Intensional Protocols for Dynamic Epistemic Logic

Hanna S. van Lee?, Rasmus K. Rendsvig®? and Suzanne van Wijk

a: Center for Information and Bubble Studies, University of Copenhagen

b: Theoretical Philosophy, Lund University

This is a pre-print of an article published in Journal of Philosophical Logic.
The final version is available at https://doi.org/10.1007/s10992-019-09508-w

Abstract. In dynamical multi-agent systems, agents are controlled by proto-
cols. In choosing a class of formal protocols, an implicit choice is made con-
cerning the types of agents, actions and dynamics representable. This paper
investigates one such choice: An intensional protocol class for agent control in
dynamic epistemic logic (DEL), called ‘DEL dynamical systems’. After illustrat-
ing how such protocols may be used in formalizing and analyzing information
dynamics, the types of epistemic temporal models that they may generate are
characterized. This facilitates a formal comparison with the only other formal
protocol framework in dynamic epistemic logic, namely the extensional ‘DEL
protocols’. The paper concludes with a conceptual comparison, highlighting
modeling tasks where DEL dynamical systems are natural.

1 Introduction

In logically modeling dynamics in multi-agent systems — whether by using global-
perspective frameworks like interpreted systems [24] and epistemic temporal logic
[51], or by using local-perspective frameworks like dynamic epistemic logic [6] —
the dynamics rely on protocols: control mechanisms that determine which actions
may occur when.

Protocols take a plethora of forms, ranging from natural language descriptions,
over pseudo-code renderings, to fully formalized representations. Moreover, pro-
tocol specifications may vary in their fundamental structure. Specifically, one may
distinguish between extensional protocols and intensional protocols.’

Extensional protocols are temporal: They consult an external clock to specify
which actions are available for execution at a given time of a run of a system. Roughly
speaking, an extensional protocol is a set of sequences of actions that allows the ex-
ecution of action a at time ¢t if a is on the tw position of a sequence in the protocol.
Abstractly, think of a function assigning to each natural number a set of allowed
actions.

Intensional protocols, in contrast, are conditional: They consult the current state
of the system to specify which actions are available for execution now. Roughly speak-
ing, a conditional protocol is a set of “if ¢, do a” statements. Such a statement

!The terms and distinction is adopted from Parikh and Ramanujam, see [51, Sec. 2.2].

https://doi.org/10.1007/s10992-019-09508-w

— or rule — allows the execution of an action a now if the current state satisfies the
test condition . Abstractly, think of a function assigning to each possible state of
the system some set of allowed actions.

Both extensional and intensional protocols qua protocols have been investigated
in the epistemic agency literature, but mainly in different paradigms: Where the
interpreted systems literature has favored intensional protocols [24, 45, 62], the
literature on protocols in dynamic epistemic logic has favored extensional proto-
cols [15,20,37,38,58,61].

There is, however, no formal reason to avoid intensional protocols in the dynamic
epistemic logic setting. In fact, such protocols may be both intuitive and compact in
representation. Moreover, the mathematical basis and logical theory for intensional
protocols enjoys established results, albeit not cast as results concerning protocols
(cf. Sec. 1.2 on related literature).

This paper concerns intensional protocols for dynamic epistemic logic (DEL). In
particular, it investigates intensional protocols as represented by multi-pointed action
models applied iteratively. By doing this, the paper takes a discrete-time dynamical
systems perspective on protocols for information dynamics. The resulting intensional
protocols are referred to as DEL dynamical systems.

The overarching question the paper asks is how such intensional protocols relate
to their closest extensional relative, namely the DEL protocols of van Benthem, Ger-
brandy, Hoshi and Pacuit, [15]. The main motivation for this question is a wish to
clarify similarities and differences in the implicit assumptions and restrictions inher-
ent in the two frameworks. This, in turn, is motivated by a desire to understand the
up- and downsides of protocol frameworks from a design and modeling perspective.

Methodologically, the main comparison is achieved by characterizing the types of
epistemic temporal logic (ETL) models generatable by intensional protocols coded
as DEL dynamical systems, and compare the resulting ETL properties with those pre-
viously obtained for extensional DEL protocols by van Benthem, Gerbrandy, Hoshi
and Pacuit.

This methodology has a two-fold incentive, the first being that ETL models pro-
vide an assumption-free common point of reference between the two protocol forms,
thus allowing a comparison of induced properties.? This is desirable as the funda-
mental difference between extensional and intensional protocols — that one relies
on an external clock whereas the other reacts to the current state — makes it difficult
to compare the protocol frameworks directly. In particular, then, the structure of
an extensional protocol is not, in general, enough to determine whether the result-
ing sequence of models may be obtained from an intensional protocol. The second
aspect of the motivation is that as a by-product the methodology relates DEL dynam-
ical systems to ETL models, thus yielding results illuminating the former, in which
there has been recent interest, cf. Sec. 1.2 on related literature.

2It is also a point of reference for other frameworks, like interpreted systems or extensive
games with imperfect information, cf. the motivation in [15].

1.1 Structure of the Paper

Section 2 defines core DEL components as well as intensional protocols (“DEL dy-
namical systems”) and extensional protocols (“DEL protocols”). These are informally
compared and contrasted by example. It is then illustrated how DEL dynamics may
be seen as producing ETL models.

Section 4 presents ETL models and eight structural properties of key relevance to
the paper.

Section 5 formally defines how to generate ETL models from DEL dynamical systems
and contains a first result: For an ETL model to be generatable by a DEL dynami-
cal system, it must satisfy specific seven of the eight structural properties, but not
necessarily the eighth.

Section 6 concerns the other direction: Constructing DEL dynamical systems that
will generate a given ETL model. It will be shown that if an ETL model possesses
all eight structural properties, then this is sufficient for a suitable DEL dynamical
system to exist.

Together, the results of Sections 5 and 6 almost provide a characterization of the
ETL models generatable by DEL dynamical systems, but not quite.

Section 7 restricts attention to a subclass of DEL dynamical systems and a subclass of
ETL models: When a DEL dynamical system is image-finite and concluding, it gener-
ates an image-finite and concluding ETL model. In this case, a proper characterization
is obtained: The eight properties are both necessary and sufficient.

Section 8 moves the attention to non-deterministic intensional protocols, imple-
mented by running several (deterministic) DEL dynamical systems in parallel. The
motivation for this is a tighter correspondence with the methodology of extensional
DEL protocols, of which only special cases are deterministic. The section presents
weaker, necessary properties of ETL models generated by families of DEL dynamical
systems.

Section 9 contains the main comparison of intensional and extensional protocols
for DEL, based on the differences in structural properties of generatable ETL mod-
els. The section thus compares and discusses the present results with those of van
Benthem, Gerbrandy, Hoshi and Pacuit [15].

Section 10 concludes with open questions.

1.2 Related Literature

This paper is situated in the literature on epistemic logic in the tradition of Hin-
tikka [36] with focus on the temporal development of knowledge in multi-agent
systems. In the DEL approach to this topic, a temporal dynamics is a sequence of self-
contained models m;, m,, ms, ... where each model—except for the first—is obtained
from the former by some transformation (see e.g. [7,22,48] for introductions). This
perspective stands in contrast to models representing dynamics internally, from the
outset offering a full, unfolded view of time. This is the contrast between the local

and global—or Grand Stage—views on dynamics, in the terms of van Benthem [11].
Grand Stage models may typically be envisioned as temporal trees or forests with
branches connected by agent-index relations. For illustrations, see the ETL models
depicted in Sections 2, 4.

Grand Stage models have been a go-to in the literature on distributed computing.
ETL models are typically attributed to Parikh and Ramanujam [50], while an early
source on the interpreted systems framework is Halpern and Moses’ [33] where pro-
tocols and the existence of correct protocols constitute objects of study (see [24] for
an introduction). Several of the properties of ETL models of interest in this paper
(see Sec. 6) have previously been studied in Grand Stage models, including syn-
chronous/asynchronous agency and perfect recall, in relation to axiomatizations
and complexity [32,34,35,44,46].

In interpreted systems, intensional protocols are commonplace, exemplified by
the pioneering knowledge-based programs of Fagin, Halpern, Moses and Vardi [24].
There, an agent’s possibly non-deterministic behavior is specified by a set of instruc-
tions of the form “if K;p, do a”. From an initial state of a system, a joint set of
instructions for agents and the environment specifies the next state. Over time, the
initial state is thus unfolded to produce a temporal model. As such, knowledge-based
programs act as a local mechanism for generating Grand Stage models.

Automata theory provides an alternative approach to generating (and also clas-
sifying) Grand Stage models such as epistemic trees and forests. Taking branches
as words, a class of forests may possibly correspond to the language accepted by a
given class of finite-state machines. This approach is taken by Mohalik and Ramanu-
jam [47] for ETL models (a related work for interpreted systems is [45]). Mohalik
and Ramanujam study agents computing asynchronously, but with occasional syn-
chronous full and perfect information exchange. Each agent is locally modeled by
a finite transition system, from which a product automaton determines global be-
havior. The authors show a range of results concerning the language of the class of
such product automata. Mohalik and Ramanujam remark on a connection to gen-
erating ETL models using DEL action models as undertaken in [15] (see below),
but leave the relation an open question. Touching vaguely on such a connection
is [54], where Rendsvig shows that Liu, Seligman, and Girard’s social network be-
lief dynamics induced by transition system agents [43] may be presented using DEL
action models. A direct connection between automata theory, forest generation and
DEL may be found in the work of Aucher, Maubert and Pinchinat [4]. The authors
show that iterating a finite action model with Boolean pre- and postconditions on
an initial finite Kripke model produces a regular structure, admitting representation
by a finite-state synchronous transducer. Several other papers on DEL draw connec-
tions to automata theory without direct links to forest generation [3,18,39]. As the
characterization results in Section 7 concern ETL models with finite or repetitive na-
ture, these may possibly be generated by some finite-state mechanism.> To explore
the relation between automata theory and the present results is future work (see
Section 10).

3We thank an anonymous reviewer for pointing this out.

More narrowly within the DEL literature, two strands of research are of particular
relevance: work on protocols and DEL and work on DEL and dynamical systems.
The first comprises [13,20,37,38,58,61] and van Benthem, Gerbrandy, Hoshi and
Pacuit’s [15]. All papers in this collection use or study extensional protocols in the
style of Parikh and Ramanujam [50,51], with various aims. Of special interest to the
current paper is [15]: In [15], the authors investigate which classes of ETL models
one may generate using action models, product update and extensional protocols.
Their results are illuminating in elucidating epistemic and logical properties inherent
in the DEL methodology. The methodology and results of [15] are presented and
discussed throughout.

The second strand of DEL research concerns the iterated application of DEL
model transformers on sets of pointed Kripke models. In this strand, some works
cast such iterations exactly as dynamical systems.* This idea was first explicitly put
in play by Sadzik in 2006 [59]; he investigates frame conditions for action models
that guarantee a stabilizing orbit modulo bisimulation, drawing on conceptual ideas
from van Benthem, advanced in 2002 [10]. Since then, various works have honed
in on long-term behavior of iterated model transformations — with e.g. [1, 9, 30]
concerned with aspects of belief change, and [3,4,18,19] describing epistemic plan-
ning — without explicit ties to dynamical systems. An interesting approach to protocol
learning is taken by van Ditmarsch, Ghosh, Verbrugge and Wang in [21], using a vari-
ation of action models labeled with a protocol specification language. Closer to the
present approach is [53,55] where information dynamics are modeled using a DEL
intensional protocol format akin to the (one-step) planning problems explored by
Bolander and Birkegaard [18]. In [56], that same protocol format is cast in dynami-
cal systems terms and is shown to be effectively equivalent with both a DEL-variant
of knowledge-based programs and the multi-pointed action models of Baltag and
Moss [5]. These results motivate the use of multi-pointed action models both here
and in [39, 40]. In [39, 40], iterated dynamics of multi-pointed action models are
construed in a topological setting, inducing maps that satisfy the common definition
of a dynamical system: A compact, metric space under the action of a continuous
function.”

“For the interested reader, there also exists a body of literature taking the converse perspec-
tive, using logics to describe qualitative aspects of long-run behavior. On this approach, logic
meets dynamical systems by the latter playing the role of semantics to the former. Papers
falling in this category, detailing logics of dynamical topological systems, include Kremer and
Mints’ 2007 handbook chapter [42] (on research from 1997 onwards by e.g. Artemov [2]
and the authors of [41]) and several recent papers by Fernandéz-Duque [25-27]; Sarenac’s
paper from 2011 [60] exploring modal logical approaches to describing iterated function
systems; and finally van Benthem’s work in [10, 12], outlining various possible logical ap-
proaches to fixed points and limit cycles of dynamical systems by applying fixed-point and
oscillation operators galvanized by modal u-calculus. The latter two papers additionally pro-
vide an excellent bridge between the high abstraction level approach to logic and dynamical
systems of this note and the micro-perspective literature in the main text.

>This paper omits the topological augmentation as moving between concrete DEL models and
the abstract quotient models of [39,40] introduces additional steps in the arguments used
to compare sequences of DEL models with ETL models.

In none of the above-mentioned papers is DEL investigated as a dynamical sys-
tem qua its role as protocol defining, and neither have the resulting sequences been
related to the Grand Stage ETL models they generate nor to extensional protocols.

2 Protocols for DEL

In this section, standard notions from dynamic epistemic logic are introduced to-
gether with intensional and extensional DEL protocols. The reader is referred to the
excellent literature on the topic of epistemic logic and DEL for more information
and philosophical interpretation: See e.g. [6-8,11,14,16,22-24,36].

2.1 Pointed Kripke Models and Language

Let a countable, non-empty set of propositional atoms ¢ and a finite, non-empty set
of agents I be given. Throughout the paper, it will be assumed that these sets remain
fixed.

A Kripke model is a tuple M = ([M],R, [-1) where

[M7 is a countable, non-empty set of states;

R:1— P([M] x [M]) assigns to each agent i an accessibility relation
R(i), also denoted R;;

[-1:®— P([M]) is a valuation, assigning to each atom an extension of
states.

A pair (M,s) with s € [M] is called a pointed Kripke model with s called the
designated state. Throughout, the pair (M, s) is written Ms.
Where p € ® and i € I, define a language L 1) by

p=Tlpl~¢leoA¢|Ow
with non-propositional formulas evaluated over pointed Kripke model Ms by
Ms |= 0,y iff for all t € [M], sR;t implies Mt |= ¢,

and standard propositional semantics. For sets of formulas A, A’, write A E A’ if for
all pointed Kripke models Ms, Ms & ¢ for all ¢ € A implies Ms E ¢’ for all ¢’ € A'.
Set brackets are omitted when no confusion should arise.

Using standard modal logical semantics makes bisimulation the natural notion
of equality between pointed Kripke models (see e.g. [17]). With M = ([M1,R,[-1)
and M’ = ([M'T,R’,[-1") two Kripke models, a binary relation Z C [M] x [M'] is
a bisimulation if, for all i € I:

1. If sZs’, then satisfy the same atoms: for all p € &, s € [p] iff s’ € [p]’,
2. If sZs" and sR;t, then there exists a t’ € [M'] such that tZt’ and s'R}t’, and
3. If sZs’ and s'R;t’, then there exists a t € [M] such that tZt" and sR;t.

When Z is a bisimulation and sZs’, the pointed Kripke models Ms and M’s’ are
bisimilar, denoted Ms < M’s’.

2.2 Action Models and Product Update

In dynamic epistemic logic, dynamics are introduced by transitioning between pointed
Kripke models from some set X using a possibly partial map f : X — X. Such a map
is often referred to as a model transformer. Many model transformers have been sug-
gested in the literature, the most well-known being truthful public announcement,
1 [52]. Truthful public announcements are a special case of a rich class of model
transformers, here referred to as the class of clean maps.

In essence, a clean map f is given by f (x) = c(x®a) with specific term a, product
® and restricting operation c. The term a is based on a deterministic multi-pointed
action model, defined below.® Intuitively, one may think of a clean map as a set of
program lines, each of the form “If ¢;, do a;”, where the preconditions ¢; are
mutually exclusive. When “run” on a pointed Kripke model x, the program checks
if x satisfies any ;. If so, it executes action a; (a sub-action of a) on x, obtaining
the result x ® a. If not, the product of x and a is undefined. Finally, the operation c
removes redundant states. Their usage is exemplified in Section 3.2.

Define an action model as a tuple & = ([X], R, pre, post), sharing language
Ls 1) with models in X, where

[=] is a countable, non-empty set of actions o;

R:I— P([Z] x [2]) assigns an accessibility relation R(i) to each index
i € I, with R(i) denoted R;;

pre : [X] — L) assigns to each action a precondition, specifying the
conditions under which o is executable;

post : [X] — L4) assigns to each action a postcondition (a conjunctive
clause’ over ®, or T). The postcondition specifies whether o changes the
values of select atoms.

A pair (%,T) with @ # ' € [X] is a multi-pointed action model with T the set
of designated actions; (%,T') is also written Xr. If T is a singleton {c}, then Xr is
called single-pointed and is written To. If X |= pre(c) A pre(c’) — L for each
o # o’ €T, then Xr is called deterministic over X, for X a set of pointed Kripke
models. The term deterministic is used as the requirement ensures that at most one
designated action from I' updates the designated state s when Xr is applied to a
pointed Kripke model Ms € X using product update ®. The product Ms ® Xr is the
pointed Kripke model ([MX],R’,[-1',s’) with

[MZ] ={(s,0)e[M] x[2]: Ms |=pre(o)}
R ={((s,0),(t,7)):(s,t) €R; and (o,7) €R;}, foralli €]

[p] = {(s,0):s € [p], post(c) ¥ —p}U{(s,0):post(c) = p}, forallp € &
s’=(s,0): 0 €T and Ms |= pre(c)

6Action models and product update was introduced in [6]. The extension to multi-pointed
action models came with [5]. The present version of postconditions is inspired by [23] and
the usage of deterministic models by [56].

’Le. a conjunction of literals, where a literal is an atomic proposition or a negated atomic
proposition.

If Ms does not satisfy the precondition of any action ¢ in I or if Xr is not determin-
istic over {Ms}, then the product is undefined.

In the product Ms ® Xr, there may be states that are not reachable from the point
(s, o) via any collection of relations. Such states are, for present purposes, superflu-
ous: They neither affect the formulas satisfied at (s, o) nor the set of models with
which (Ms ® Xir, (s, o)) is bisimilar. As it is later convenient to work with correspon-
dence between structures up to isomorphism, in the current paper such superfluous
states are always deleted.

Superfluous states are deleted by regarding only the substructure of any pointed
Kripke model Ms that is connected to the actual state s. This substructure is denoted
C(Ms) and is defined as follows:

Let R* be the reflexive, transitive and symmetric closure of (| {R;}c;. Let R*(s)
be the set of states reachable from s via R*, i.e., R*(s) := {s’ € [M]: (s,s’) € R*}.
Then the connected component of Ms is the unpointed substructure C(Ms) :=
(IM T ig-(s) » Rire(s)> Vire(s))- With s” € [C(Ms)], C(Ms)s’ is thus again a pointed Kripke
model. In particular, C(Ms)s is bisimilar to Ms.5-°

2.3 Intensional Protocols: DEL Dynamical Systems

The most general class of maps — the intensional protocols — of interest in the fol-
lowing may now be defined as follows:

Definition 1 (Clean Map). Let X be a set of pointed Kripke models. A clean map on
X is any possibly partial model transformer f : X — X given by f (x) = C(x®Xr)s’,
for all x € X, with ¥r a multi-pointed action model deterministic over X.

Defining intensional protocols using mappings, it is required that also their do-
main and range be specified:

Definition 2 (DEL Dynamical System). A DEL dynamical system is a pair (X, f)
where X is a set of pointed Kripke models and f is a clean map on X. A pointed DEL
dynamical system (X, f, x) is augmented with an initial model x € X, assumed to
be connected.

The orbit of (X, f,x) is the (possibly finite) sequence x, f (x), f(f(x)),.... The
orbit is denoted (f*(x)).ey- In case the orbit is a finite sequence, {f*(x))cy is short
for (fk(x))fzo for k’ the maximum k € N such that f*(x) is defined.

Remark 1. This definition of a DEL dynamical system is restrictive. A broader defi-
nition would allow f to be any bisimulation-preserving map.

2.4 Extensional Protocols: DEL Protocols

In [15], two types of DEL protocols are defined, one allowing the protocol to vary
from state to state of the initial model and one where the protocol is “common
knowledge”:

8This is not a bisimulation contraction (cf. [31]): C(Ms)s need not be bisimulation minimal.
°The authors apologize for the cumbersome notation: It is useful when later working with
connected components in unpointed epistemic, temporal structures.

Definition 3 (DEL Protocol). Let E be the class of all L3 1) single-pointed action
models. Let E* be the class of all finite sequences of elements from E. A set P C E*
is a DEL protocol iff P is closed under non-empty prefixes. Let Ptcl(E) denote the
class of all DEL protocols.
Let Ms be a pointed Kripke model. A state-dependent DEL protocol on Ms is a
map
p:[M]— Ptcl(E).

If p is constant over [M], i.e., if for all s, t € [M], p(s) = p(t), then p is a uniform
DEL protocol.

A DEL protocol specifies which pointed action models may be executed at a given
time — whether they can be executed then again depends on the preconditions of
the designated action. Their usage is exemplified in Section 3.2.

2.5 An Initial Comparison

Although DEL protocols and DEL dynamical systems invoke the same rudimentary
changes by using action models, they differ vastly in structure. In particular, where
every DEL dynamical systems encodes a deterministic'’ protocol - by virtue of being
defined as a mapping — DEL protocols may be non-deterministic. Roughly, DEL dy-
namical systems may be correlated with state-dependent and uniform DEL protocols
in the following manner:

> A DEL dynamical system is analogous to a deterministic, uniform DEL protocol:
A DEL protocol P C E* for which all sequence ¢, ¢’ € P, either ¢ is a prefix of ¢’
Or Vice versa.

> A non-deterministic, uniform DEL protocol is analogous to a family of DEL dy-
namical system, executed in parallel on the same pointed Kripke model.

> A non-deterministic, non-uniform DEL protocol is analogous to a family of DEL
dynamical systems, executed in parallel on different pointed Kripke models, all
of which are identical up to the choice of designated state.

In the present paper, dealing with non-uniform DEL protocols or their DEL dynamical
systems counterparts will be omitted.

Without going through ETL models, DEL dynamical systems and uniform DEL
protocols may be related, showing that the orbits obtainable from DEL dynamical
systems is a sub-class of those obtainable using DEL protocols:

Proposition 1. Let (X, f, x) be a pointed DEL dynamical system. Then there exists a
singleton uniform DEL protocol that produces the orbit of f from x.

Proof. At each iteration, the clean map f is — in effect — going to execute a single-
pointed action model. Copying the sequence of the executed action models provides
a uniform DEL protocol. For details, see Appendix on page 29.

19In the sense that given any input state (pointed Kripke model), the protocol outputs at most
a single resulting state.

The converse of Proposition 1 does not hold: There exists pointed Kripke models
with associated singleton uniform DEL protocols that produce sequences of pointed
Kripke models not duplicatable by any DEL dynamical system.'! This is a conse-
quence of DEL protocols being extensional: Not only do they consult the information
inherent in the present model to determine ensuing actions, but also the current
time, exogenously provided by the sequential nature of the protocol. This informa-
tion is not available to DEL dynamical systems and can therefore not be used in
guiding dynamics.

As mentioned in the introduction, this feature makes it difficult to compare DEL
protocols and DEL dynamical systems directly: The structure of the DEL protocol
may not be enough to determine whether the resulting sequence of pointed Kripke
models may be obtained as the orbit of a DEL dynamical system. Hence the current
approach: a comparison using ETL models.

3 Examples

To give a flavor of DEL dynamical systems and DEL protocols in use, this section
contains two examples. The examples are simple and do not showcase the complex
agency representable by DEL protocols and DEL dynamical systems, but offer a ba-
sis for comparison. For an example of how DEL dynamical systems may be used to
model a complex, multi-agent scenario with a range of agent types, see [55] where
Rendsvig models the information dynamics of the bystander effect from social psy-
chology.

3.1 Example 1: Blowing the Bulb

A family wishes to switch to LED lighting, but still has an incandescent bulb they
consider a waste to throw out unused. They therefore instruct a child to perpetually
switch the lights on and off, hoping to blow the bulb. The two possible initial states
of the situation are depicted in Fig. 1.

One way of providing instructions to the child, c, is by the intensional protocol
of Fig. 2 (left). This protocol may be represented by a DEL dynamical system (X, f),
with X = {Ms,Nt} and f the clean map of the action model in Fig. 2 (right). Ap-
plying f to e.g. Ms will produce Nt: Only the precondition of o is satisfied at s,
so (s, o) is the only surviving state and the postcondition of ¢ forces it to satisfy
—on. Finally, (s, o) is related to itself by R, as both s and o are self-related for c. An
additional application of f returns the system to Ms. Executed anywhere on X, f
implements the desired protocol.

Alternatively, the instructions may be provided by an extensional protocol, e.g.,
by telling the child to flip between turning on the light and turning off the light

11An example is the following: Let a two-state pointed Kripke model Ms with Ms |= p Aq and
Mt |= p A —q be given. Let p(s) = {('p), ('p, 'p A @)} with !¢ the truthful public announce-
ment of ¢. Then p on Ms produces the sequence (Ms, Ms, M’s) with [M'] = [M]\{t}. No
clean map can duplicate this sequence: As f(Ms) = Ms, the system has reached a fixed
point from which it will never deviate to produce M’s.

10

Fig. 1. Two possible states of the light: the pointed Kripke models Ms where the light is on
and Nt where the light is off. The child knows the state of the light in either model.

if on, do turnoff f ':. g gressesgepeeees,

if —on, do turnon Clenon i Lgonen [0
Fig. 2. Left: An intensional protocol. Right: An implementation of the intensional protocol.
The clean map f is based on a multi-pointed action model Zr with two actions. The action o
represents turnoff: it can be executed only when the light is on, and in effect turns it off. The
action 7 similarly represents turnon. All (both) actions are designated actions of -, i.e., [Z] =
{o,7} =T, as indicated by their bold dotted boundaries. Which of the designated actions in
fact occurs in a given application depends on the pointed Kripke model Xr is executed on.

perpetually. With 3; and 3, the restrictions of X to, respectively, o and 7, the se-
quences

P1 = 210', ZzT, 210', ZzT, 210, ZzT, 210', ZzT, oos

pz = ZzT, 210', 227, 210-, EzT, 210', 227«-, 210',

instructs to perpetually change between executing the turnon, turnoff actions; P,
instructs to start with turnoff while P, instructs to start with turnon. The uniform
DEL protocol p = {P;, P,} will then, when executed anywhere on X, implement the
desired protocol: If e.g. N't is the initial condition, the first instruction of P; will fail
to be executed, but the first instruction of P, will succeed, producing Nt, on which
the second instruction of P, again will succeed, etc.

Adding to the futility, following either protocol, the bulb never blows.

3.2 Example 2: The Muddy Children Puzzle

To illustrate the differences in use of DEL dynamical systems qua intensional pro-
tocols and uniform DEL protocols qua extensional protocols, two such formal pro-
tocols of the classic Muddy Children Puzzle, well-known in the DEL literature (see
e.g. [22,29]), are presented. As a simplified version of the puzzle is sufficient for
present purposes, attention is restricted to the case with three children.

The puzzle starts with a partial description of an epistemic state:

Three brilliant children have been playing outside. While playing, each child
may have got their forehead muddy. Each can tell whether or not the others
have muddy foreheads, but cannot tell this of themselves. Upon returning
home from playing, an adult of unspecified gender informs the children that
at least one of them is muddy.

11

Fig. 3. Unpointed Kripke model M representing the initial situation of the Muddy Children
Puzzle. Each state specifies which children are muddy, where for all i € ®, i:= —i, that is,
“child i is not muddy”. Labeled relations between states represent indistinguishability for the
children. Reflexive relations are omitted.

Following standard practice in DEL, this partial description is modeled as an
unpointed Kripke model for a language L ;) with the set of agents I = {a,b,c}
and the set of atoms ® = {a, b,c} with i € read “child i is muddy”. The unpointed
model M isillustrated in Figure 3. A pointed Kripke model results when a designated
state is determined: This corresponds to fixing which children became muddy during
play. Denote the set of resulting pointed Kripke models X, .

The puzzle specification continues by the adult detailing a protocol by which the
children should update the initial epistemic state:

“Concurrently with this metronome,” the adult instructs, “repeatedly and
simultaneously announce aloud whether or not you know whether or not
you are muddy.”

By means of a suitable model of this protocol, it is desirable to be able to answer the
main question of the puzzle, namely:

If there are n muddy children, how many times does the metronome have
to tick before all three children know whether or not they are muddy?

As the uniform DEL protocol and the DEL dynamical systems protocol will share the
same informational actions, these will be introduced first.

3.2.1 Muddy Children: Announcements As standard, each of the announce-
ments made is treated as a truthful public announcement, cf. [52]. A truthful pub-
lic announcement of the formula ¢ may be modeled using a single-pointed action
model with a single action with ¢ as precondition.

Each epistemic announcement is modeled using the same singleton single-pointed
action model, changing only the precondition. Build the formulas for the group an-
nouncements as follows:

1. Interpret the O0; modality as reading “child i knows that...”, and denote the op-
erator by K;.

2. Let know; be short for K;i V K;—i. If know; is true, then child i knows whether
he or she is muddy or not.

12

3. Let knows for S C I be the formula /\ ;g know; A /\; ;s =know;. Then knows
states that exactly the children in S know their status.

4. For each S C I, let g0 = ({0}, Rs, preg, posts, o) be the singleton single-
pointed action model with pre(og) = knowg, post(cg) =T (as the announce-
ment makes no changes to atomic valuations), and Rq(i) = {(og, 0g)} for each
i € I. As in the initial Kripke model, the epistemic relations are thus equivalence
relations.

3.2.2 Muddy Children: Intensional Protocol Notice that the instructions of the
parent in the natural language protocol are already provided in an intensional (con-
ditional) form. Essentially, the parent instructs the children to follow the rules

“If you know whether you are muddy, then announce so.”, and

“If you don’t know, then announce so.”

Aggregated to rules for the group, the antecedents in these conditional rules
are exactly the preconditions of the actions in the 3o models described in point
4 above. As these preconditions are pairwise jointly unsatisfiable over any set of
pointed Kripke models and the models are disjoint, their union is a deterministic
multi-pointed action model: Let =r = ([X], R, pre, post,T') with [Z] = Usc, [=],
R=Usc/Rs, pre = Ugc pres, post = Usc posts and T = U {og}-

Let X be a superset of the muddy children models X,, of Fig. 3, closed under
the operation ®Xr. With f the clean map on X based on Xr, (X, f) is a DEL dy-
namical system. Moreover, applied to any x € X, C X, f implements the desired
protocol and produces, tractably and in finite time, an answer to the puzzle. Figure
4 illustrates this for the case of three muddy children.

t, : abc

(rat2)

b b
¢ a a

t,:abc [ts :Ec] [té :Eb?}

Fig. 4. The three models of the Muddy Children Puzzle in the case of three muddy children.
For any r’ € [[fl(Ms)]], let r' := (r,04) and let s” := ((s, 0y), 0y). Points are distinguished
by a thick contour. It can be seen that after two rounds of question and answers all children
know whether or not they are muddy. Furthermore, f*(Ms) is isomorphic to f2(Ms) for all
k>2.

ty :Ebc] [t; s abc

With this implementation, the intensional protocol may straightforwardly be ap-
plied to pointed models differing in other respects then the number of muddy chil-
dren, e.g., with different initial announcements by the parent.

13

3.2.3 Muddy Children: Extensional Protocol Constructing an extensional pro-
tocol for the Muddy Children given some initial Kripke model is straightforward:
Simply run the intensional protocol above on the initial model, taking note which
designated actions’ preconditions were satisfied when and encode this sequence as
an extensional protocol. The resulting extensional protocol will induce the transfor-
mations appropriate for the given initial model. However, the protocol will not be
useful in answering the question of the puzzle: It is a one-off solution for the given
Kripke model only, constructed with knowledge of the answer sought.

A more informative extensional DEL protocol may be constructed, but it requires
a countably infinite representation: Assume to construct an extensional DEL proto-
col that will adequately encode the natural language instructions, is applicable to
any model in X,; and presumes no prior knowledge of the developing information
dynamics. The set of relevant announcements is, as above, {Xs0s: S C I}. For the
announcement made at the first time step, the protocol must allow Yo for each
S C I, seeing that no information about the development of the dynamics may be
assumed. Similarly, each possible announcement must be allowed to follow the first,
etc. Hence, only satisfactory extensional protocol is P = {3s04: S C I'}*. This set is
countably infinite.

This protocol facilitates the process of finding an answer to the Muddy Children
Puzzle: For a given initial model Ms € X, find the actions that the protocol allows
to be executed at time 1. These are all the actions models Xgo ¢ for which the length
1 sequence (Zg0) is in P (i.e., all the actions the protocol allows at time 1). For
each of these, calculate the product Ms ® ¥505. As the preconditions are, in the
current example, mutually inconsistent, only one such model will be well-defined.
The result is exactly f(Ms), for f the intensional protocol given above. For time
2, take all the models produced at time 1 — in this case {f (Ms)} — and execute on
each of them all the actions in the continuations of the sequence from which that
model stems. This produces a second set of pointed Kripke models — in this case
{f(f (Ms)}. This process thus leads to a model in which all children will announce
that they know whether they are muddy.

3.2.4 A Remark on Protocol Size If one is interested in implementing a DEL pro-
tocol to seek computational assistance in puzzle solving, the countably infinite rep-
resentations required for the extensional protocol may prove cumbersome.'? Rep-
resented as a countably infinite set of sequences, an implementation will never run
through the first step of all allowed action sequences.'® This problem does not occur
when protocols are implemented as clean maps: They are by construction finite. Set
theoretically, the clean map representation of a protocol may thus be vastly smaller
than its extensional counterpart.

121t was not suggested in [15] that DEL protocols be implementable nor that they are suited
for modeling purposes.

13To produce an implementation, the extensional protocol should at least be represented in
a different manner.

14

4 Epistemic Temporal Logic

The run of a pointed DEL dynamical system may be recorded as a sequence of
pointed Kripke models. Using information from the action models, an insight of [15]
was that this may naturally be regarded as a temporal, modal structure, a so-called
epistemic temporal logic model.

ETL models form a simple and general framework. Such models allow the rep-
resentation of epistemic and temporal interplay, and allow it in an assumption-free
manner. Hence, in generating ETL models from DEL dynamics, any structural prop-
erties (e.g., Synchronicity, Perfect Recall) shared by the generated ETL models are
features induced by the DEL operations. Thus, characterizing the classes of generat-
able ETL models elucidates assumptions implicit in DEL dynamics about epistemic
and temporal interplay. This is a main conceptual insight of [15].

An ETL model is a temporal forest with additional modal (epistemic) relations
between nodes. With E* the set of all finite sequences of elements from the set E,
an ETL model for the language L ;) is a tuple % = (E,H,R, V) where

E is a set of events e;

H C E* is a set of histories, closed under non-empty prefixes;*

R: I — P(HxH) is a map assigning to each agent an accessibility relation
R(i), written R;;

V :® — P(H) is a valuation.

In contrast with pointed Kripke models, ETL models are not equipped with actual
states. To obtain a tighter connection between DEL dynamical system orbits and ETL
models, the latter is augmented to include multiple points. Figure 5 on the next page
illustrates such an augmented (“saturated”) ETL model and its relation to the orbit
of a DEL dynamical system.

As in Sec. 2.2, let R* be the reflexive, symmetric and transitive closure of R,
and let R*(h) := {h’ € H: (h,h’) € R*}. Then define the connected component of
h € H in H — denoted C(Hh) — as the restriction of H to R*(h), i.e., let C(Hh) :=
(Hg+(ny> Ri+(n)> Vie(n))- If h€ Hig.(y, then C(Hh)h is a pointed Kripke model.

Finally, define the ETL structures of interest as follows:

Definition 4 (Saturated ETL Model). Let # = (E,H,R,V) be an ETL model. Let
H C H be a set of histories closed under prefixes, called points. The pair (H, H) is
saturated iff for all h € H, the connected component C(#h) contains a unique point
h from H.

Remark 2. The addition of points to ETL models is vital to structurally relate ETL
models to orbits of DEL dynamical systems. When computing the k + 1th element
of an orbit of a DEL dynamical system, its clean map reacts to information from the

41t is overall assumed that any ETL model contains no redundant events relative to the
model’s set of histories. That is, for any ETL model #, it holds that any event e € E is
either a history (e € H) or part of a history (3h € H such that he € H).

15

Fig.5. A saturated ETL model (#, H). Time flows upwards where labeled dashed lines rep-
resent events. Connected components are marked by dotted circles, points by thick contours.
Each pointed connected component is isomorphic to a pointed Kripke model from Figure 4
on page 13. Moreover, a history h’ is the successor of h in # iff the Fig. 4 counterpart of h’ is
a state (s, o) for s the counterpart of h.

designated state of the kth element. The designated states thus carry information
determining the dynamics and are therefore structurally essential. However, nothing
plays a similar role in ETL models. Hence, a stronger structural likeness between the
two constructions may be obtained by adding a corresponding notion to ETL models:
the points.

4.1 ETL Isomorphism

For simplicity of arguments, saturated ETL models are identified up to isomorphism.
This allows arguments without repeated references to bisimulation contractions or
other specific representatives. In the definition of isomorphism between ETL models,
note that the temporal structure of the models is also preserved:

Definition 5 (ETL Isomorphism). Let saturated ETL models (¥#,H) = (E,H,R,V,H)
and (H',H’) = (E’',H’,R’,V’,H’) be given. Let f : E — E’. For h = ¢,...e, € E*, let
f(h):=f(eg)...f (e,). The map f is an ETL isomorphism iff f is a bijection and for
alheH, k' eH’

1. heHIiff f(h)eH,and h€ H iff f(h) e H’,
2. hR;h' iff f (R)R.fF ('), for all i €1,
3. heVv(p)iff f(h)eV'(p), forall p € &.

16

(H,H) and (#’, H') are ETL isomorphic iff there exists an ETL isomorphism between
their domains.

In the remainder, “ETL isomorphism” and “isomorphism” are used interchangeably.

4.2 Eight Properties of Saturated ETL Models

When generating an ETL model from a DEL dynamical system, the resulting forest
will inherit a set of properties. Some stem from the graph theoretic nature of action
models, product update and the associated pruning to connected components of
clean maps, some from the workings of pre- and postconditions, and yet some stock
from the functional modus operandi of dynamical systems. This section defines the
eight properties of main relevance to this paper. In describing their intuitions, the
agent relations are interpreted to represent indistinguishability.

Throughout this section, let # = (E, H,R, V, H) be a saturated ETL model. Nota-
tionally, len(h) denotes the length of history h, he denotes the sequence extending
history h with event e and h C h’ denotes that h is a prefix of h’. Agent-quantification
is suppressed: The stated properties should all be taken to hold for all agents.

The first three properties are well-known. First, Synchronicity requires that agents
know the current time: If two histories are indistinguishable for agent i, then they
are of equal length. H satisfies

Synchronicity iff Yh,h’ € H, if hR;h’, then len(h) = len(h’).

Second, Perfect Recall ensures agents never forget what they have learned (though
new uncertainty may be introduced): If agent i cannot distinguish two histories,
then neither can i distinguish their predecessors. # satisfies

Perfect Recall iff Vh,h' € H,Ve,e' € E : he,h’e’ € H, if heR;h’¢’, then hR;K’.

Third, Local No Miracles enforces that events carry the same information in all states
in the same “epistemic context” (connected component): If two events do not carry
distinguishing information in one history of the context, then they should not mirac-
ulously carry information in another history in the same context. H satisfies

Local No Miracles iff Yh,h',h;,h, € H,Ve,e’ € E : he,h’e’ € H, if hR;h’, h;R;h,,
hieR;h,e’ and hR*h,, then heR;h’e’.

Synchronicity, Perfect Recall and Local No Miracles were identified by van Benthem
et al. [15] to be inherited in any ETL model generated using sequences of actions
models (see Sec. 9 for discussion and comparison).

The fourth property is almost the converse of Synchronicity: Connected Time-
Steps requires that a time-step contains at most one connected component. ETL
models generated by clean maps will satisfy this property as clean maps delete su-
perfluous states. H satisfies

Connected Time-Steps iff Vh,h’ € H, if len(h) = len(h’), then hR*h’.

17

The next three properties all concern definability issues. Each in their own way,
they ensure that a DEL dynamical system sought to generate H can invoke the right
operation at the right place or time. They are given as existence requirements with-
out listing criteria that ensure their satisfaction.

First, Precondition Describable ensures the definability of the precondition of the
action o, that will emulate event e in the DEL dynamical system: The formula o,
required to exist describes exactly those histories h in a connected component on
which e is executed. H satisfies

Precondition Describable iff Ve € E, there exists a 5, € L4) such that if there is
ah’e € H, then for all h € H, if h’'R*h, then C(Hh)h |= &, iff he € H.

Second, Postcondition Describable ensures the definability of the postcondition of
the action o, that will emulate event e in the DEL dynamical system: The formula
o p, describes the propositional change due to e; the set D, contains the atoms made
true by e and the negation of the atoms that e makes false. # satisfies

Postcondition Describable iff Vhe € H, there existsa 6, € Ly suchthat 6, =D,
for

D,={p€®:h¢V(p),hecV(p)tU{~q:qed heV(q),he£V(q)}.

Third, Component Collection Describable ensures the definability of an addi-
tional precondition for each point o € I' of the multi-pointed action model Xr of
the DEL dynamical system. The additional precondition ¢ is akin to the test condi-
tions in a “if ¢, do a” instruction from knowledge-based programs: It specifies
when o should be the “surviving” designated action. When the points of (#, H) are
suitably describable by such tests, the tests may be used to control the behavior of
the DEL dynamical system. The right degree of describability of points of (#, H) for
such control turns out to be on the level of collections of connected components.
Identifying each component by its point, a component collection for (H, H) is a set
of points A C H such that

a) all points in A belong to a common history: h,h’ € Aimplies h E h’ or h’ C h, and
b) respecting common histories, A is closed under bisimulation equivalence: if (h T
h ork Ch)andh=h, then h€Aiff ' €A.

The property Component Collection Describable then requires the existence of a
formula ¢, which must be true at the points A C H (the “right times”), while being
false at H\A (excluding “wrong times”), for every component collection A. H satisfies

Component Collection Describable iff for every component collection A C H, there
exists a p4 € L 1) such that C(Hh)h = ¢, iff h € A.

The final property, Point Bisimulation Invariance, ensures that the temporal struc-
ture of (#, H) is mimicable by a mapping: Identical conditions must be followed by
identical effects. Point Bisimulation Invariance reflects this slogan for two aspects of
clean maps. First, that clean maps are mappings: When applied to identical elements
(pointed Kripke models that have bisimilar points), identical images result. Second,

18

the property reflects the slogan in the workings of the preconditions of action mod-
els: If the same action model is executed on any two pointed Kripke models, then if
any points in those two models are bisimilar, they will be treated equally under the
product with the action model.'® # satisfies

Point Bisimulation Invariance iff Yhy,h,, hs,h, € H, if C(Hh;)h & C(Hhy)R' and
C(Hh,)hs < C(Hhy)hy, then hye € H iff hye € H.

In words: Take two connected components, C(#h;) and C(*h,) from (H,H). Each
component will have a single designated point; let h be the designated point of
C(#Hh,) and h’ that of C(#h,). Point Bisimulation Invariance then states the follow-
ing: If the points h and h’ are bisimilar, then if two other histories, say h; and h,,
from respectively C(#h;) and C(*h,) are also bisimilar, then h; and h, will be ex-
tended by exactly the same events. In short: If the points are bisimilar, then history
bisimilarity implies event effect invariance.

5 Generated ETL Models and their Properties

A saturated ETL model is generated from an initial pointed Kripke models x and a
clean map f by, essentially, recording the orbit of f from x as a temporal structure:
The states of x become histories of length 1 and states of f*(x) become histories of
length k + 1; the actual state in each f*(x) becomes an ETL model point; epistemic
relations and valuations are directly transferred. Formally:

Definition 6 (Generated Structure). For any pointed DEL dynamical system (X, f, x),
its generated structure is the tuple (E,H,R,V, H) given by

E :={e,:0 €V, for some k € N}
for Vo := [x] and V. := {0 : (s,0) € [(x)]}
H :={y(s):s€[f*(x)] for some k € N}

with v : ey Vi — E given by y(o) = e,
and for s = ((01,05),...,0,) use y(s) := y(o1)y(02)...v(0,)

R, :={(h,h)eHxH:y '(WR,y '(h)}foralliecl
V(p):={heH:3keN,y '(h) € [p]; = {t € [f*()]: t Ep}}
H :=1{h:3keN, f¥(x)=Ms and h = y(s)}

If (E,H,R,V, H) is isomorphic to a saturated ETL model (#’, H'), then (X, f, x) gen-
erates (H',H).

Property 1. For any DEL dynamical system, the structure generated is a saturated
ETL model: H is indeed closed under prefixes and it is saturated as for all h € H,
C(#h) shares a unique h with H.

15The second aspect is the content of the weaker property Local Bisimulation Invariance of
[15], to which Point Bisimulation Invariance is related in Sec. 9.

19

Fig.6. An ETL model (#,H) with two saturated component branches. Connected compo-
nents C,, C; and C, form one component branch b. With H, = {e;,e,e,,e,e4e5}, (b,H) is a
saturated component branch. The infinite set consisting of components C,, Cs, etc. form an-
other component branch b’. Notice that for the branch b = {e;, e;e;}, the component branch
b is longer than b itself, as b includes the component C,.

The first main result furnishes a set of properties that any DEL dynamical system
generated ETL model will necessarily satisfy:

Proposition 2. If saturated ETL model (H,H) is generated by a pointed DEL dynam-
ical system, then (H,H) satisfies seven of the eight properties of Sec. 4.2, namely Syn-
chronicity, Perfect Recall, Local No Miracles, Connected Time-Steps, Precondition De-
scribable, Postcondition Describable, and Point Bisimulation Invariance.

Proof. All proofs may be found in Appendix starting on page 29.

The second result shows that the last property of Sec. 4.2 is indeed only a con-
tingent feature of some generated ETL models:

Proposition 3. Not all saturated ETL models generated by pointed DEL dynamical
systems are Component Collection Describable.

Proof. See Appendix on page 31.

6 From ETL Model to Dynamical System

For certain ETL models, there exists DEL dynamical systems that will generate them.
The following result lists sufficient conditions of an ETL model for it to be generat-
able by a DEL dynamical system:

Proposition 4. If (#,H) is a saturated ETL model that satisfies all eight properties of
Sec. 4.2, then there exists a pointed DEL dynamical system that generates (H, H).

The proof, which may be found in the Appendix on page 31, rests on the idea of
regarding an ETL model as a collection of saturated component branches, illustrated
in Figure 6. Each such branch is a sequence of pointed Kripke models and hence
potentially the orbit of a DEL dynamical system.

To obtain the notion of a saturated component branch, decompose ETL model
into branches, lump these together in connected components and saturate:

20

Definition 7 (Branches). A branch of an ETL model H = (E,H,R,V)isasetb CH
that

1. has a unique root, i.e., contains a unique history that has length 1;

2. is maximal with unique extension: If h € b and he € H for some e € E, then
|[{he’ : he’ € b}| =1;

3. is closed under finite prefixes.

The component branch of b is the sequence b = b,, b,, ... of connected components
that a) is ordered according to history length, b) has prefix (C(*h)),ep, and c)
is extended to be either maximal in H (3k € NVh’ € b,—3e € E : h'e € H) or
infinite (Vk € N3h’' € b, e € E : h'e € by,). A saturated component branch is a
pair (b, H) with H C H a set of points closed under finite prefixes such that every
component in b has exactly one point.

Enumerating H by history length, the following link to pointed Kripke models is
obtained:

Property 2. For saturated component branch (b, H), the pair (by,h,) is a pointed
Kripke model.

Moreover, the construction emphasizes how specific ETL models have a strong
resemblance to DEL dynamical system orbits:

Property 3. 1f saturated ETL model (#, H) has property Connected Time-Steps, then
‘H has a unique component branch b.

Jointly, these two properties allow us to illustrate the proof methodology of
Proposition 4: Take an ETL model # that has Connected Time-Steps and is satu-
rated by points H. Envision the model as a component branch b saturated by H.
From this, extract the sequence of pointed Kripke models (by,h,)iey. For each k,
find an action model that transforms (by, h,) into (by.4,h,). Join all these action
models into a deterministic multi-pointed action model and construct its clean map
f. Then ({(by,h,) : k €N}, f,(by,h;)) is a pointed DEL dynamical system that gen-
erates (#H, H). Full details may be found in the Appendix on page 31.

The relation between DEL dynamical systems and ETL models that do not have
Connected Time-Steps is discussed in Sec. 8.

7 Characterization: Image-finite and Concluding

Propositions 2 and 4 do not quite yield a characterization result pertaining to the
ETL model generatable by DEL dynamical systems. This is due to the fact that Com-
ponent Collection Describable is not implied for ETL models generated by an DEL
dynamical system when working with a normal, finitary modal logical language, as
shown by Proposition 3.

Imposing two restrictions on ETL models and DEL dynamical systems yields a
characterization result. Both are finiteness assumptions. The first an assumption of
image-finiteness for the modal relations:

21

A binary relation B C A x A is image-finite iff the set {y : (x, y) € B} is finite
for all x € A. On sets of image-finite structures, the Hennessy-Milner Theorem
ensures that bisimilarity and modal equivalence relate exactly the same models, cf.
e.g. [17,31]. The assumption is therefore natural from a modal logical point of view.
The notion may be applied to DEL dynamical systems and ETL models: Call a pointed
DEL dynamical system (X, f, x) image-finite if both x and the action model of f are
image-finite for all I-indexed relations. This ensures that f*(x) is image-finite for
alli €I, all k € N. An ETL model is image-finite if all its I-indexed relations are
image-finite.

The second restriction concerns the temporal evolution, which is required to
show finite variety:

Definition 8 (Concluding DEL Dynamical System). A pointed DEL dynamical sys-
tem (X, f,x) is periodic iff f*¥(x) = f**™(x) for some k > 0, m > 0. It terminates
iff for some k € N, f¥(x) is undefined. If it does either, it is said to conclude.

Definition 9 (Concluding ETL Model). A point h € H of a saturated ETL model
(#, H) is repeating if there exists points h’,h” € Hwith h C h’ C h” and C(Hh')h’ =
C(HR")R". A point h is finite if there exists a point h’ with h C h’ while there is no
e € E for which h’e € H. The model (H, H) concludes if every point in H is either
repeating or finite.

Restricting attention to the classes of image-finite and concluding DEL dynamical
systems and ETL models, a proper characterization result exists:

Theorem 1. A saturated ETL model (H,H) is image-finite, concluding and satisfies
all eight properties of Sec. 4.2 if, and only if, it is generatable by an image-finite and
concluding pointed DEL dynamical system.

Proof. Left-to-right: The existence of a generating DEL dynamical system is guaran-
teed by Proposition 4. The constructions in the proof of Prop. 4 moreover ensure
that the DEL dynamical system is both image-finite and concluding.

Right-to-left: Proposition 2 ensures that the model will satisfy all eight proper-
ties, except maybe Component Collection Describable. Lemma 1 ensures the model
is image-finite and concluding, which by Lemma 2 ensures that it does satisfy Com-
ponent Collection Describable. The first lemma is shown in the Appendix on page
35, the second immediately after.

Lemma 1. If there exists an image-finite and concluding pointed DEL dynamical sys-
tem that generates (H, H), then (#,H) is image-finite and concluding.

Lemma 2. If a saturated ETL model (H,H) is image-finite, concluding and satisfies
Connected Time-Steps, then (H,H) is Component Collection Describable.

Remark 3. The converse of Lemma 2 does not hold, as Component Collection De-
scribable does not imply image-finiteness. '

16Being Component Collection Describable does not imply being image-finite: Let the model
have two components in one component branch. Let the root component b, be image-
infinite and satisfy p at byh. Let by’ satisfy —p. Then the model satisfies Component Col-
lection Describable with ¢y := p, @y := —p and @, vy := pA—p, but it is not image-finite.

22

8 Non-Deterministic Intensional Protocols

In the previous sections, the ETL models contained only single component branches
as this is a requirement to be generatable from a DEL dynamical system — or a
deterministic extensional DEL protocol. Extensional DEL protocols are in general
non-deterministic and may therefore generate ETL models with multiple compo-
nent branches, as e.g. the ETL model in Fig. 6. To facilitate comparison, this section
is dedicated to non-deterministic intensional protocols, implemented as families of
DEL dynamical systems running in parallel.

Definition 10 (Component Branch Sub-Model). Let H = (E,H,R,V) be an ETL
model and let (b, H) be a saturated component branch obtained from . The compo-
nent branch sub-model of # given by (b, H) is then (Hy,, H) = (Ey,, Hy, Rjpy, Vi, » H)jes
such that E, ={e € E:e€bor3dheb,hecb},H,={h€H:he€b}and |, de-
notes restriction.

Property 4. If H is an ETL model and (b, H) a saturated component branch obtained
from H, then (Hy, H) is a saturated ETL model.

To (re-)produce ETL models that consist of more than one component branch, a
family of dynamical systems each generating a component branch of the ETL model
is used. The complete ETL model is obtained by taking the union of all ETL compo-
nent branches.

Definition 11 (ETL Model Union). Given a countable family of saturated ETL mod-
els {(’Hj,lij)}jeJ with each (’Hj,ﬂj) = (E;,H;,R;, Vj,ﬂj) for j € J, their (unpointed)
union model is U; = (E;,H;,R;, V;) with x; := UjEJ *; for x € {E,H,R,V}.

An ETL model # is generated by a family of pointed DEL dynamical systems
{(X}, fj,x;)}je; iff each (X}, fj, x;) generates a saturated ETL model (Hj,ﬂj) such
that # is the union model of{(Hj,Iij)}jeJ. The family {(X}, f;, x;)};e; is minimal in
generating H iff no proper subset of the family also generates H.

Lemma 3. Let {(Xj, fj, x;)};c; be minimal in generating H and let (X, f;, x;) generate
the saturated ETL model (Hj,ﬂj). Then (Hj,ﬂj) is the component branch sub-model
for some saturated component branch (b, H) of H.

Proof. See Appendix on page 35.

Theorem 2. Let an image-finite and concluding ETL model H be given. H is generat-
able up to ETL isomorphism by a family of image-finite and concluding pointed DEL
dynamical systems, if, and only if, there exists a saturation of each component branch
b of H such that (Hy, H) satisfies all eight properties of Sec. 4.2.

Proof. See Appendix on page 36.

23

8.1 Persistence Under Union

The properties in Theorem 2 are associated with the component branches of the ETL
model, instead of the ETL model itself. However, several of the eight properties are
not inherited from component branches to the union model: Some are not defined
for unpointed structures, and some are simply not robust under union. In the follow-
ing final set of results linking DEL dynamical systems and ETL models, properties
definable for general, unpointed ETL models are detailed.

Lemma 4. The saturated ETL model properties Synchronicity, Perfect Recall and Post-
condition Describable persist under ETL model union. Le.: Let {(H;, ﬂj)}jej be a count-
able set of saturated ETL models. If all (H;, H j) satisfy either of the mentioned proper-
ties, then the (unsaturated) union model U; satisfies that property.

Proof. See Appendix on page 37.

Property 5. Local No Miracles, Precondition Describable, Point Bisimulation Invari-
ance and Connected Time-Steps do not persist under union.

Proof. See Appendix on page 37.

Though neither Local No Miracles nor Point Bisimulation Invariance persist un-
der union, weaker versions of each property do recur in the union model: See Propo-
sition 5 below. Both properties persist as they are independent of structure outside
a given component. They are therefore not affected by union. Local Bisimulation
Invariance originates from [15] and is further discussed in Sec. 9.

Definition 12 (ETL Model Properties). An unsaturated ETL model
H = (E,H,R, V) satisfies

Very Local No Miracles iff Vh,h’,h,,h, € H,Ve,e’ € E : he,he’ € H, if hR;H,
hyeR;hye’, heR*h,e and hR*h,, then heR;h'e’;

Local Bisimulation Invariance iff for all h,h’ € H, e € E, if h and h’ are bisimilar,
hR*h’ and he € H, then h’e € H.

Proposition 5. If an ETL model H is generated by a family of pointed DEL dynamical
systems (possibly neither image-finite nor concluding), then H satisfies Synchronic-
ity, Perfect Recall and Postcondition Describable and Very Local No Miracles and Lo-
cal Bisimulation Invariance.

Proof. See Appendix on page 38.

9 Protocol Comparison

This paper is in line with the approach of van Benthem et al. [15] in investigating the
generative power of DEL dynamical systems with respect to the class of ETL models.
In this section, the above results are compared to those obtained in [15] relating
DEL protocols to ETL models.

24

9.1 Generating ETL Models from DEL Protocols

Generating ETL models from DEL protocols is somewhat simpler than from sets of
DEL dynamical systems. Unsaturated ETL forests are generated directly from a DEL
protocol, without e.g. first defining saturated component branches. For the special
case of uniform DEL protocols, an ETL model is generated from an initial pointed
Kripke model as follows, cf. [15]:!7

Definition 13 (ETL Model Generated from a Uniform DEL Protocol). Let p be a
uniform DEL protocol for the pointed Kripke model Ms, let p = p;...p, € p(s) and let
(Ms)P :=(Ms®p;)...9p,. The generated ETL model of Ms and pis # = (E,H,R,V)
with (H,R,V) = pep(Ms)P.

Remark 4. Notice that no restriction to connected components is required posterior
to taking products.

9.2 ETL Properties from DEL Protocols

The properties of ETL models generated from DEL protocols [15] results in a list
of properties not identical to that of Sec. 4.2. But there is overlap: Synchronicity,
Perfect Recall and Local No Miracles. The remaining properties from [15] are Lo-
cal Bisimulation Invariance, Propositional Stability and Finite Executions:

Definition 14 (ETL Model Properties of [15]). An ETL model # = (E,H,R,V)
satisfies

Propositional Stability iff for all propositional formulas p and for allh € H,e € E
such that he € H, it holds that h € V(p) iff he € V(p);

Finite Executions iff for each n, for each e € E, the set {h : he € H and len(h) = n}
is finite.

Remark 5. The property Propositional Stability is required as [15] concerns action
models without postconditions.'® There is a comment on the resulting difference
below.

Before relating DEL protocols to DEL dynamical systems and the ETL model prop-
erties they induce, recall the main results of [15].

Theorem (Main Representation Theorem of [15]) 1) If an ETL model is generated
by a uniform DEL protocol, then it satisfies the five properties Propositional Stability,
Local Bisimulation Invariance, Synchronicity, Perfect Recall and Local No Miracles.

7The method for generating an ETL model from a state-dependent DEL protocol has a slightly
more complex definition. As uniform DEL protocols is the case closest to the cases for DEL
dynamical systems dealt with in this paper, the reader is referred to [15] for the definition
for state-dependent DEL protocols.

18Equivalently in the current setting would be action models with post(c) = T for all events
o.

25

2) If an ETL model satisfies the six properties Finite Executions, Propositional Stability,
Local Bisimulation Invariance, Synchronicity, Perfect Recall and Local No Miracles, then
it is generatable by some uniform DEL protocol.

Theorem (Theorem 2 of [15]) An ETL model is generatable by a state-dependent
DEL protocol iff it satisfies Propositional Stability, Synchronicity, Perfect Recall and
Local No Miracles.

9.3 Discussion and Comparison of DEL Protocols and DEL Dynamical
Systems

With results established for both DEL dynamical systems and extensional DEL proto-
cols, these may now be compared, first on a technical level concerning the induced
properties, and second from a modeling perspective.

For both DEL dynamical systems and DEL protocols the generated ETL model
satisfies the core DEL properties Synchronicity, Perfect Recall and Local No Miracles.
This comes as no surprise, as these properties — as was mentioned in Sec. 4.2 — stem
from the very nature of product update. Beyond these, however, differences emerge:

Connected Time-Steps: An ETL model generated using a single DEL dynamical sys-
tem has connected time-steps as a consequence of using the restriction to connected
components. This property does not survive model union, and is therefore not inher-
ited by ETL models generated by families of DEL dynamical systems, cf. Remark 5.
DEL protocols do not induce the property in generated ETL models, irrespective of
whether such are defined using a restriction to connected components or not: DEL
protocols may contain several sequences of action models, producing disjoint new
time steps.

Conceptually, as an additional requirement on ETL models, Connected Time-
Steps adds nothing not already inherent in the standard modal logical approach to
agency: Using relational semantics, nothing disconnected from the designated state
impacts the satisfaction of formulas, and hence neither does it affect the modeled
agents.

Finite Executions vs. Precondition Describable: Finite Executions (referred to as
“the finiteness assumption” in [15]) is meant to ensure the existence of the precondi-
tion formula of the action model event o, for each ETL event e. Thus, it shares a role
with the abstract Precondition Describable, but is weaker than this direct existence
requirement. It is conjectured that a compilation error occurred post-submission
of [15], omitting further requirements.*’

“Finite Executions is not enough to guarantee the existence of suitable preconditions for-
mulas: Let a single-agent ETL model #H be given with histories of length 1 divided into two
disconnected R,-components, H, and H; with e € H,, and ¢’ € H;. Let the sub-model H,, H;
be non-image-finite and non-bisimilar but let (Hy,e) (H},e’) be modally equivalent. Such
pointed Kripke model exist, cf. e.g. [17, Ex. 2.23, p. 68]. Let the set of histories of length
2 be given by {ee*} and let H contain no further histories. Then H satisfies Finite Execu-

26

Propositional Stability vs. Postcondition Describable: That the theorems of van
Benthem and co-authors include Propositional Stability is a result of their use of
action models without postconditions. DEL dynamical systems limited to complex
model transformers built over the same class of action models would generate ETL
models also satisfying this property. Conversely, it is hypothesized that any ETL
model generated by a DEL protocol defined over action models with postconditions
would satisfy the abstract requirement of being Postcondition Describable by ex-
hibiting only finite atomic change between successive histories.

Component Collection Describable: The Component Collection Describable re-
quirement ensures the existence of suitable preconditions for the designated actions
of the multi-pointed action model underlying the clean map, which control the tem-
poral flow of the dynamical system when seeking to build a particular ETL model.
This is not needed when working with DEL protocols, as the temporal occurrence of
events is exogenously given. The requirement is not inherited by every ETL model
build from a DEL dynamical system, but is implied when the system is aptly finite.

Conceptually, Component Collection Describable may be seen as an internaliza-
tion requirement on dynamic development: It requires that any transformation that
is executed can be given an “explanation” within the model, in the sense that there
exists a formula describing exactly those connected components in the ETL model
where that transformation occurs. As the existence of such “explanations” for be-
havior is a prerequisite for any form of rationalizability, we find that this additional
restriction is, in spirit, implied by the very idea of working with logical (rational)
agents.

Local vs. Point Bisimulation Invariance: Whether generated by a uniform DEL
protocol, single DEL dynamical system or a family of DEL dynamical systems, the
resulting ETL model satisfies Local Bisimulation Invariance. This is due to the na-
ture of preconditions in product update. Any saturated ETL model generated by a
single DEL dynamical system satisfies the stronger property of Point Bisimulation In-
variance, which also involves a temporal component, reflecting the fact that clean
maps are mappings acting on the points of pointed Kripke models, and hence output
equivalent values given equivalent inputs. As the temporal invariance is defined on
points, it is lost when moving to unsaturated models, exactly as these are unpointed.
In contrast, as DEL protocols react to an external clock rather than to the structure of
the current pointed Kripke model, such protocols do not induce this strong version
of bisimulation invariance.

Conceptually, the temporal invariance of Point Bisimulation Invariance repre-
sents a behavioral uniformity assumption: An agent defined by an intensional pro-
tocol will perform the same action in any two bisimilar situations. With bisimilarity
implying modal equivalence and agents’ reasoning capabilities given by the modal

tions (and the other properties), but there exists no suitable precondition formula for o,
as e and e’ are modally equivalent, but e* only executed on e. An additional requirement of
image-finiteness would solve this problem.

27

language used to describe their circumstances, the uniformity assumption then en-
forces that agents base their decisions fully on information they can explicitly reason
about. Contraposed: If an agent varies its action, this must be caused by a change
in circumstances perceivable by the agent (i.e., expressible in its language). In mod-
eling agency, we do not find the assumption that circumstances determine decision
unduly strong. Rather, we would argue, the assumption is a prerequisite for catego-
rizing the resulting behavior as rational.?°

10 Conclusion

Logical modeling of dynamics in multi-agent systems relies on protocols as control
mechanisms. With multiple protocol frameworks available, the question naturally
arises which, if any, is better suited for a given modeling task. In choosing a class
of protocols in which to cast a model, an implicit choice of agency, actions and dy-
namics is thus made. In this paper, an implementation of intensional protocols as
DEL dynamical systems has been investigated. On the technical side, the type of
epistemic temporal models that DEL dynamical systems may generate have been
characterized. Conceptually, DEL dynamical systems qua intensional protocols have
been compared to the main protocol framework in dynamic epistemic logic, namely
the extensional DEL protocols of [15]. In summary, extensional DEL protocols are
convenient for encoding extensional protocols: In cases where one wishes to answer
a question concerning how a particular sequence of actions will influence a given
initial model, then directly specifying that sequence of actions is a straightforward
formalization. In contrast, it is not possible to run dynamics on an external clock
using DEL dynamical systems.?! In cases where one seeks to model an intensional
protocol, possibly applicable to more than a single initial model, then DEL dynami-
cal systems enjoys a particular benefit: As exemplified, intensional natural language
protocols may in a natural way be encoded as clean maps. Further, as shown by
the Muddy Children example, a clean map may be a vastly smaller representation
of the intended protocol than any extensional DEL protocol counterpart. Finally, in
relation to ETL model generation, then DEL dynamical systems do not impose re-
strictions over and above what one may expect from an intensional protocol frame-
work. The new, main conceptual restriction — that circumstances determine decision
— may even be desirable when modeling agents that base their decisions fully on in-
formation they can explicitly reason about through the formal language. Given the
popularity of intensional protocols in other multi-agent paradigms, it is surprising

20Compare to extensive games with imperfect information, where it is, as standard, assumed
that agents have knowledge of their own actions, i.e., that if an agent cannot distinguish
between two nodes, the agent will choose the same action in the two nodes. In [49], it is
assumed by definition. For a discussion, see [28] where the requirement is denoted the Ex
Interim Condition.

21A clock may however be build into DEL dynamical system: This may be done by working
in an extended language with atomic propositions denoting the current time and using
postconditions to make time run. For finite time sequences, this may be encoded using a
finite model.

28

that they have not previously been systematically investigated for dynamic epistemic
logic.

There is a range of open questions that we find highly interesting. The relation
to automata theory (cf. Sec. 1.2) seems a leading candidate for wider and deeper
semantic appreciation. Results on when (and how) DEL dynamical systems can ob-
tain various automata representations could possibly allow for a comparison both
to orbit results on topological DEL dynamical systems [39,40,57], but also to work
on Grand Stage models [45,47]. As that branch of literature is rich with results on
axiomatizations and complexity results, a tighter semantic connection may possibly
facilitate a partial result transfer, with one aim being axiomatizations of epistemic
temporal logics for classes of ETL models generated by particular types of DEL dy-
namical systems, akin to the result on temporal public announcement logic of [15].

Acknowledgments

The Center for Information and Bubble Studies is funded by the Carlsberg Foun-
dation. The contribution of R.K. Rendsvig to the research reported in this article
was also funded by the Swedish Research Council through the framework project
‘Knowledge in a Digital World’ (Erik J. Olsson, PI): A previous version of this paper
occurs in the thesis [57]. We thank Alexandru Baltag, Johan van Benthem, Thomas
Bolander, Vincent F Hendricks and Dominik Klein for valuable comments on ele-
ments of this paper, as well as the participants of the 2016 CADILLAC and the 2016
LogiCIC workshops, held in Christiania, Denmark, and Amsterdam, the Netherlands,
respectively.

Appendix: Proofs

Proposition 1. Let (X, f,x) be a pointed DEL dynamical system given by multi-
pointed action model Xr. Then there exists a singleton uniform DEL protocol that
produces the orbit of f from x.

Proof For each k € N, let o, € T be such that f*(x) |= pre(c,). As Zr is X-
deterministic, for each k there is at most one such o . Define a uniform DEL protocol
p as the smallest protocol for which p,(s) = Zo, (for all s € x) whenever o, exists.
Then when p is sequentially applied to x using product update, it produces the se-
quence {f*(x))ey of pointed Kripke models (up to the deletion of redundant states
not connected to the designated states, cf. Sec. 2). O

Proposition 2. If saturated ETL model (#, H) is generated by a pointed DEL dynam-
ical system, then (%, H) satisfies seven of the eight properties of Sec. 4.2, namely
Synchronicity, Connected Time-Steps, Perfect Recall, Local No Miracles, Precondi-
tion Describable, Postcondition Describable, and Point Bisimulation Invariance.

Proof Let (X, f,x) be a pointed DEL dynamical system with orbit (f*(x))ey. The
length of a state s in f*(x) is len(s) := k + 1.

29

Let (H,H) be the saturated ETL model generated by (X, f, x). Given the con-
struction of y in Def. 6, there exists a family of isomorphisms {g;},ey With each
g mapping [[fk(x)]] to H, := {h € H: len(h) = k} satisfying g,(s) = e, and
gx+1((s,0)) = gi(s)e,. Using this family, it is shown that (¥, H) satisfies the listed
properties in order:

Synchronicity. Assume for arbitrary h,h’ € H that hR;h’. Then by the construc-
tion of the generated R; (Def. 6), 3k € N : g '(h)R;g; '(h). Hence g, (), g '(h) €
[f*(x)] Thus, len(g, ' (h)) = len(g; ' (h)). Hence, by the construction of g, len(h) =
len(h’).

Perfect Recall. Assume for arbitrary he,h’e’ € H that heR;h’e’. Then 3k € N :
g '(he)R;g *(W'e’). By construction of f, f¥(x) = C(f*!(x) ® Zr)s’ for Tr the
multi pointed action model. As g, '(he)R;g; ' (h’e’), by definition of ® and clean
maps, &', (hR;g; ", (h'). Hence, by definition of R;, it follows that hR;h’.

Local No Miracles. Assume that 1) hR;k’, 2) h;eR;h,e’ and 3) hR*h; for arbitrary
he,h'e’,h e, hye’ € H. 1) implies that 1*) g, ' ()R, g; ' (h') for k = len(h). 3) implies
that len(h) = len(h;) by Synchronicity. In conjunction with 2), this implies that 2*)
Sii1(hie)R; gl (hye)).

By construction of f, f*1(x) = C(f*(x) ® Zr)s’. By 2*) and the definition of
® and clean maps, there must be 4) o,,0, € Xr such that o,R;0,, for o, the
o such that g,,,((s,0)) = hye, for some s € [[fk(x)]], and o, the ¢’ such that
Si1((t,07)) = hye', for some t € [F*(x)].

Now assume that (gk_l(h), a,), (gk_l(h’), o) € ﬂ:fk“(x)]]. Then 1*), 4) and Def.

® jointly imply that (gk’jl(h), ae)Rl-(gk’jl(h’), 0,/). By the definition of the generated
R;, it thus follows that heR;h’e’.
Connected Time-Steps. For arbitrary h,h’ € H assume len(h) = len(h’). Let k € N
such that h,h’ € Hy. Then g;*(h), g (') € [f*(x)]. By definition of product up-
date ®, clean maps and the fact that x is connected, g;l(h)R* gk_l(h/). By definition
of (H,H) it follows that hR*h’.

Precondition Describable. For arbitrary e € E, let §, = pre(o,). Recall that by
definition of ®, Vk € N, (g;*(h),0,) € [f*(x)] iff g;*(h) = pre(o,) and o, €
vk+1 (). Assume k' € H : h'e € H and let h € H such that K’R*h.

=: Assume for some k € N that (Hy,h) |= 6,. Then gk_l(h) = pre(o,). By as-
sumption, 0, € % ,. By (%), thus (gk’l(h), o,) € [f*(x)]. Therefore, he € H.

«: Assume he € H. Then for some k €N, g; !, (he) = (g;*(h),0,) € [f**(x)].
By (%), & '(h) |=pre(o,). And thus h |= §,.
Postcondition Describable. For arbitrary he € H (in specific for some k € N,

he € Hy,q) let 6, = post(o,) where D, = D; U D,, for p,q € ® such that D; =

{p:h¢V(p),he € V(p)} and D, = {~q : h € V(q),he £ V(q)}.
Consider an arbitrary p € D;. Then by definition of the generated ETL model

(%,H), g;'(h) & [plk and g} (he) € [plis1 (+). By construction, g} (he) =
(g;'(h),0) for some o € V., (+). By definitions of (#,H) and ®, (g;'(h),0) €

30

[Pl iff post(o) |= p. Then, by (x) and (x%), post(c) |= p. As p € D, was arbitrary,
post(o) |= D;.

The argument for post(c) |= D, is identical. Conclude that post(c) = D, and
thus 6, [= D,.
Point Bisimulation Invariance. Let arbitrary C(Hh)h = (Hy,h) and
C(HR)h' = (H, ') be such that (H, h) < (H;,h’). Hence f*(x) < fl(x) ().

Further, assume for arbitrary h € H, and h’ € H; that (H,,h) < (H;,h’).

=: Assume he € H. By construction of g and definition of clean maps, both
H, and H; are connected components, i.e, Yh,h’ € H, : hR*h’ and idem for H;.
By the Hennessy-Milner Theorem (see Section 7), it follows that h and h’ satisfy
exactly the same modal formulas. Hence, by construction of g and the definition
of H, gk_l(h) and gl_l(h/) satisfy exactly the same modal formulas as well. Now as
he € H, g/ (he) e [f¥'(x)] and thus g ' (h) [= pre(c,). Hence g (W) [= pre(o,)
(#). By (+) and (x#), it follows that (g, (k'),0,) € [f*(x)]. Hence e € H.

<: By the same argument, h’e € H implies he € H.

This concludes the proof of Proposition 2. O
Proposition 3. Not all saturated ETL models generated by DEL dynamical systems
are Component Collection Describable.

Proof. Let Ms and f be as in Fig. 7 (cf. [56]) and X be the orbit of f from Ms. Then
the ETL model generated by the DEL dynamical system (X, f) from initial model Ms
is not Component Collection Describable.

...

Fig. 7. Initial Kripke model Ms and pointed action model. The orbit of f from Ms produces
non-bisimilar models forever: the unique state not satisfying p will split, inserting a new p-
state as it’s child with 7; any other state gets exactly one child:

f(Ms):

N
S) e

Consider A = {f"(Ms) : n is even}. There does not exist a ¢ such that for all x € X,
x |= ¢ iff x € A: Assume the modal depth of ¢ is k. Let m > k. Then f™(Ms) |= ¢
iff f™*1(Ms) = ¢ as two such models will not differ in the first m + 1 relational
steps from the point. Hence the ETL model generated by (X, f) from Ms is not
Component Collection Describable. O

Proposition 4. If (#,H) is a saturated ETL model that satisfies all eight properties
of Sec. 4.2, then there exists a pointed DEL dynamical system that generates (#, H).

31

Proof. Proposition 4 is shown by constructing a DEL dynamical system (X, f) with
f the clean map of a X-deterministic multi-pointed action model ¥r and an initial
Kripke model x € X such that the saturated ETL model (H',H’) = (E’,H’,R/,V',H’)
generated by (X, f) from x is ETL isomorphic to (#,H). The latter is shown by
induction on len(h) of h € H for a map y* : E— E’. As in Def. 5, for h = eg...e,,
write v*(h) := y*(eg)...y"(e,)-

As (H, H) satisfies property Connected Time-Steps, the ETL model is a saturated
component branch. To emphasize this, in this proof (#, H) is written (Hy,, H).

1. Initial Kripke model

To obtain a practical and consistent naming of states, the initial Kripke model x =
([x1,R,[-1,s) is set to be a re-naming of the initial component of b: Let [x] = {o, :
e € byh}. For the relations and valuation of the initial model, simply copy over the
relations and valuation from the initial component of b: For all i € A, let o,R;0 . iff
eR;e’, and for all p € @, let o, € [p] iff e € V(p). Finally, let the point of x be the
copy of the point of byh: Let s = oy,

2. Constructing (X, f)

To define the DEL dynamical system (X, f), first construct a multi-pointed action
model ¥r = ([X], R, pre, post, T'). In words, construct Xr so that for each time-step
b, of the component branch b, I' contains a designated action o, connected to a
set of actions [X,] € [X] such that the single-pointed action model %'{s,} obtained
from restricting ¥ to [%,] produces the equivalent of b, ., h from the Kripke model-
equivalent of bih. In the precondition of o, include a formula &y,), characterizing
bih. As (Hy,, H) is Component Collection Describable by assumption, such a formula
exists.

Formally, construct Xr piece-wise as follows: Let b h and by, h be given. ;0
is constructed such that C(f*(x) ® ©,0)s’ mirrors the structure of b, 1h:

Let the single-pointed action model Zkr10 141 be
(I]:Zk+l]] > Rk+1: Préii1, pOStk+l’ gk+1)’ given by
[X41]={c, : he € by} with o, ., = 0, such that 3h : he € b,y NH.
(0,,0.) €R,iff 3he,h’e’ € by, : (he,h'e’) €R,.

5e if Oe 7& Opt1
6, Ay, else

with &, and oy, ;, given by Precondition Describable and Component Collection De-
scribable, respectively.

post(o,) = &), as given Postcondition Describable.

Let the multi-pointed action model Xr = ([X], R, pre, post,T) be given by, for
* €{[Z],R,pre,post, }, * =i, ep ¥k and T =y, p {0} This is well-defined:
For pre and post, this follows from Precondition Describable and Postcondition De-
scribable.

32

Let X be the closure of {x} under the operation ®>r. On X, ¥r is guaranteed to be
deterministic as any two characteristic formulas 6, ;, and 5]’)1(/ , are not simultane-
ously satisfiable. Finally, let f be the clean map of ¥r on X. Then (X, f) is a DEL

dynamical system with x € X.

3. Constructing the Isomorphism

Let (H',H") = (E’,H’,R’,V’,H’) be the saturated ETL model generated by (X, f)
from x. Define the two mappings: y' : E — [Z]withy’(e)=o,and y : [Z] — E’
for y(0) = e, cf. Def. 6. From these, define y* : E— E’ as y* :=y oy,

Define subsets of E based on history length: For all k € Nlet E, = {e : e € by} and
Ery151 ={e:heb,he eby, } CE. Let E, k €N, be given mutatis mutandis. Let
}f;i By — [, vi : [2] — E; and v} : E, — E;_ be the restrictions of y',y and
7" t0 Ex x [Z4], [Z4] x E; and Ey. x Ey, respectively. Then, of course, y* = ey 75>
whereby y*(e) = efjﬂ. By induction on len(h), h € H, it is now shown that y* is an
ETL isomorphism.

Claim: The map y* is a bijection. By the construction of y" and y, each Y is an
injection: if e # €', then y;(e) # v;(e’). By construction, it is also guaranteed that y;
is a surjection: Ve’ € E'Je € E : y;(e) = e’. Hence for each k €N, y; is a bijection.
Furthermore, y* is a total map: if e € E; N E,,, then ka(e) =7l (e) (e, 0, €
[Z1Nn[=,D) and yi(o,) = y,u(0,). Thus y o y'(e) is well-defined and in E, N E .
Finally, yv* inherits injectivity and surjectivity from its restrictions. Hence, the
map 7™ is a bijection.

Claim: The map y* is an ETL isomorphism. The claim is shown by 4 inductive
sub-proofs.

1) Domain and Temporal Structure.

Base. Let h € H,,. This is the case iff y"(h) € f°(x) (by construction of initial Kripke

model) iff y o y'(h) € H}) (by Def. 6).

Step. It is shown that he € Hy, iff y*(he) € H, ;.
=>: Assume he € Hy,;. Then h € H,. By the induction hypothesis, y(h) €

[[fk(x)]]. By construction of Z;,;, v'(e) € [Z;,;]. By the same construction and

Precondition Describable, y(h) |= pre(o,). Hence (y'(h),y'(e)) € [f**(x)]. By

Def. 6, in particular the construction of Hy,y, y((y'(h),7"(e))) € H, .

<: Assume y((y'(h),r"(e))) € Hy,,. Then (y'(h),y(e)) € [f*"'(x)] by Def.
6,50 v'(h) € ﬂ:fk(x):l] and y'(e) € [Zx;1]. By the induction hypothesis, h € Hy. If
he ¢ Hy,,, a contradiction is reached: pre(y'(e)) is satisfied by exactly those y'(h) €
[F¥(x)] such that (y'(h), y(e)) € [£¥*1(x)] - by the construction of action models
in this proof and as (#y,, H) is Precondition Describable. So he € Hy ;.

2) Epistemic relations.
Base. It follows by construction of initial Kripke model and Def. 6.
Step. It is shown that Vhe,h’e’ € by, heR;h’e” iff y*(he)RIy*(h'e’).

33

=: Assume that heR;h’e’. By Perfect Recall, hR;h’. By the induction hypothesis,
yT(MR;y'(h'). By construction of %,,;, y'(e)R;y'(¢’). By definition of ®,
(r'(n), Y ()R (r' (1), YT(C/)‘)- By Def. 6, y((y"(h), y"(e))R:y (¥ (R, Y (e))).

e Asume y(((W), @DRy(GIH), @), By Def 6,
(r"(h), y"(e))R;(y"(h"), " (e')). By definition of ®, both y"(h)R;y"(h") and y'(e)R;y ' (e’).
So by construction of ¥, Jhie, hye’ € by : hyeR;hye’. By the induction hypoth-
esis, hR;h’. Further, note that Vh,h’ € b, : hR*h’. Hence, by Local No Miracles,
heR;h’,¢’.

3) Valuation.
Base. It follows by construction of initial Kripke model and Def. 6.
Step. It is shown that Yhe € by, he € V(p) iff y(he) € V'(p).

=: Assume he € V(p) . Either i) h € V(p) or ii) h ¢ V(p). If i), then by the
induction hypothesis, y o y"(h) € V/(p). By construction of %, post(y'(e)) & —p.
Hence (y'(h),7%(e)) € [plis1- By Def. 6, y((y'(h),y"(e))) € V'(p). If ii), then by
the induction hypothesis, y"(h) & [pli. As (Hyp,H) is Postcondition Describable,
by construction of %, post(y'(e)) = p. Thus (y'(h),y"(e)) € [pIis;- By Def. 6,
r(y"(h),v"(e))) € V'(p).

«: Assume y((r'(h),7(e))) € V/(p). Then (y'(h),y'(e)) € [plisy by Def. 6.
Again, either i) y'(h) € [pI; orii) y'(h) & [pl;. If i), then by the induction hypoth-
esis, h € V(p). For a contradiction, suppose he ¢ V(p). Then post(y'(e)) = —p. But
by construction of %, ;, post(y'(e)) & —p. This is a contradiction. Hence he € V(p).
If i), then by the definition of ®, post(y'(e)) |= p. By the induction hypothesis,
h & V(p). If it was the case that he ¢ V(p), then post(y'(e)) }& p. Contradiction.
Thus he € V(p).

4) Points.
Base. It follows by construction of initial Kripke model and Def. 6.
Step. It is shown that he € H, _, iff y*(he) € H, ;. Let f¥(x) =Nt and f**(x) =
Ms.

=: Assume he € H, , ,. By the induction hypothesis, y"(h) = t. By saturation of
by, Je € E : he € by, N H. By construction of %1, v/ (e) € [Zy4;] and, as (Hy, H)
is Precondition Describable, y'(h) = pre(y'(e)). By construction of f, f*1(x) =
C(Nt® (Zps1,77(€))) = CIN ® iy, (£, 77(e))) = Ms. By Def. 6, y(s) = y(y"(he)) €
Hi

<: Assume y(y'(he)) € Hy ;. By Def. 6, f**'(x) = (C(N ® Zy11), (£,77(e)))-
By induction hypothesis, y'™1(t) = h € H «- By construction of the Action Model,
7'(e) = y'(e) for e such that 31’ : K'e € H,,, and h’ € H,. As points in H,, are

unique for all m by Def. 7, h’ must be h. Thus he € H, _ ;.

This concludes the proof of Proposition 4.%2 O

22When constructing an action model that produces a pointed Kripke model isomorphic to
a particular level in the to-be-generated ETL model, Proposition 3.2 of [23] (which states,
roughly, that for almost any two pointed Kripke models, there exists an action model with
postconditions that will produce one from the other using product update) is not appli-
cable. The proposition is not applicable as the transforming action model allows only the

34

Lemma 1. If there exists an image-finite and concluding pointed DEL dynamical
system that generates (#,H), then (#, H) is image-finite and concluding.

Proof. As the DEL dynamical system is image-finite, for all k € N with f¥(x) = Ms,
R; is image-finite (for all i € I). The construction of the generated ETL model (see
Definition 6) ensures that for all Hy, R; is image-finite (for all i € I,). Hence (#,H)
is image-finite.

If the DEL dynamical system terminates, then there is a k € N such that f*(x) is
undefined. Let f*~!(x) = Ms and y(s) = h. As f*(x) is undefined, there is no o such
that y(s)y(o) € H. Hence, there is no e such that he € H. Note that by construction
of H, for all k' € H: k' € h. Thus, all h’ € H are finite and hence (#, H) concludes.

If the DEL dynamical system is periodic, f*(x) = f**™(x) for some k > 0 and
m > 0. Let f*¥(x) = Ms and f**™(x) = M’s’, and let y(s) = h and y(s') = K'.
By construction, h £ h’. From Ms = M’s’ it follows that C(Hh)h = C(HK)h
Thus, all h” € H such that h” £ h are repeating. Furthermore, note that for all
n €N, fin(x) = Fkmin(yx). Now for arbitrary n € N, let fk+”(x) = M"s" and
frEmin(x) = MYs™, and let y(s®) = h" and y(s"') = h". By same argument as
above, h" is repeating. As n is arbitrary, all h” € H such that h” 3 h are repeating.
Thus, all h” € H are repeating and hence (#, H) concludes. |

Lemma 2. If a saturated ETL model (#, H) is image-finite, concluding and satisfies
Connected Time-Steps, then (#, H) is Component Collection Describable.

Proof. Let (H,H) be an image-finite and concluding saturated ETL model. Set B :=
{C(Hh) : h € H}, the set of all connected components in (#, H). As all C(Hh) € B are
image-finite, by the Hennessy-Milner Theorem (see Sec. 7), for each pair h,,h, € H
if h, & h,, there exists a formula ©n, b, distinguishing between h, and h,: h, = @n, b,
while hz l# @hl’hz.

Let [C(Hh)h].. be the equivalence class {C(Hh')h’': C(#h') € Band h’ « h}.
Then, since (H, H) is concluding, the set B, := {[C(#h)h]. : h € H,C(#h) € B} is
finite. Therefore, the conjunction /\hz clheti: hth,} Phy b, 1 well-defined for any h, €
H. This conjunction distinguishes h; from any point in H that is not bisimilar to h;.
Denote this formula ¢y, .

Moreover, as B.. is finite, all sets A C H for which h € A and h’ « h implies
h’ € A are finite. Hence, for any such A, the disjunction \/h ca Pn, 1s well-defined.

This disjunction distinguishes the connected components 1nA from those not in A.
O

Lemma 3. Let {(X}, f;)};c; be minimal in generating # and let (X}, f;, x;) generate
the saturated ETL model (#;, H j). Then (H;,H].) is the component branch sub-model
for some saturated component branch (b, H) of H.

designated state to survive, from which the desired Kripke model is unfolded. The resulting
generated ETL models would therefore (most often) not be ETL isomorphic to the original
ETL model, as ETL isomorphisms require that the temporal structure is preserved.

35

Proof. Let H = (E,H,R,V) be generated by {(Xj, f;)};c;. Let b; be the sequence of
connected components b; , = C(#,h) for all h, € H i ordered on history length k.
Suppose for proof by contradiction that b; is both non-maximal and finite (cf. Def.
7). As bj is finite, there is a k € N such that for all h € bj,k there is no e € E such that
he € b ;1. However, as b; is non-maximal, there is a h € b; ; and some e € E such
that he € H. This implies that there is an ETL model (%, H j,) that extends (H;, H j).
Hence there is a DEL dynamical system (X, f;), j’ € J, such that fj”(xj) = fj’}(xj)
for all n < k — 1. Hence, (X4, fi) is redundant in generating #, contradicting the
assumption that {(X;, f;)};c; is minimal. Thus, (b;,H j) is a saturated component
branch that gives (#;, H j). O

Theorem 2. Let an image-finite and concluding ETL model H be given. H is gen-
eratable up to ETL isomorphism by a family of image-finite and concluding pointed
DEL dynamical systems, if, and only if, there exists a saturation of each component
branch b of # such that (#y, H) satisfies all eight properties of Sec. 4.2.

Proof. Left-to-right: Suppose H is generatable by a family of image-finite and con-
cluding DEL dynamical systems {(X}, f;)};;. Let (%, H j) be the saturated ETL model
generated by (X}, f;) (cf. Def. 6). By Lemma 3, (H;, H j) is a component branch sub-
model of H for some saturated component branch (b,H,) of H. As (”Hj,ﬂj) was
generated by an image-finite and concluding DEL dynamical system, the saturation
H, of H; makes (H;,H j) satisfy all 8 properties of Sec. 4.2 by Proposition 2 and
Lemma 2.

Right-to-left: Let B be the set of all component branches of H and assume that for
each b € B, there exists a saturation such that (#y,, H,) satisfies all eight properties
of Sec. 4.2. As 7 is image-finite and concluding, also each (#y,, H,) is image-finite
and concluding. By the constructions in the proof of Prop. 4, it follows that each
(Hp,H,) is generatable up to ETL isomorphism by a DEL dynamical system that is
image-finite and concluding.

Let (X}, fp, Xp) be the pointed DEL dynamical system that generates (Hy,, Hy) up
to isomorphism, as given by the construction in the proof of Prop. 4. Let (#;,Hy) be
the specific ETL model generated by (X, f},, X},), as given by Def. 6. It will now be
shown that the union structure Ug = (Eg, Hp, Rg ;, Vg)ies Of {(H}, Hy)}pep is isomor-
phic to H = (E,H,R;,V);¢;. To this end, the existence of a bijection g : H — Hy
will be shown.

Let gy, be the isomorphism between (#y, H,) and (Hy, H;), guaranteed to exist
by Prop. 4 and specifically given by 1) the construction of a DEL dynamical system
from a saturated component branch of the proof of Prop. 4 and 2) the construction
for generating an ETL model from a DEL dynamical system of Def. 6. Combining the
state-history naming schemes used in these two constructions yield g;, given by

e’ iflen(h) =1

h

h)=1 ¢
8o {gb(hT)e; withh=h'e else

/

The history names from #,, are hereby carried over as indices to the histories of ;.

36

Define the mapping g : H — Hy by g(h) = gy (h) for h € H,,. This mapping is
well-defined as either i) for exactly one b € B, h € H;, (in which case g(h) is well-
defined), or ii) if h € H;, and h € Hy,, then g, (h) = gy, (h). The latter is ensured as
history names are carried over in exactly the same way by g, and g, by construc-
tion. Hence g = | J,cp &b is @ well-defined map. It is an injection: For h € H and
h' € H, if h # K/, then g(h) # g(h’) by the unique naming convention of the maps
&b, b € B. It is also a surjection: it is well-defined and |H| = |Hg| as by construc-
tion |Hy| = |Hy| for all b € B, and H = | J, . Hp and Hy = | J, 3 H;. Hence g is a
bijection.

That g is also the sought ETL isomorphism follows as (#;,, H,) is isomorphic to
(H;,Hy), for all b € B, cf. Prop. 4. This completes the proof. O

Lemma 4. The saturated ETL model properties Synchronicity, Perfect Recall and
Postcondition Describable persist under ETL model union.

Le.: Let {(Hj,ﬂj)}ja be a countable set of saturated ETL models. If all (”Hj,ﬂj)
satisfy either of the mentioned properties, then the (unsaturated) union structure
U, satisfies that property.

Proof. Synchronicity, Perfect Recall and Postcondition Describable persist because
they are defined on histories which occur uniquely in the ETL forest, which makes
them local by nature. Hence these properties are evaluated locally within a branch
to ensure that there will be no conflicts when taking the union of different ETL sub-
models. O

Property 5. Local No Miracles, Precondition Describable, Point Bisimulation Invari-
ance and Connected Time-Steps do not persist under union.

Proof. Local No Miracles does not persist under union: Consider a family of two
DEL dynamical systems (that each individually satisfy property Local No Miracles.)
with multi-pointed action models f and g with equal initial Kripke model x =
{h,h’,hq,h,} where hR;h’ and hR*h; (by default, as initial models are connected),
but disjoint Kripke models at the next level: f1(x) = {he,h’e’} and g'(x) = {h;e, h,e’}
where h,eR;h,e’ while not heR;h’e’. In this example, Local No Miracles fails because
not heR*hje.

Precondition Describable does not persist under union: Consider a family of two
DEL dynamical systems (that each individually satisfy property Precondition De-
scribable) with multi-pointed action models f and g with equal initial Kripke model
x = {h,h’} with hR*l’ (by default as initial models are connected), but disjoint
Kripke models at the next level: f!(x) = {he} and g'(x) = {h’e}. Then it is possible
that h’ |= 6, while h [~ &,, which breaks property Precondition Describable. It is left
as an open question whether a suitably weakened version of Precondition Describ-
able exists.

That Point Bisimulation Invariance is not preserved under union follows as the
property is stated based on a saturation, but the union structure is unpointed, and
hence unsaturated. If the union structure would be pointed with the set of points
chosen as the union of the sets of points from the united ETL models, then the re-
sulting set of points need not be a saturation, as the united ETL models may overlap,
but have distinct points. In that case, the union structure would be “oversaturated”.

37

Connected Time-Steps does not persist under union as histories within the same
time-step are no longer necessarily epistemically connected in a union of discon-
nected ETL sub-models. O

Proposition 5. If an ETL model # is generated by a family of pointed DEL dynam-
ical systems (possibly neither image-finite nor concluding), then H satisfies Syn-
chronicity, Perfect Recall, Postcondition Describable and Very Local No Miracles and
Local Bisimulation Invariance.

Proof. That H satisfies Synchronicity, Perfect Recall and Postcondition Describable
follows from Prop. 2 and Lemma 4.

That H satisfies Very Local No Miracles follows directly by the additional require-
ment compared to Local No Miracles that heR*h;e.

That H satisfies Local Bisimulation Invariance follows as 1) any ETL model that
satisfies Point Bisimulation Invariance also satisfies Local Bisimulation Invariance,
2) Local Bisimulation Invariance is a property local to a connected component, and
3) connected components remain untouched under union. O

References

1. T Agotnes, H. van Ditmarsch, and Y. Wang. True lies. Synthese, 2017.

2. S. Artemoyv, J. Davoren, and A. Nerode. Modal Logics and Topological Semantics for
Hybrid Systems. Technical report, Cornell University, 1997.

3. G. Aucher and T. Bolander. Undecidability in epistemic planning. In Proceedings of the
Twenty-Third International Joint Conference on Artificial Intelligence, pages 27-33. AAAI
Press, 2013.

4. G. Aucher, B. Maubert, and S. Pinchinat. Automata Techniques for Epistemic Protocol
Synthesis. In Proceedings 2nd International Workshop on Strategic Reasoning, SR 2014,
Grenoble, France, April 5-6, 2014., pages 97-103, 2014.

5. A. Baltag and L. S. Moss. Logics for Epistemic Programs. Synthese, 139(2):165-224,
2004.

6. A. Baltag, L. S. Moss, and S. Solecki. The Logic of Public Announcements, Common
Knowledge, and Private Suspicions (extended abstract). In Proc. of the Intl. Conf. TARK
1998, pages 43-56. Morgan Kaufmann Publishers, 1998.

7. A. Baltag and B. Renne. Dynamic Epistemic Logic. In E. N. Zalta, editor, The Stanford
Encyclopedia of Philosophy. Fall 2016 edition, 2016.

8. A. Baltag and S. Smets. A Qualitative Theory of Dynamic Interactive Belief Revision. In
G. Bonanno, W. van der Hoek, and M. Wooldridge, editors, Logic and the Foundations
of Game and Decision Theory (LOFT 7), Texts in Logic and Games, Vol. 3, pages 9-58.
Amsterdam University Press, 2008.

9. A.Baltag and S. Smets. Group Belief Dynamics Under Iterated Revision: Fixed Points and
Cycles of Joint Upgrades. In Proceedings of the 12th Conference on Theoretical Aspects of
Rationality and Knowledge, TARK '09, pages 41-50, New York, NY, USA, 2009. ACM.

10. J.van Benthem. “One is a Lonely Number”: Logic and Communication. In Z. Chatzidakis,
P Koepke, and W. Pohlers, editors, Logic Colloquium ’02, Lecture Notes in Logic, 27, pages
95-128. Association for Symbolic Logic, 2002.

11. J. van Benthem. Logical Dynamics of Information and Interaction. Cambridge University
Press, 2011.

38

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

J. van Benthem. Oscillations, Logic, and Dynamical Systems. In S. Ghosh and J. Szy-
manik, editors, The Facts Matter, pages 9-22. College Publications, 2016.

J. van Benthem and C. Dégremont. Bridges between dynamic doxastic and doxastic
temporal logics. In Logic and the Foundations of Game and Decision Theory-LOFT 8, pages
151-173. Springer, 2010.

J. van Benthem, J. van Eijck, and B. Kooi. Logics of Communication and Change. Infor-
mation and Computation, 204(11):1620-1662, 2006.

J. van Benthem, J. Gerbrandy, T. Hoshi, and E. Pacuit. Merging Frameworks for Interac-
tion. Journal of Philosophical Logic, 38(5):491-526, 2009.

J. van Benthem and S. Smets. Dynamic Logics of Belief Change. In H. van Ditmarsch,
J. Y. Halpern, W. van der Hoek, and B. Kooi, editors, Handbook of Logics for Knowledge
and Belief, pages 299-368. College Publications, 2015.

P Blackburn, M. de Rijke, and Y. Venema. Modal Logic. Cambridge University Press, 2001.
T. Bolander and M. Birkegaard. Epistemic planning for single- and multi-agent systems.
Journal of Applied Non-Classical Logics, 21(1):9-34, 2011.

T. Bolander, M. H. Jensen, and E Schwarzentruber. Complexity Results in Epistemic
Planning. In Proceedings of IJCAI 2015 (24th International Joint Conference on Artificial
Intelligence), 2015.

C. Dégremont. The Temporal Mind: Observations on the logic of belief change in interactive
systems. PhD thesis, University of Amsterdam, 2010.

H. van Ditmarsch, S. Ghosh, R. Verbrugge, and Y. Wang. Hidden protocols: Modifying
our expectations in an evolving world. Artificial Intelligence, 208:18 — 40, 2014.

H. van Ditmarsch, W. van der Hoek, and B. Kooi. Dynamic Epistemic Logic. Springer,
2008.

H. van Ditmarsch and B. Kooi. Semantic Results for Ontic and Epistemic Change. In
G. Bonanno, W. van der Hoek, and M. Wooldridge, editors, Logic and the Foundations of
Game and Decision Theory (LOFT 7), Texts in Logic and Games, Vol. 3, pages 87-117.
Amsterdam University Press, 2008.

R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning About Knowledge. The MIT
Press, 1995.

D. Fernandez-Duque. A sound and complete axiomatization for Dynamic Topological
Logic. Journal of Symbolic Logic, 77(3):1-26, 2012.

D. Fernandez-Duque. Dynamic topological logic of metric spaces. Journal of Symbolic
Logic, 77(1):308-328, 2012.

D. Fernandez-Duque. Non-Finite axiomatizability of dynamic topological logic. ACM
Transactions on Computational Logic, 15(1):1-18, 2014.

P Galeazzi and E. Lorini. Epistemic logic meets epistemic game theory: a comparison
between multi-agent Kripke models and type spaces. Synthese, 193(7):2097-2127, 2016.
J. Gerbrandy and W. Groeneveld. Reasoning about Information Change. Journal of Logic,
Language and Information, 6(2):147-169, 1997.

N. Gierasimczuk. Knowing One’s Limits. Phd thesis, Institute for Logic, Language and
Computation, University of Amsterdam, 2010.

V. Goranko and M. Otto. Model Theory of Modal Logic. In P Blackburn, J. van Benthem,
and E Wolter, editors, Handbook of Modal Logic. Elsevier, 2008.

J. Y. Halpern, R. van der Meyden, and M. Y. Vardi. Complete Axiomatizations for Reason-
ing about Knowledge and Time. SIAM Journal of Computation, 33(3):674-703, 2004.

J. Y. Halpern and Y. Moses. Knowledge and Common Knowledge in a Distributed Envi-
ronment. Journal of the ACM, 37(3):549-587, 1990.

J. Y. Halpern and M. Y. Vardi. Reasoning About Knowledge and Time in Asynchronous
Systems. In Proceedings of the 20th ACM Symposium on Theory of Computing, STOC 88,
pages 53-65. ACM, 1988.

39

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

J. Y. Halpern and M. Y. Vardi. The Complexity of Reasoning About Knowledge and Time.
1. Lower bounds. Journal of Computer and System Sciences, 38(1):195-237, 1989.

J. Hintikka. Knowledge and Belief: An Introduction to the Logic of the Two Notions. College
Publications, 2nd, 2005 edition, 1962.

T. Hoshi. Epistemic Dynamics and Protocol Information. PhD thesis, ILLC, Universiteit van
Amsterdam, 2009.

T. Hoshi. Merging DEL and ETL. Journal of Logic, Language and Information, 19(4):413-
430, 2010.

D. Klein and R. K. Rendsvig. Convergence, Continuity and Recurrence in Dynamic Epis-
temic Logic. In A. Baltag and J. Seligman, editors, Logic and Rational Interaction (LORI
VD), Lecture Notes in Computer Science. Springer, 2017.

D. Klein and R. K. Rendsvig. Metrics for Formal Structures, with an Application to Dy-
namic Epistemic Logic. arXiv:1704.00977, 2017.

P Kremer and G. Mints. Dynamical Topological Logic. Bulleting of Symbolic Logic, 3:371-
372, 1997.

P Kremer and G. Mints. Dynamic Topological Logic. In M. Aiello, I. Pratt-Hartmann, and
J. van Benthem, editors, Handbook of Spatial Logics, chapter 10, pages 565-606. 2007.
E Liu, J. Seligman, and P Girard. Logical dynamics of belief change in the community.
Synthese, 191(11):2403-2431, 2014.

R. van der Meyden. Axioms for Knowledge and Time in Distributed Systems with Perfect
Recall. In Proceedings Ninth Annual IEEE Symposium on Logic in Computer Science, pages
448-457, 1994.

R. van der Meyden. Constructing finite state implementations of knowledge-based pro-
grams with perfect recall. In Intelligent Agent Systems Theoretical and Practical Issues,
pages 135-151. Springer, 1997.

R. van der Meyden and K.-S. Wong. Complete Axiomatizations for Reasoning about
Knowledge and Branching Time. Studia Logica, 75(1):93-123, 2003.

S. Mohalik and R. Ramanujam. Automata for Epistemic Temporal Logic with Syn-
chronous Communication. Journal of Logic, Language and Information, 19(4):451-484,
2010.

L. S. Moss. Dynamic Epistemic Logic. In H. van Ditmarsch, J. Y. Halpern, W. van der Hoek,
and B. Kooi, editors, Handbook of Epistemic Logic. College Publications, 2015.

M. J. Osbourne and A. Rubinstein. A Course in Game theory. The MIT Press, 1994.

R. Parikh and R. Ramanujam. Distributed processes and the logic of knowledge. In
R. Parikh, editor, Logics of Programs, pages 256-268, Berlin, Heidelberg, 1985. Springer
Berlin Heidelberg.

R. Parikh and R. Ramanujam. A knowledge based semantics of messages. Journal of
Logic, Language and Information, 12(4):453-467, 2003.

J. A. Plaza. Logics of public communications. In M. L. Emrich, M. S. Pfeifer,
M. Hadzikadic, and Z. W. Ras, editors, Proceedings of the 4th International Symposium
on Methodologies for Intelligent Systems, pages 201-216, 1989.

R. K. Rendsvig. Aggregated Beliefs and Informational Cascades. In D. Grossi and O. Roy,
editors, Logic, Rationality, and Interaction, Lecture Notes in Computer Science, pages
337-341. Springer, 2013.

R. K. Rendsvig. Diffusion, Influence and Best-Response Dynamics in Networks: An Action
Model Approach. In R. de Haan, editor, Proceedings of the ESSLLI 2014 Student Session,
pages 63-75. arXiv:1708.01477, 2014.

R. K. Rendsvig. Pluralistic ignorance in the bystander effect: Informational dynamics of
unresponsive witnesses in situations calling for intervention. Synthese, 191(11):2471-
2498, 2014.

40

56.

57.

58.

59.

60.

61.

62.

R. K. Rendsvig. Model Transformers for Dynamical Systems of Dynamic Epistemic Logic.
In W. van der Hoek, W. H. Holliday, and W. E Wang, editors, Logic, Rationality, and Inter-
action (LORI 2015, Taipei), LNCS, pages 316-327. Springer, 2015.

R. K. Rendsvig. Logical Dynamics and Dynamical Systems. PhD thesis, Lund University,
2018.

B. Rodenhiuser. A logic for extensional protocols. Journal of Applied Non-Classical Logics,
21(3-4):477-502, 2011.

T. Sadzik. Exploring the Iterated Update Universe. ILLC Report PP-2006-263, pages 1-34,
2006.

D. Sarenac. Modal Logic for Qualitative Dynamics. In O. Roy, P Girard, and M. Marion,
editors, Dynamic Formal Epistemology, volume 351 of Synthese Library, pages 75-101.
Springer, 2011.

Y. Wang. Epistemic Modelling and Protocol Dynamics. Phd thesis, Universiteit van Ams-
terdam, 2010.

M. Wooldridge and A. Lomuscio. Reasoning about visibility, perception, and knowledge.
In International Workshop on Agent Theories, Architectures, and Languages, pages 1-12.
Springer, 1999.

41

	Intensional Protocols for Dynamic Epistemic Logic
	Introduction
	Structure of the Paper
	Related Literature

	Protocols for DEL
	Pointed Kripke Models and Language
	Action Models and Product Update
	Intensional Protocols: DEL Dynamical Systems
	Extensional Protocols: DEL Protocols
	An Initial Comparison

	Examples
	Example 1: Blowing the Bulb
	Example 2: The Muddy Children Puzzle

	Epistemic Temporal Logic
	ETL Isomorphism
	Eight Properties of Saturated ETL Models

	Generated ETL Models and their Properties
	From ETL Model to Dynamical System
	Characterization: Image-finite and Concluding
	Non-Deterministic Intensional Protocols
	Persistence Under Union

	Protocol Comparison
	Generating ETL Models from DEL Protocols
	ETL Properties from DEL Protocols
	Discussion and Comparison of DEL Protocols and DEL Dynamical Systems

	Conclusion

