12 fs (FWHM). This supports EM radiation with a bandwidth of

>80 THz. This radiation bandwidth is further broadened and modulated by several mechanisms

summarized in figure 7(a).

First, the laser spectrum broadens with propagation due to self-phase modulation in air,

ionization-induced blueshifts and self-steepening. The broadened laser spectrum increases the

THz bandwidth even further. The spectrum at 0.1–1 THz is strongly modulated by plasma

oscillation and collisional effects. In addition, the plasma density of 1016–1017 cm−3 strongly

affects THz absorption in the filament direction. The collisional process ultimately terminates

the plasma current. However, a very slow ion current can arise, producing radiation down to

0.01 THz. This corresponds to RF and micro-waves. At the other frequency end, broadband

EUVs can be produced by optical high harmonic generation (HHG). In particular, two-color-

based HHG can produce both odd and even harmonics, also enhancing the overall yields. This

HHG is strongly connected with THz generation as they both arise from coherent motion of

electrons in tunneling ionization [19, 42].

To detect such broadband radiation, various complementary methods must be applied.

Figure 7 shows a list of our THz detection schemes along with measured radiation spectra. For

example, the B-dot probe detects extremely low-frequency components such as RF and micro-

waves. Figure 7(b) shows a sub-nanosecond electric current detected with a B-dot probe [19].

For THz detection at 0.1–3 THz, electro-optic sampling (EOS) with a 1 mm thick ZnTe crystal

was adopted to measure THz waveforms (see figure 7(c)). The corresponding spectrum reaching

up to 3 THz is obtained by a Fourier transform. Here, the detection bandwidth can be further

increased by using a thinner and/or different EOS crystal having higher THz absorption lines,

such as GaP.

Another method for broadband detection is using electric-field-induced second harmonic

(EFISH), also known as air-biased coherent detection (ABCD) [14]. In this scheme, the THz

pulse to be characterized is focused into air along with an ultrashort optical pulse, which

produces an optical second harmonic by the EFISH effect. Here, the change in second harmonic

yield is proportional to the THz electric field to be measured at the focus [14]. One big advantage
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Figure 8. THz output energy as a function of input laser energy with various

air filament lengths (black squares). The straight line represents maximum

achievable THz energy with a conversion efficiency of 10−4. An ∼1.5 m long

filament made with 1 J can yield ∼100 µJ THz. The ultimate THz output energy

is limited to ∼300 µJ by the group velocity walk-off between two-color laser

pulses. Here the fundamental laser wavelength is assumed to be 800 nm. We

note that the optical to THz conversion efficiency can be further increased with

longer wavelength (1–4 µm) pumping for filamentation [17, 43].

of this technique is its capability of detecting THz waveforms directly. However, the detection

bandwidth is fundamentally limited by the probe pulse duration. Here, we have measured THz

radiation up to 30 THz (see figure 7(d)), currently limited by our stretched probe pulsewidth

(30–40 fs) and/or the size of the electrodes used for ABCD detection.

For even higher bandwidth detection, Michelson interferometry was used for FTIR [19].

Although FTIR does not directly provide THz waveforms, the detection bandwidth is not limited

by the optical probe duration as in EFISH. Our measurement in figure 7(e) shows radiation up to

60 THz, largely limited by low laser energy usage in relatively short filamentation (see section

3.3).

6. Toward gigawatt peak-power THz generation

In this section, we discuss the outlook for high-peak-power THz generation and theoretical

limits in two-color laser filamentation. Figure 8 summarizes THz energy scaling as a function of

laser input energy. The black squares are our measurements obtained with various laser energy

and filament length conditions. For a given laser energy, there is a favorable filament length that

yields the optimal THz conversion efficiency, 10–4. This is represented as the straight line in

figure 8.

For instance, a 10 mJ laser input energy will yield ∼1 µJ THz energy with an optimal

filament length of ∼2 cm. A 100 mJ laser energy will require a >15 cm long filament to produce

∼10 µJ THz energy. An input of 1 J laser energy, readily available with our 30 TW laser system,

will yield 100 µJ of THz energy with an estimated filament length of ∼1.5 m (red diamond in

the figure). The corresponding peak power will approach multi-GW with a 100 THz bandwidth.
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Figure 9. (a) Proposed experimental setup for scalable THz generation in a 2D

plasma sheet using cylindrical lens focusing and recollection. (b) Simulated THz

output energy as a function of the energy ratio of 2ω to ω with the total energy

fixed. The output peaks at ratio ≈ 0.2 according to the microscopic plasma

current model [18].

The maximum achievable THz energy, however, is limited by the group velocity walk-

off between two-color laser pulses. Due to air–plasma dispersion, two 50 fs pulses at 800 and

400 nm, for example, get separated in time as they propagate over ∼4 m in air [23]. This can

produce ∼300 µJ THz energy, a theoretical limit in two-color filamentation in air if the walk-off

is not compensated.

Long filaments require a large parabolic mirror for THz energy collection. In addition,

THz refocusing is another issue as discussed before. One method in reducing the filament length

while keeping the same high-energy THz output is to increase the plasma filament volume in the

transverse direction. Focusing two-color laser pulses with a cylindrical lens can create a plasma

sheet as shown in figure 9(a). For a laser input of 1 J, a plasma sheet of ∼1 cm2 can be created.

For THz collection and refocusing, a combination of a cylindrical mirror and a parabolic mirror

can be used for tighter focusing.

For further THz energy scaling, the intensity of second harmonics needs to be increased.

For example, figure 9(b) shows a simulation result of THz output as a function of the ratio of the

second harmonic intensity to the fundamental intensity, I2ω/Iω. According to the microscopic

plasma current model, the output THz yield peaks at I2ω/Iω ≈ 20% with I2ω = 2 × 1013 W cm−2.

In our experiments, the ratio is typically ∼8%. This is partly because the frequency doubling

crystal (BBO) is intentionally detuned from its optical angle. This scheme can be improved by

using an ultrathin, dichroic half-wave plate right after the BBO crystal [16]. This allows us to

optimize not only the efficiency in second harmonic generation with type-I phase matching but

also the amplitude of plasma current at the focus. Also the ultrathin thickness minimizes the

two-color walk-off and pulse stretching. In addition, more efficient crystals such as BIBO [44]

can be used to increase the conversion efficiency toward 20%.

Finally, a gas cell can be used for further THz enhancement. Previous results show that

gases with low ionization potential such as krypton or xenon can dramatically increase THz

output energy [6, 10, 19]. However, as those gases can easily saturate the output signal, it

is important to increase the filament length accordingly. Combined with the ultrathin wave

plate technique, this can increase the conversion efficiency toward 10–3. For better refocusing,
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a conical lens (axicon) made of silicon or an axicon mirror can be used to collimate the

conical THz emission. Here we note that THz generation with axicon-based laser focusing

was previously discussed [45, 46], but our scheme proposes using an axicon for THz beam

collimation only, not for laser beam focusing as in [45, 46]. After collimation, a conventional

off-axis parabolic mirror can be used for diffraction-limited refocusing. With our 1 kHz

Ti:sapphire system capable of delivering 15 mJ pulse−1, this gas cell method will produce

10 µJ pulse−1 at 1 kHz, corresponding to 10 mW average power, with a potential bandwidth

of 100 THz. With an assumption of 100 fs THz pulse duration, the corresponding electric field

at the focus will be 3 MV cm−1 with uncompensated refocusing (∼1 mm diameter), while it will

approach 100 MV cm−1 with diffraction-limited focusing (30 µm diameter). This source will be

a very useful tool in high-power THz studies, including broadband nonlinear spectroscopy and

imaging applications.

7. Conclusion

In summary, we have discussed intense THz generation and its theoretical limit in two-color

laser filamentation, with an emphasis on the macroscopic propagation effect. Experimentally,

we have used three TW laser systems (0.5, 2 and 30 TW) to create a broad range of filament

conditions. Our simulation and experimental results confirm scalable THz generation with

increasing filament length, as well as ultra-broadband EM radiation generation covering

RF–micro-waves to near-infrared frequencies.

With our 2 TW system, we have produced ∼7 µJ of THz energy with a 15 cm long filament

at 10 Hz. Further enhancement to 100 µJ can be achievable in 1.5 m long filamentation by

using a 30 TW laser. This can provide multi-GW peak power with a 100 THz bandwidth. In

terms of high average power, our kHz system can currently provide 1 mW with ∼1 µJ pulse−1.

The focused field strength is >1 MV cm−1 but can be enhanced up to ∼100 MV cm−1 with

ionization in a gas cell and axicon-based beam collimation. Due to this broadband and high-field

strength, two-color laser filamentation will be a very useful source for research in broadband

THz spectroscopy and strong THz field studies.

Acknowledgments

We acknowledge the support of the US Department of Energy and the Office of Naval Research.

We also thank Sanjay Varma, Yu-Hsin Chen and Brian Layer for their contributions in operating

the laser systems and conducting partial experimental tasks.

References

[1] Cook D J and Hochstrasser R M 2000 Intense terahertz pulses by four-wave rectification in air Opt. Lett.

25 1210–2
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[31] Fülöp J A, Pálfalvi L, Klingebiel S, Almási G, Krausz F, Karsch S and Hebling J 2012 Generation of sub-mJ

terahertz pulses by optical rectification Opt. Lett. 37 557–9

[32] Couairon A and Mysyrowicz A 2007 Femtosecond filamentation in transparent media Phys. Rep. 441 47–189

[33] Chin S L et al 2012 Advances in intense femtosecond laser filamentation in air Laser Phys. 22 1–53
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terahertz radiation by controlling tunnel photoionization events in gases New J. Phys. 13 123029
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