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Intensity and Compactness Enabled Saliency

Estimation for Leakage Detection in Diabetic and

Malarial Retinopathy
Yitian Zhao, Yalin Zheng, Yonghuai Liu, Jian Yang∗, Yifan Zhao, Duanduan Chen and Yongtian Wang

Abstract—Leakage in retinal angiography currently is a key
feature for confirming the activities of lesions in the management
of a wide range of retinal diseases, such as diabetic maculopathy
and paediatric malarial retinopathy. This paper proposes a new
saliency-based method for the detection of leakage in fluorescein
angiography. A superpixel approach is firstly employed to divide
the image into meaningful patches (or superpixels) at different
levels. Two saliency cues, intensity and compactness, are then
proposed for the estimation of the saliency map of each individual
superpixel at each level. The saliency maps at different levels over
the same cues are fused using an averaging operator. The two
saliency maps over different cues are fused using a pixel-wise
multiplication operator. Leaking regions are finally detected by
thresholding the saliency map followed by a graph-cut segmen-
tation. The proposed method has been validated using the only
two publicly available datasets: one for malarial retinopathy and
the other for diabetic retinopathy. The experimental results show
that it outperforms one of the latest competitors and performs
as well as a human expert for leakage detection and outperforms
several state-of-the-art methods for saliency detection.

Index Terms—leakage, diabetic, malarial, retinopathy, fluores-
cein angiogram, saliency, segmentation.

I. INTRODUCTION

Fundus fluorescein angiography (FA) is a valuable imaging

modality that provides a map of retinal vascular structure

and function by highlighting blockage of, and leakage from,

retinal vessels [1]. Although FA is invasive and expensive,

and exposes patients with rare but potentially serious side

effects, it is indispensable in differential diagnosis of retinal

diseases such as diabetic retinopathy (DR), age-related mac-

ular degeneration (AMD), malarial retinopathy (MR), and so
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Fig. 1: Illustration of focal leakages in two retinal diseases.

Left: malarial retinopathy. Right: diabetic retinopathy. There is

a large increase in brightness in leaking regions (white arrows)

compared to surrounding non-leaking regions.

on [2]–[4]. Incarnated as useful signal of high intensity, retinal

leakage in angiography is currently a key feature for clinicians

to determine the activities and development of lesions in the

retina. Fig. 1 shows the appearance of leakages in MR and DR

respectively. MR is believed to be important for the differential

diagnosis of cerebral malaria, while DR is a leading cause of

vision loss in the working age population. Identification of

sites and evaluation of the extent of leakage enable decision-

making for treatment and monitoring of disease activities.

More specifically, the detection of retinal lesions in general

is important for automated diagnosis of retinal disease while

the leakage detection is important for therapy planning and

treatment outcome monitoring.

Current practical approaches for quantitative analysis of FA

features require extensive manual delineation by experienced

graders. In eye and vision science research the requirement for

such intervention usually introduces human errors, and slows

down the process, which makes it impractical to process the

vast amount of data collected during routine clinics. There

is an increasing demand for the automated detection of the

leakage in FA.

In this paper we present a new, unsupervised technique to

detect and quantify leakage in FA images with the following

contributions.

First, we propose a novel efficient way to enhance leakage

regions by using the concept of saliency [5]. Saliency indicates

the relative importance of visual features, and is closely

related to the characteristics of human perception and pro-

cessing of visual stimuli [5]–[7]. Saliency emerges from such

characteristics in features of the image as visual uniqueness,

unpredictability, or rarity, and is often attributed to variations

in specific image attributes such as color, gradient, edges,

and boundaries [7]–[9]. Such attributes are also characteristics
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of retinal leakage in FA images. For example, leakage of

fluorescent dye causes a large increase in brightness in leaking

regions when compared to surrounding non-leaking regions.

For this application, leaking regions can be defined as those

of high salience. In consequence, we are motivated to firstly

identify the leaking regions in FA images through a saliency

detection method, and then estimate their areas from the

obtained saliency map.

Second, we have proposed a new way to generate multiscale

saliency maps with integration of the intensity and compact-

ness cues of superpixels for this specific application. More

specifically, traditional saliency extraction methods usually

compute the salience of an image in a pixel-by-pixel manner,

and ignore the neighborhood and edge information of the

objects of interest. Inspired by the fact that human vision

is usually more concerned with objects than with individual

pixels and the objects of interest may vary in size, in this

paper we firstly propose to use patches) at different levels to

represent the given images, and the powerful simple linear

iterative clustering (SLIC) method [10] is employed for this

task.

The reminder of this paper is structured as follows. Section

II briefly reviews the related work on leakage detection and

saliency detection. Section III details the proposed approach.

Section IV describes the datasets and metrics for the evaluation

of the proposed technique. In Section V we first described

our experiments on different datasets in comparison to those

previous proposed methods and report the experimental re-

sults. Section VI experimentally investigates the selection of

saliency cues and the setting of some hyperparameters used in

the proposed method. Section VII concludes the paper.

II. RELATED WORK

In this section, the most common leakage and saliency

detection methods with application to medical images will be

briefly reviewed.

A. Leakage detection

An extensive literature review shows that automated retinal

image analysis of FA images, especially for leakage detection,

is relatively unexplored. In contrast to the large number

of studies on detecting various retinal lesions (i.e. drusen,

exudates, hemorrhage, and so on) in colour fundus photograph,

relatively few methods have been proposed on automated

detection or quantification of leakage. Zhao et al. [11] recently

proposed a method to detect three types of leakage (large

focal, punctate focal, and vessel segment leakage) on images

from eyes with MR. This method can count the number of

leakage sites and measures their sizes and has a reasonable

performance over only 10 images of MR. However, it only

uses the intensity information to generate the saliency map

for the detection, which may suffer when some non-leakage

areas also have high intensities. Rabbani et al. [12] proposed

a method to detect leakage in FA images of subjects with

diabetic macular edema. They employed an active contour

segmentation model to detect the boundaries of leaking areas.

This method is designed to detect areas of leakage in a circular

region centered at the fovea with a radius of 1500µm, and has a

relatively low sensitivity of 0.69 on 24 images. Martinez-Costa

et al. [13] suggested that any pixels with statistically high

increments in gray level along the FA sequence close to the

foveal centre could be segmented as leakage, and applied this

criterion to detect the leakage in the macua due to retinal vein

occlusion. However, this method requires manual detection of

the foveal center. Phillips et al. [14] calculated the gradient of

fluorescence intensity, and then thresholded the gradient values

only to determine leakage regions in DR images. This method

was applied to only six cases. Saito et al. [15] proposed a

detection framework of choroidal neovascularization (CNV)

featured by leakage. However, detection of CNV involves

analysis of a small area of the retina only instead of the entire

image. Trucco et al. [16] and Tsai et al. [17] applied AdaBoost

methods to classify the leakage regions of FA images based

on multiple handcrafted features. However, these supervised

methods are limited by their dependence on training datasets

derived from manual annotation. The performance of the

classifier will be inherently dependent on the quality of this

annotation.

B. Saliency detection as applied to medical images

The application of saliency information for detecting ab-

normalities from different modalities of medical images is

relatively unexploited when compared to other applications.

Yuan et al. [18] proposed a saliency-based ulcer detection

method from the wireless capsule endoscopy (WCE) images.

It uses a multi-level superpixel representation as the pre-

processing step for saliency detection, and the saliency map

is generated from different levels by integrating all obtained

saliency maps according to the color and texture features.

This method is capable of accurately representing the con-

tours of the ulcerated regions, and these regions are located

through an image feature encoding and recognition method.

The limitation of this method is that neither its effectiveness

nor its potential is well demonstrated, because the dataset used

for validation is too small. Mahapatra and Sun [19] used the

saliency and gradient information in a Markov random field

for non-rigid registration of dynamic MRI cardiac perfusion

images. This approach attempts to address the problem that

most nonrigid registration algorithms fail to give satisfactory

results in the presence of intensity changes. Although the

saliency provides high quality contrast-enhanced images, the

gradient information can still be influenced by noise. This

method cannot accurately register the boundary of the left

ventricle. A visual saliency-based bright lesion detection and

classification method was introduced by Deepak et al [20].

The spectral residual saliency model [21] was first employed

to compute the saliency map of the color fundus retinal

images. The saliency computation leads to a sparse generalized

motion patterns representation of the images, and an image is

then classified as normal or abnormal (having bright lesions)

using the k-nearest neighbour classifier based on the texture.

Jampani et al. [22] analyzed the relevance of saliency models

in detecting abnormalities in two types of medical images.

The experimental results show that the Graph Based Visual
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Algorithm 1 Pseudo Code of Saliency and Leakage Detection

Input: An FA image I with focal leakage.

Saliency Detection:

1: for each level do

2: Cluster the image to n superpixels;

3: for each superpixel do

4: Compute the intensity-based saliency using Eq. 6,

and compactness-based saliency using Eq. 9;
5: end for

6: end for

7: for each cue do

8: Fuse the saliency map based on the same cue at

different levels using an averaging operator;
9: end for

10: Fuse the saliency maps based on different cues using the

Hadamard product

Leakage Detection:

1: Normalize S to [0, 1], threshold (T = 0.65) it to obtain

ROIs.

2: for ROIs do

3: Graph cut segmentation;

4: end for

5: Mask the vessel region from S , and remove optic disc

regions and small/isolated objects.

Output: The detected focal leaking areas in the given image.

Saliency method [23] performs best on the chest X-ray images,

while the Spectral Residual method [21] performs best over the

retinal images. These two methods have been thus selected for

further extension for even better performance based on domain

knowledge and multiscale analysis respectively.

III. THE PROPOSED METHOD

The entire framework for detecting leakages in FA images

is summarized in Algorithm 1. It includes two main steps:

saliency detection and leakagle detection. In the following

subsections, each step will be detailed.

A. Saliency Detection

‘Salient’ regions are those regions of a medical image

that contain meaningful information for diagnostic purposes.

Typically, the intensities and/or shapes of these regions are

significantly different from their surroundings or neighbors [6],

[23]–[26]. As shown in Fig. 1, the leaking regions in an FA

image are conspicuous objects, and can easily be distinguished

visually by their intensity or shape. The intensity based ap-

proach seems to be a natural choice for computational leakage

area detection [11]. However, large vessels and the optic disc

might also be falsely detected as salient regions for similar

reasons in this application. Consequently, the vessel extraction

and optic disc detection are essential in this framework: simply

masking them will help to improve the accuracy of leakage

detection. In this paper, for convenience we define all the

aforementioned regions that might be assigned a high saliency

value as the regions of interest (ROIs). After the whole

process, the false ones such as large vessels and the optic

disc will be removed while only the leakage regions will be

retained. In the following subsections, the superpixel based

saliency detection method will be detailed.

1) Superpixel Segmentation: A region-based approach is

well established in saliency measurement: for example, Cheng

et al. [8] have used a histogram-based contrast method: the

saliency value of each pixel relative to the others in the entire

image is estimated and then smoothed in the color space, and

further improved through partitioning the given image into

regions and assigning saliency values to such regions through

considering both their global contrast score and local spatial

coherence. This is a two-step method and the first step may

assign different saliency values to similar colors due to color

quantization. In our method, superpixels are employed to avoid

discontinuities at the bin edges of the histogram.

A state-of-the-art superpixel algorithm, called Simple Linear

Iterative Clustering (SLIC) [10], is employed in this work to

generate a desired number n of regular, compact superpixels

to replace the rigid structure of the pixel grid, at a low compu-

tation cost, where the default value of 10 for the compactness

term is adopted. The SLIC is a k-means clustering method,

and is able to assign each pixel to a superpixel according to its

intensity and spatial location. The SLIC is capable of grouping

meaningful entities into a superpixel by assembling spatially

neighboring pixels with similar properties. It not only provides

fine segmentation results, but also generates a suitable number

of segments for leakage image analysis. Similar research using

different method has also been reviewed [27]

In this work, a multi-level superpixel method is proposed.

The input image is segmented into L (L = 3) levels of

superpixels independently, and the corresponding number n
of superpixels is set to be 333, 666, and 1000 at each levels,

respectively. Fine tuning of the values for these parameters: L
and n will be discussed later in Section VI.

2) Intensity-based Saliency Detection: Let Pi ∈ I be a

viable local representation as a superpixel i (i = 1, 2, · · · , n),
and let I indicate the input image. The superpixels may be seen

as samples of a multivariate probability density function (PDF)

of the imaged objects. A kernel density estimator (KDE) is

chosen, as, being non-parametric, it will permit the estimation

of any PDF. The probability of a patch Pi may now be defined

as:

p(Pi) =
1

nh

n
∑

j=1

K

(

d(Pi,Pj)

h

)

, (1)

where d is a distance function that will be discussed later,

K is a kernel, and h is a smoothing parameter. The KDE

method has the capacity to average out the contribution of

each sample Pi by spreading it over a certain area [28], which

is defined by K. The multivariate distribution will have a

higher probability if a superpixel is in dense and similar areas.

From our experience, the most commonly used and appropriate

kernel is the Gaussian function with zero mean and standard

deviation σ. In this case, the probability of a superpixel p(Pi)
can be defined as:

p(Pi) =
1

nΓ

n
∑

j=1

exp
(

− d2(Pi,Pj)

2σ2

)

. (2)
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The estimated probabilities p(Pi) can be normalized to be-

come an actual PDF H(Pi) by setting a proper constant Γ.

σ = 0.2 is chosen to substitute for h. The relative distance d is

used in case the distribution of the superpixels is not uniform,

and the distance metric mainly focuses on the relationships

between similar superpixels. The relative average difference

of a pair of superpixels Pi, Pj ∈ W in intensity is defined as:

d(Pi,Pj) =
|a(Pi)− a(Pj)|

avePk∈W (|a(Pi)− a(Pk)|)
(3)

where W = {P1,P2, · · · ,Pn} and avePk∈W (|Pi − Pk|) is

the average difference between the average intensity a(Pi) of

pixels inside Pi and those a(Pk) of other superpixels Pk in W .

Compared to the absolute difference, the relative difference is

more consistent for two sets of pixels with similar neighboring

relationships but different resolutions and scales [29].

After determining the probabilities of the superpixels, the

dissimilarity measure disI(Pi,Pj) between Pi and Pj is

defined as:

disI(Pi,Pj) =
(H(Pi)−H(Pj))

2

H(Pi) +H(Pj)
. (4)

The larger the relative difference of a superpixel from another,

the less the similar they are, and the more dissimilar it is.

The distinctness value of each superpixel can be estimated

using the dissimilarity measurement above. Superpixel Pi

is considered salient when it is highly dissimilar to other

superpixels. The saliency value of Pi is defined as:

SI(Pi) = 1− exp
(

− 1

n− 1

n
∑

j=1,j 6=i

disI(Pi,Pj)
)

. (5)

However, in order to reduce computational complexity, we

note that it is unnecessary to evaluate the uniqueness of a

superpixel by computing its dissimilarity to all the others. For

instance, if the most similar superpixels Pj are significantly

different from superpixel Pi, then it follows logically that all

the other superpixels are also highly different from superpixel

Pi. Therefore, for superpixel Pi, only the M most similar

superpixels {Qm}Mm=1 (M = 10 in this paper) need to be

found and processed. Hence, the saliency value of superpixel

Pi can be rewritten as:

SI(Pi) = 1− exp
(

− 1

M

M
∑

m=1

disI(Pi, Qm)
)

. (6)

The final intensity-based saliency is obtained by fusing

the saliency maps SI(P l
i) of different superpixels Pi at

different levels l . More specifically, all the pixels u within

a superpixel will have the same value at each level (the

same for fusing the compactness based saliency maps over

all the levels). The fusion is performed pixel by pixel as:

SI(u) =
1
L

∑L

l=1 SI(P l
i |u ∈ P l

i).
3) Compactness-based saliency detection: Intuitively, the

leakage region in an FA image will present different intensity

information when compared with the others. However, it is

observed in practice that using the intensity feature alone to

detect salient regions is not always successful. For example,

the red rectangle region of the top row of Fig. 2 (c) shows

that non-vessel regions in the middle of the image with high

brightness due to uneven illumination have also been detected

as highly salient, whereas a human observer perceives only

the leakage regions and vessels as more salient. Therefore,

this section proposes another feature - compactness. Normally,

human observers pay more attention to a more compact object

than to a more diffuse object. The measure of compactness

of an object might therefore be of use as a complementary

feature to intensity for saliency measurement, with the aim of

reducing the number of falsely-detected salient regions.

For superpixel Pi, its compactness c(Pi) is defined as

c(Pi) = exp
(

− α
σx,i + σy,i√
X2 +Y2

)

, (7)

where σx,i and σy,i are the standard deviations of the x and

y coordinates of the pixels inside the superpixel Pi, and α is

a constant factor that is empirically set to 15. X and Y are

the width and height of the input image. By incorporating the

compactness feature with the intensity feature of a given im-

age, the measure disC(Pi,Pj) of dissimilarity in compactness

between Pi and Pj is defined as:

disC(Pi,Pj) = |a(Pi)− a(Pj)| ×
(

1 +
c(Pi)− c(Pj)

2

)

×exp
(

− βd(Pi,Pj)√
X2 +Y2

)

,

(8)

where term |a(Pi) − a(Pj)| calculates the difference of the

average intensity (a) characteristic of superpixels Pi and Pj .

d(Pi,Pj) is the relative average difference between super-

pixels Pi and Pj , as proposed in Eq. (3). The constant

factor β is empirically set to 300. The larger the dissimilarity

disC(Pi,Pj), the higher the probability that human attention

will be paid from superpixel Pj to Pi. Hence, the following

rules in TABLE I can be used to assist in estimating the

saliency value SC(Pi) of superpixel Pi.

TABLE I: Some useful rules for the determination of saliency

from compactness

Condition Expected dissimilarity Expected salience

Pi is distinct from Pj large disC(Pi,Pj) SC(Pi) > SC(Pj)
Pi is similar to Pj small disC(Pi,Pj) SC(Pi) ≈ SC(Pj)
c(Pi) > c(Pj) large disC(Pi,Pj) SC(Pi) > SC(Pj)
c(Pi) < c(Pj) small disC(Pi,Pj) SC(Pi) < SC(Pj)

Similar to Eq. (6), the compactness-based saliency value

SC(Pi) of Pi is defined as

SC(Pi) = 1− exp
(

− 1

M

M
∑

m=1

disC(Pi, Rm)
)

(9)

where Rm(m = 1, 2, · · · ,M) is the M most similar superpix-

els to Pi in the sense of compactness.

Again, we calculate the final compactness-based

saliency based on the mean value of the saliency maps

SC(P l
i) of different superpixels Pi at different levels

l, and the fusion is performed pixel by pixel as well:

SC(u) =
1
L

∑L

l=1 SC(P l
i |u ∈ P l

i).
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Fig. 2: An example to illustrate a saliency map generated by the proposed method: (a) an example FA image; (b) saliency

maps estimated using intensity and compactness features with different numbers of superpixels; (c) fused saliency maps of

intensity and compactness across different levels of superpixels; (d) final saliency map.

4) Saliency map fusion: Two bottom-up approaches in our

proposed superpixel based saliency detection method have

been described so far. It is likely that each of them has its

own drawbacks if used alone in real applications. Therefore,

an overall saliency map by fusing the saliency maps based

on intensity and compactness is expected to provide better

performance. linear summation [5] or pixel-wise multiplication

(also known as the matrix Hadamard product) [30] are two

commonly used methods to fuse the saliency maps. In this

work, the intensity and compactness saliency maps are fused

by applying the pixel-wise multiplication method so as to

force only the regions with higher values in both intensity and

compactness channels to be assigned higher values in the final

saliency map S . By integrating the two saliency measures, the

property of human vision by which attention declines as the

edge of the area of interest is approached may be mimicked.

That is, the final saliency map highlights salient object regions

of interest and suppresses background regions, as illustrated

in Fig. 2 (d).

B. Graph cut for leakage detection

The proposed superpixel-based saliency detection ap-

proach has successfully enhanced the contrast between ves-

sels/leakages and background. Some example results are

shown in Fig. 3 (b). The appearances of these leakages are

highlighted, while the background regions are suppressed,

when compared to the original images. Once the saliency

map is computed and normalized to [0, 1], a threshold value

T = 0.65 is applied to the saliency map to obtain the

ROIs. The thresholding approach itself cannot guarantee the

boundaries of the segmented structures are smooth and often

generates isolated fragments. In light of this inadequacy, more

sophisticated segmentation methods [31]–[36] will be needed

for better results. On the other hand, the computational cost

is also an important factor for a segmentation tool to be taken

into account for potential real applications. For these two

reasons, we advocate here a graph cut based segmentation

method [33], [34] on the obtained ROIs to identify the leakage.

This method imposes the constraint that the neighboring pixels

tend to belong to the same class and thus penalizes the isolated

pixels in different classes.

Let N be a set of edges {(u, v)} where a pixel u is

connected to its 8 nearest neighbors v, and M denote the set

of pixels in the given image I , the discrete energy function is

defined as:

E(x) =
∑

u∈M

Eu(xu) +
∑

(u,v)∈N

Euv(xu, xv), (10)

where x = {x1, · · · , xN } is the binary labelling where the xu

is either 0 or 1 depending on whether the pixel u belongs to the

background or foreground. The first term here approximates

the region terms while the second term approximates the

regularization term. The unary term Eu is defined as:

E0
u(xu) = λ1(Iu − c1)

2, E1
u(xu) = λ2(Iu − c2)

2 (11)

where E0
u, E

1
u denote the weights between the node u and

the two terminals, λ1 and λ2 are the non-negative region

weighting parameters, Iu is the intensity of the pixel u, and

c1 and c2 indicate the average intensities of the background

and foreground respectively. The binary term Euv is defined

as:

Eu,v(xu, xv) =

{

µwuv, if xu 6= xv

0, otherwise,
(12)
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where wuv denotes the weight between neighboring pixels u
and v, as suggested in [37]:

wuv =
δ2 ·∆φuv

2 · |euv|
, (13)

where δ is the cell-size of the grid, |euv| is the Euclidean

length of the edge euv , and ∆φuv is the difference between

the angular orientations φu and φv of the pixels u and v and

is restricted to the interval [0, π]. In this work, we set λ1 =
λ2 = λ = 0.5 (see Sec. VI for the parameter tuning), and µ
is empirically set as 0.2.

C. Final refinement

After the graph cut segmentation, some vessels, the optic

disc and some small objects may still remain as they may also

have been enhanced during the saliency detection steps. It is

important to remove them in order to improve the leakage

detection performance. To this end, the following steps are

applied: (i) The infinite perimeter active contour with hybrid

region (IPACHR) method [38] is used to segment retinal

vessels for its good performance. In brief, this method uses

an infinite perimeter active contour model for its effectiveness

in detecting objects (e.g. vessels) with irregular and oscillatory

boundaries. Moreover, this method considers hybrid region

information (local phase based vesselness map and intensity)

in an image in order to achieve further improved performance

compared to the standard infinite perimeter active contour

model [38]. For more details, we refer readers to the original

paper [38]. (ii) Any small and/or isolated objects are elimi-

nated by the use of a disk-shaped opening operation with a

radius of 2 pixels. (iii) In most cases, the optic disc remains

as leakage regions after the graph cut based segmentation

and should be removed. It has been well observed that the

number of vessels surrounding the optic disc is much larger

than that close to large focal leaking sites [11], [39]. Thus,

any region with a number of surrounding vessels greater than

a threshold of 5 will be assumed to be the optic disc, and will

be removed. In our experiments this method is found to be

efficient and effective. However, other sophisticated methods

may work equally well.

IV. DATASETS AND EVALUATION METRICS

Our method will be evaluated on two FA image datasets

with two different retinal diseases: DR and MR respectively.

To the best of our knowledge, these two datasets are the only

FA datasets available in the literature for the evaluation of

leakage detection algorithms.

A. DR dataset

The FA images of the DR set [12] were collected by the

Vision and Image Processing Laboratory, Duke University,

USA and are currently publicly accessible. All images were

acquired using a Heidelberg Spectralis 6-mode HRA/OCT unit

(Heidelberg Engineering, Heidelberg, Germany). Each image

has 768 × 768 pixels. The study was approved by the Duke

University Health System Institution Review Board (IRB).

The tenets of the Declaration of Helsinki were adhered to. It

contains images of 24 eyes taken from 24 subjects. All subjects

had signs of DR on admission. All the images were catego-

rized into three types according to their leakage conditions:

predominantly focal, predominantly diffuse, and mixed pattern

leakage. Focal leakage manifests as discrete foci of leakage on

early FA frames and corresponds to microaneurysms. Diffuse

leakage is characterized by generalized leakage prominent on

late FA frames without discretely identifiable source.

B. MR dataset

The MR dataset contains 25 FA images and all had signs of

MR on admission. These images were randomly chosen from

images systematically sorted and graded for quality by the Liv-

erpool Reading Center at St Paul’s Eye Unit, Royal Liverpool

University Hospital and the Department of Eye and Vision

Science, University of Liverpool. The FA images were taken

after pupil dilation with Tropicamide 1% and Phenylephrine

2.5%, using a Topcon 50-EX optical unit (Topcon, Japan) and

a Nikon E1-H digital camera. The tenets of the Declaration

of Helsinki were adhered to. Ethical approval for retinal ex-

amination and imaging was given by committees in Blantyre,

Malawi and at collaborating institutions. Consent was given

by the parents/guardians of children before examination and

imaging. 50-degree images were taken after pupil dilation,

using a Topcon 50-EX fundus camera (Topcon, Japan). All

macula-centered images have a resolution of 3008 × 1960
pixels and were re-sized to 752 × 490, similar to the size of

the DR images above, so that a single set of parameters can

be tuned over both datasets. This is important for the test of

the proposed technique whether it is generalisable to different

datasets.

C. Evaluation Metrics

In this paper sensitivity (Se), specificity (Sp), false negative

rate (Fnr), accuracy (Acc), area under the receiver operating

characteristic curve (AUC), and the Dice coefficient (DC) are

used to measure the performance of the proposed method.

Sensitivity (resp. specificity) is a measure of effectiveness

in identifying pixels or regions with positive (resp. negative)

classifications. Both accuracy, AUC and DC measure the

overall segmentation performance.

In essence, leakage detection may be seen as an imbalanced

data classification problem: there are typically much fewer

leakage pixels than others. In such a case AUC can better

reflect the trade-offs between sensitivity and specificity. In

particular, the AUC proposed by Hong et al. [40] is employed

here, as it was proposed to evaluate the segmentation (or

classification) performance at a specific operating point.

More specifically, the chosen metrics are defined as follows:

sensitivity (Se) = tp/(tp + fn); specificity (Sp) = tn/(tn +
fp); accuracy (Acc) = (tp + tn)/(tp + fp + tn + fn);
true positive rate (Tpr) = Se; false positive rate (Fpr) = 1 −
Sp; false negative rate (Fnr) = 1−Se; and AUC = (Se+Sp)/2
where tp, tn, fp and fn indicate the true positive (correctly

identified leakage pixels or regions), true negative (correctly
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identified background pixels or regions), false positive (incor-

rectly identified leakage pixels or regions), and false negative

(incorrectly identified background pixels or regions), respec-

tively, and all the pixels are equally treated towards their

counting without considering the severity of the symptoms

they depict. DC = 2(|A∩B|)/(|A|+ |B|), where A is the

ground truth region, B indicates the segmented region, and

|A∩B| denotes the number of pixels in the intersected region

between A and B.

We grouped all the experimental results together first and

then calculate reliably the final scores of performance mea-

surements. For each dataset, two graders (the inter-observers)

were invited to manually annotate the leakage regions, one

of them was asked to repeat the annotations after 4 weeks

(the intra-observer), and the ground truth was obtained from

the consensus between the two graders. Statistical analysis

is performed as appropriate in order to evaluate the relative

performance of different segmentation methods. Due to the

relatively small number of images, p < 0.01 is considered to

be statistically significant. All the experiments were carried

out in MATLAB2015a on a PC with an Intel Core i7-4790K

CPU, 4.00GHz, and 16GB RAM.

V. EXPERIMENTAL RESULTS

The proposed saliency-guided leakage detection method is

evaluated from two aspects: leakage detection over different

datasets, and the comparison with existing state-of-the-art

saliency detection methods. An experimental investigation will

also be carried out in the next section on the effectiveness of

different saliency cues and parameter setting - i.e., the level of

superpixel maps and the number of superpixels in each level,

the threshold value for the generation of the ROIs from the

final saliency map and the region weight λ.

A. Results on different datasets

In this section, we quantitatively evaluate the performance

of our algorithm in direct comparison with both the leakage

detection performance of human graders and that of an existing

alternative method. To this end, the method proposed by

Rabbani et al. [12] was re-implemented in our study, and

applied to the MR dataset. For the DR dataset, however, we

directly quoted the results reported in their paper in the hope

that their results are the best achievable.

TABLE II: The performances of different methods in detecting

focal leakages over the MR dataset at the site level. The

number in the brackets indicates the relative performance

measurement. 41 leaking sites were manually annotated as

ground truth.

Rabbani et al. [12] Proposed

#(detected focal leakages) 35 40

tp (Se) 32 (0.78) 40 (0.98)

fp (1-Sp) 3 (0.07) 0 (0)

fn (Fnr) 6 (0.14) 1 (0.02)

(a) (b) (c) (d) (e)

Fig. 3: Examples illustrating the main steps of our algorithm

for detecting leakages. The images in top three rows are from

MR dataset, and the images in bottom three rows are from

DR dataset. (a) Example FA images; (b) saliency maps of (a).

The bright regions indicate the more salient regions, and the

dark areas show the less salient regions; (c) binary images

of (b) obtained by applying the threshold value T ; (d) the

detected leakage regions after masking vessels and optic disc;

(e) expert’s annotations.

TABLE III: The performances (average ± one standard de-

viation) of different methods on detecting the focal leakages

over the MR dataset at the pixel level.

Intra obs. Inter obs. Rabbani et al. [12] Proposed

Se 0.96±0.02 0.91±0.04 0.81±0.08 0.93±0.03

Sp 0.97±0.03 0.94±0.05 0.87±0.08 0.96±0.02

Acc 0.96±0.03 0.89±0.04 0.83±0.10 0.91±0.03

AUC 0.96±0.02 0.92±0.04 0.84±0.08 0.94±0.02

DC 0.92±0.04 0.80±0.05 0.74±0.05 0.82±0.03

1) MR Dataset: The leakage detection results over the MR

dataset are illustrated in the top three rows of Fig. 3. It can be

seen that most of the leaking areas were correctly identified

by our automated method. TABLE II shows the performances

of different methods in detecting the focal leakage sites.

According to the human reference standard there were 41 sites

of large focal leakage in 25 images (one image per patient).

Our method failed to detect only one out of all these sites,

achieving a sensitivity of as high as 0.98, and the false negative

rate of as low as 0.02. It is interesting to note that our method

produces a false positive rate of 0, which means there were no
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(a) (b) (c) (d) (e) (f)

Fig. 4: Leakage segmentation results by experts (green labels), existing method [12] (red labels), and the proposed automated

method (blue labels). For fair comparison, only the regions (yellow circle) centered at the fovea with a diameter of 3000µm
were considered as regions of interest. Note: (a)-(e) were quoted from [12] for convenience. (a) Example FA images. (b)

Annotation of Expert 1. (c) Annotation of Expert 2. (d) Re-annotation of expert 2 after 4 weeks. (e) Leakage detected by

Rabbani et al.’s method. (f) Leakage detected by our proposed method.

regions falsely identified as large focal leakage sites. In sharp

contrast, the method proposed by Rabbani et al [12] produces

relatively poorer results. It has only successfully detected 32

focal leakage sites, which gives a sensitivity of only 0.78. In

addition, 3 non-leaking regions were falsely detected as focal

leakage sites. This is because it used only intensity information

for the task, which failed to distinguish leaking sites from

non-leaking ones with high intensity values. TABLE III shows

the performances of different methods in detecting the focal

leakage sites at the pixel level. It shows that the proposed

method achieves competitive results to human experts: the

mean accuracy of 0.96± 0.03 for the manual intra-observers;

0.92 ± 0.04 for the manual inter-observers; 0.83 ± 0.10 for

Rabbani’s method; and 0.91± 0.03 for the proposed method.

The statistical analysis shows that the performance of the

proposed method is significantly higher than that of the method

proposed by Rabbani et al [12] (2-tailed t-test, all p < 0.0001).

2) DR Dataset: The proposed method was also tested on

the DR dataset with the aim of detecting the leakage areas

caused by diabetic macular edema. As suggested in [12],

TABLE IV: The performances (average ± one standard de-

viation) of different methods on detecting the focal leakages

over the DR dataset at the pixel level.

Intra obs. Inter obs. Rabbani et al. [12] Proposed

Se 0.95±0.05 0.78±0.09 0.69±0.16 0.78±0.06

Sp 0.73±0.27 0.94±0.08 0.91±0.09 0.94±0.02

Acc 0.83±0.16 0.90±0.08 0.86±0.08 0.89±0.06

AUC 0.84±0.16 0.91±0.08 0.80±0.12 0.86±0.04

DC 0.80±0.08 0.82±0.03 0.75±0.05 0.81±0.02

quantitative analysis of a circular region centred at the fovea

with a radius of 1500 µm is of greatest significance for clinical

diagnosis and treatment. For a fair comparative study, we also

limited our method in detecting the leakages in this area. Fig. 4

shows the results of different methods in detecting the leaking

regions abound the fovea. It can be seen that most of the

leaking areas have been detected by both methods, and that

the segmentation results are very similar to those of manual

annotations.
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Fig. 5: Saliency detected on single images from the MR and DR datasets by different algorithms. (a) Original FA images.

(b)-(g) Saliency maps generated using different methods. (h) Ground truth. Note, the ground truth only indicates the leaking

regions. In the saliency detection step, the large vessels and optic disc are also assigned as salient regions but will be removed

later.

It is difficult to distinguish visually between the two meth-

ods. Quantitative results are thus provided in TABLE IV, in

terms of sensitivity, specificity, accuracy, area under curve,

and Dice coefficient. It can be clearly seen that our au-

tomated method outperforms Rabbani’s method again, and

has relatively better stability. To be more specific, the mean

accuracy was 0.89 ± 0.06 for our method; 0.86 ± 0.08 for

Rabbani’s method; 0.83±0.16 for the manual intra-observers;

and 0.90±0.08 for the manual inter-observers. It is interesting

to note that the accuracy for intra-observer annotations was

lower than that of our automated method, which is very close

to the accuracy of the inter-observer annotations. This implies

that the DR dataset suffers from noise and other distortions

common in real-world clinical imaging: a finding that was also

reported in [12]. These results show that humans are prone to

variability. The statistical analysis shows that the performance

of our proposed method is significantly better than the method

proposed by Rabbani et al. (2-tailed t-test, all p < 0.0001).

In summary, based on both the quantitative and qualitative

comparisons on two different datasets, it can be seen that

our automated method is effective, and is superior to the

existing automated method in detecting the focal leakages.

When compared with the annotations of human observers, it

can be seen that on one hand, our method can perform as well

as a human expert. On the other hand, human observers are

prone to variability (relatively lower Sp, Acc, and AUC scores

than the proposed method).

B. Saliency detection

In this section, we carry out a comparative study between

the proposed method and the state-of-the-art ones for the

detection of salient objects, including vessels, focal leakage,

and optic disc, over the MR and DR datasets. Since the

detection of salient objects is an immediate step of our

method, such comparative study will help further explain its

superior performance reported in the last section. To this

end, five saliency detection methods were selected: the classic

method [5], spectral residual saliency [21], frequency-tuned

saliency [6], graph-based visual saliency [25] and context-

aware saliency [41]. These competitors and the proposed

method are referred to as IT, SR, FT, GB, CA, and IC,

respectively. The source codes with default parameter settings

provided by the authors for these methods were used, and all

generated saliency maps were normalized into the same range

of [0,1] with a full resolution of the original images.

The saliency maps estimated by the six different methods

are presented in Fig. 5. It can be clearly seen that the proposed

method has successfully detected all main objects, including

the focal leakages and vessels, which are largely consistent

with the results of visual inspection. The SR method has the

poorest performance, since the spatial information is lost in the

Fourier representation. This means that the spectral energies

derived from frequency bands in Fourier domain alone may

not be sufficient. Compared with other models, the proposed

method preserves salient object boundaries more accurately

and highlights the complete salient objects more effectively.
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(a) MR (b) DR (c) AUC values

Fig. 6: (The reader is referred to the color version of this figure) ROC curves and AUC values of different methods over two

different datasets. (a) ROC curves over the MR dataset. (b) ROC curves over the DR dataset. (c) AUC values.

(a) MR (b) DR (c) AUC values

Fig. 7: ROC curves and AUC values achieved by the proposed method with different saliency cues over two different datasets.

(a) ROC curves over the MR dataset. (b) ROC curves over the DR dataset. (c) AUC values.

It is not only capable of suppressing background, but also

highlights all salient regions (e.g. leakage area, vessels, and

optic disc) with well-defined boundaries. By utilizing the

intensity and compactness information, the proposed method

can better handle heterogeneous objects (row 2 in Fig. 5), low

contrast between objects and background (row 4 in Fig. 5),

large-scale salient regions (row 3 in Fig. 5) and small-scale

salient objects (row 4 in Fig. 5) more effectively compared

with other saliency detection methods.

In order to objectively measure the performance, the false

positive rate and true positive rate of the saliency maps derived

by different methods were then calculated, by sweeping a

threshold from 0 to 1 over the final saliency map. The averaged

results over different images of our method and its competitors

are plotted as ROC curves in Fig. 6 (a) and (b). It can be seen

that our method achieves the best performance over both MR

and DR datasets. The AUC values were also calculated from

the ROC curves of all these methods and are illustrated in

Fig. 6 (c). It can be seen that the proposed method consistently

outperforms its competitors. It can also be seen that the AUC

value achieved by each method is higher over the MR dataset

than over the DR dataset. This suggests that the leakage

detection on the DR dataset is relatively more challenging than

over the MR dataset.

VI. DISCUSSIONS

Our proposed method includes a number of free features and

parameters: the effectiveness of each saliency cue, the numbers

of superpixels and levels of superpixel partition; the threshold

value for the generation of ROIs from the final saliency map;

and the weighting parameter λ for the graph-cut segmentation.

In this section, we experimentally investigate their effect on

the segmentation.

A. The effectiveness of each saliency cue

In our method, two cues were employed to measure salience

in each FA image: intensity and compactness. To validate the

effectiveness of each cue, we generated three ROC curves and

calculated corresponding AUC values over the MR and DR

datasets separately: intensity cue only, compactness cue only,

and combined intensity and compactness cues.

Fig. 7 shows the experimental results. It can be seen that the

ROC curve using the saliency map based on both cues is higher

than that using either the intensity cue or the compactness

cue alone. Essentially, the proposed method utilizes both the

global intensity and compactness information to constrain the

saliency detection problem: the leakage regions in FA images

have particular color (intensity cue) and shape (compactness)

characteristics. The intensity cue is able to reveal important

regions at different scales in the image. The compactness cue is

effective for distinguishing salient regions against background.

Our results indicate that intensity and compactness cues have

a complementary effect for the definition of saliency.

B. The numbers of the superpixel maps and superpixels in

each map

Choosing a suitable number of superpixels is usually em-

piric and case-specific for most of segmentation methods.

On one hand, too large a number of superpixels leads to
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(a) (b)

Fig. 8: The ROC curves of the proposed method with (a)

different numbers of superpixels: 250, 500, 1000, 2000, and

4000; (b) different numbers of levels, after setting the optimal

number of the superpixels to 1000.

over-segmentation and over-intensive computation. On the

other hand, too few superpixels result in a loss of the edge

information of the objects of interest. In this section, we

experimentally tune this parameter. To this end, it was set

to be successively 250, 500, 1000, 2000 and 4000. Fig. 8 (a)

shows the performances of the proposed method under these

test numbers, and reveals that the proposed method achieves

the best performance when the superpixel number is 1000.

Multiscale analysis is useful to reveal the saliency at dif-

ferent scales. Too few scales may miss the saliency at small

scales. Too many scales may detect unimportant objects at the

cost of intense computation. Thus, in this section, the optimal

number of superpixel levels is evaluated, and results are shown

in Fig. 8 (b), where the number of superpixels was set to

1000 at the finest level. It can be clearly seen that our method

achieves the best performance when the number of levels is 3.

This means that with the optimal number of superpixels being

1000, those at the other two levels were set to 1000× 1
3 = 333

and 1000× 2
3 = 666 respectively. It is worth mentioning that

the specified combination of the number of superpixels and the

number of levels may not be the best choice for our proposed

method.

C. Threshold value for the generation of ROIs

The binary segmentation of ROIs from the final saliency

map can be obtained by using a simple threshold-based

method. In this case, there is a concern that the segmentation

results may be affected by the chosen threshold. In this section,

we experimentally investigate how to set up such threshold.

To this end, we varied the threshold T from 0 to 1 with steps

of 0.05. Fig. 9 shows the AUC values of our method with the

threshold T taking different values over two different datasets.

It can be seen that it achieves the highest AUC value when

T = 0.65, for all cases. These results thus justify our choice

of T = 0.65 throughout this paper.

D. The effect of the region weight λ

In order to demonstrate the robustness of the graph-cut

based leakage segmentation, the effect of the region weighting

factor λ in the energy minimization function (Eq. 11) are eval-

uated in this section. λ balances the smoothness of the detected

TABLE V: The average ± standard deviation of various pa-

rameters and computational time t in seconds of the proposed

method with the region weight λ taking different values over

different datasets.

dataset λ Se Sp Acc AUC t (sec)

MR

0.1 0.93±0.02 0.96±0.02 0.91±0.02 0.94±0.02 13.1±3.1
0.5 0.93±0.03 0.96±0.02 0.91±0.03 0.94±0.02 9.6±2.8
1 0.91±0.04 0.95±0.02 0.90±0.04 0.93±0.03 7.1±2.2
1.5 0.91±0.03 0.95±0.01 0.90±0.03 0.93±0.02 6.5±1.8
2 0.90±0.04 0.94±0.03 0.90±0.04 0.92±0.02 5.3±1.1

DR

0.1 0.78±0.02 0.94±0.02 0.89±0.04 0.86±0.03 15.2±3.2
0.5 0.78±0.06 0.94±0.02 0.89±0.06 0.86±0.04 10.9±3.0
1 0.77±0.04 0.94±0.01 0.88±0.05 0.85±0.04 8.4±2.8
1.5 0.77±0.04 0.94±0.02 0.88±0.06 0.85±0.04 7.9±2.2
2 0.76±0.05 0.93±0.03 0.88±0.06 0.85±0.04 6.5±1.2

boundary and the uniformity of the detected regions. Usually,

the smaller the value of λ, the smoother the boundaries and the

larger the regions the segmentation will produce, while a larger

λ obtains more complex boundaries and larger regions. To

reliably compare how significantly various values of λ affect

the detected leakages, a range of values were tested to show

the sensitivity of our method.

TABLE V shows the experimental results on the perfor-

mance of the proposed method in terms of pixel-wise sensi-

tivity, specificity, accuracy, and area under curve. In addition,

the elapsed time of each trial was also measured. From this

table, it can be seen that λ = 0.5 made the best trade-off

between the accurate detection of the leaking regions and the

computational time. These results justify our choice of λ = 0.5
in our method.

VII. CONCLUSIONS

It is important to distinguish between leakage in FA and

retinal lesions (e.g. drusen, exudate, microaneurysm, pigment

abnormalities) commonly seen in colour fundus photograph.

Leakage shows activities of retinal diseases while lesions

reveals existence or absence of certain types of disease. An

extensive literature review shows that automated retinal image

analysis of FA images, especially for leakage detection, is

relatively unexplored. To the best of our knowledge, this is

the first report on the automated detection of the leakage over

both DR and MR datasets with the largest number of cases.

In this paper, we have proposed a multiscale saliency

detection method for the detection of focal leakages in FA

images. The proposed method is based on two saliency cues:

intensity and compactness features under multi-level super-

pixels. Then the saliency values of the superpixels at different

levels are estimated in the intensity and compactness channels

respectively. While the intensity cue characterizes the intensity

contrast among different superpixels, the compactness cue

characterizes how densely (or sparsely) the salient pixels dis-

tribute inside a superpixel. The superpixel representation helps

capture large objects of interest but at a low computational

cost, and multiscale analysis helps capture the objects of

interest with different sizes.

The saliency maps over the same cues at different levels are

fused using a pixel-wise multiplication operator, so that only
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(a) MR (b) DR (c) Overall

Fig. 9: The AUC values of the proposed method with the threshold T taking different values over two different datasets. (a)

MR. (b) DR. (c) Averages of AUC values over MR and DR.

such regions that are salient in both channels are detected

as salient. The saliency detection step can generate accurate

saliency maps with well-highlighted leakage sites and areas.

Thus, it can provide both the qualitative and quantitative

information for the analysis of the FA images. The regions of

interest (ROIs) in the given image are detected through thresh-

olding the saliency map. However, such simple thresholding

method usually renders the detected ROIs rugged and isolated.

To avoid such shortcoming, the powerful graph-cut method

[33], [34] is employed to segment the thresholded image so

that the neighbouring pixels tend to belong to the same class

of either foreground (ROIs) or background.

The experimental results based on two publicly accessible

MR and DR datasets show our method outperforms one of

the latest competitors and performs as well as a human expert

for leakage detection and outperforms several state-of-the-

art methods for saliency detection: it is not only capable of

identifying the location of leaking regions, but also has the

ability to measure the size of such regions.

To further demonstrate the merits of our proposed method

and justify its remarkable performance, we carried out an

extensive comparative study with other methods for saliency

detection. The experimental results based on the MR and DR

datasets show that our method is superior for the detection

of salient objects and structures in the FA images. We plan to

apply this new tool to assist the management of retinal diseases

such as DR and MR. We also plan to automate the parameter

tuning process. We also plan to apply the proposed saliency

detection method to other types of images, and evaluate its

performance on other benchmark datasets [42].
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