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Abstract

Background: The small sample sizes often used for microarray experiments result in poor estimates of

variance if each gene is considered independently. Yet accurately estimating variability of gene expression

measurements in microarray experiments is essential for correctly identifying differentially expressed

genes. Several recently developed methods for testing differential expression of genes utilize hierarchical

Bayesian models to "pool" information from multiple genes. We have developed a statistical testing

procedure that further improves upon current methods by incorporating the well-documented

relationship between the absolute gene expression level and the variance of gene expression

measurements into the general empirical Bayes framework.

Results: We present a novel Bayesian moderated-T, which we show to perform favorably in simulations,

with two real, dual-channel microarray experiments and in two controlled single-channel experiments. In

simulations, the new method achieved greater power while correctly estimating the true proportion of

false positives, and in the analysis of two publicly-available "spike-in" experiments, the new method

performed favorably compared to all tested alternatives. We also applied our method to two experimental

datasets and discuss the additional biological insights as revealed by our method in contrast to the others.

The R-source code for implementing our algorithm is freely available at http://eh3.uc.edu/ibmt.

Conclusion: We use a Bayesian hierarchical normal model to define a novel Intensity-Based Moderated

T-statistic (IBMT). The method is completely data-dependent using empirical Bayes philosophy to estimate

hyperparameters, and thus does not require specification of any free parameters. IBMT has the strength

of balancing two important factors in the analysis of microarray data: the degree of independence of

variances relative to the degree of identity (i.e. t-tests vs. equal variance assumption), and the relationship

between variance and signal intensity. When this variance-intensity relationship is weak or does not exist,

IBMT reduces to a previously described moderated t-statistic. Furthermore, our method may be directly

applied to any array platform and experimental design. Together, these properties show IBMT to be a

valuable option in the analysis of virtually any microarray experiment.
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Background
Identifying differentially expressed gene transcripts is the
most common task in analyzing microarray data. The cur-
rent state-of-the-art in microarray design and analysis
involves identifying differentially expressed genes by
assessing the statistical significance of observed ratios in
replicated microarray hybridizations with independent
samples [1]. After performing the initial data processing
designed to remove several important sources of varia-
tion, the traditional and most commonly used approach
is to treat each probe (or probe set in the case of Affyme-
trix GeneChips) as an independent experiment. After per-
forming usual statistical analysis such as the t-test or
analysis of variance, individual p-values are adjusted for
the number of hypotheses performed [2].

Considering data for each probe/gene transcript sepa-
rately when testing for differential expression is statisti-
cally inefficient. The estimates of variance are often poor
due to small sample sizes. However, additional informa-
tion may be gained by combining variance estimates
across all genes, and methods that exploit this informa-
tion improve results [3-9]. Several of these methods use
hierarchical Bayesian models or other methods for calcu-
lating "moderated" variances for individual genes,
weighted averages of the gene-specific sample variances
and the pooled estimate of variance calculated from all
genes [3,4,6,10-12]. Empirical comparisons of such pro-
cedures have demonstrated that the gain in statistical
power can be substantial [10]. Others use more heuristic
types of arguments to modify artificially small variance
estimates that are likely a consequence of random fluctu-
ations in the data [9,13].

An additional source of information not commonly uti-
lized in the statistical analysis of microarray data is the
well documented dependence of gene variances on overall
expression level of corresponding genes [3,11,14,15]. One
notable exception is Cyber-T [3], a hierarchical Bayesian
method in which gene-specific "prior" variances are calcu-
lated within a window of genes with similar expression
levels. Interestingly, Cyber-T performed best in the analy-
sis of a "spike-in" Affymetrix experiment [14]. However,
the applicability of Cyber-T is somewhat limited in that
two important parameters, the window size and the prior
degrees of freedom, need to be specified by users, and it
supports only t-tests, paired t-tests, and one-way Analysis
of Variance (ANOVA). In contrast to Cyber-T, the moder-
ated-T procedure proposed by Smyth [12] (SMT), and
implemented in the eBayes function in the limma package
of Bioconductor, uses an empirical Bayes framework to
estimate all parameters from data and it can be used to test
any hypothesis within the traditional linear models
framework. However, it does not utilize the relationship

between variances of expression level measurements and
their magnitude.

Recently, Fox and Dimmic proposed an extension of
Cyber-T, (Fox), for two-sample comparisons. Like Cyber-
T, this method assumes a hierarchical Bayesian model and
uses a moving window average to calculate the prior vari-
ances. Although they remove some of the ad hoc nature of
Cyber-T, the window size is still specified by the user, and
the prior degrees of freedom are calculated based on the
moving window size, by assuming genes with similar
expression levels have identical variance. This is an impor-
tant contrast with Smyth's and our method [12]. Further-
more, Fox's method is limited to simple two-sample
comparisons and cannot account for the dye-effect in
dual-channel microarrays. Here we describe and evaluate
a new Bayes moderated-T statistic which we refer to as
IBMT (Intensity-Based Moderated T-statistic). IBMT is an
extension of SMT [12] and accounts for the dependence of
variance on gene signal intensity. Like SMT, IBMT can be
used with any experimental design, including but not lim-
ited to experiments with multiple treatments and/or both
technical and biological replicates, experiments with a
continuous covariate, and dual-channel experiments with
dye-effects. It can also be used with any array platform, for
example Affymetrix, dual-channel, tiling arrays, etc. Simi-
lar to Smyth, we use empirical Bayes (EB) theory to esti-
mate all parameters of the hierarchical Bayesian model.
We use non-parametric local regression to functionally
relate variance and absolute gene expression measure-
ments. This possibility has been previously proposed but
has not been further explored [3].

In this paper, we describe the hierarchical model for gene
expression data, detail the procedure for estimating all
parameters in the model, and describe the testing proce-
dure for identifying differentially expressed genes. In sim-
ulations carefully designed to mimic real microarray data
[16-18], we determine that overall our method outper-
forms all other tested methods, including the simple T-
statistic, fold change cut-off, SMT, and Fox. We demon-
strate that IBMT performs as well as, or better than any
other tested method in when using simulated data and
"spike-in" Affymetrix experiments [14]. We also apply our
method to two experimental microarray datasets [19] that
due to their experimental designs, cannot be correctly ana-
lysed with previously proposed methods that account for
the variance-intensity relationship (CyberT and Fox). We
find that our method generally resulted in higher signifi-
cance of Gene Ontology (GO) [20] groups when testing
for an enrichment of differentially expressed genes. We
also provide examples of how our method results in bio-
logical conclusions that may not have been attained using
an alternative method.
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Results and discussion
Intensity-based Bayesian model

Figure 1 displays an example of the dependence of gene
variance on expression level, taken from the MEF Ahr-/-

dataset (see Methods section), similar to the observed
dependency published previously [3]. The fact that such a
dependence exists is intuitive, in view of how the data are
measured from the microarray images. Spots with low flu-
orescence level will likely have fewer pixels measured, and
the resulting estimate of expression is an average or
median of fewer or lower numbers. Furthermore, tran-
scripts that are lowly expressed are changed by a greater
proportion by the addition of a few labeled transcripts,
and thus may actually vary more in biological tissue sam-
ples. This relationship between variance and expression
level can be modeled as

s0g
2(αg) = f(αg) + εg  (1)

where the average log-expression level of gene g is denoted
by αg, f(αg) is some function of αg defined on the range of
αg, and s0g

2 is the estimated prior variance. As explained
below, we chose to model the function s0g

2 (αg) using
local regression. The use of local regression differs from
the window method of Cyber-T in that the window
method pools the standard deviation estimates of all
genes in the window, whereas local regression uses a
weighted average of the log-variances, where the weight for
each gene j depends on the difference between the inten-
sity of gene j and the intensity of the gene g, of interest.
This relationship on its own can significantly reduce the

uncertainty in the true variance of gene expression vari-
ances. For example, the relationship shown in Figure 1
explains approximately 34% of variability in individual
gene expression variances.

For our intensity-based method, we follow a hierarchical
Bayesian set-up similar to SMT [12]. Individual gene vari-
ances for genes with similar overall expression levels are
assumed to have been generated by a single probability
distribution. The parameters for the distribution of the
variances, d0 and s0g

2, are termed the hyperparameters,
and are estimated from the data using EB theory. In terms
of the precision of the gene expression levels, which is
defined as the reciprocal of the variance, 1/s0g

2 is the
mean, andthe hyperparameter d0 is the prior degrees of
freedom and determines the spread of the distribution for
a given s0g

2. Larger d0 values result in smaller spread of the
distribution for the precision and variance of gene expres-
sion levels. Similar to previous methods [3,11], by assum-
ing a single hyperparameter for the prior degrees of
freedom, we make the assumption that the spread of var-
iance estimates about the background variance level is
similar across the entire range of fluorescence levels.

Suppose that g is the estimate of the contrast of interest

obtained after fitting the appropriate linear model for

gene expression data for gene g. In the simplest case when

comparing expression levels between two samples, g is

just the difference in average log-expression levels for gene

g under the two experimental conditions. We assume the

g measurements of log-fold change for each gene follow

a normal distribution centered at βg, the actual log-fold

change:

g ~ N (βg, vgσg
2)

where σg
2 is the residual variance in the linear model for

gene g and vg is the coefficient of the variance required to
calculate the standard error. For a two-sample t-test, vg is
1/n1 + 1/n2 where n1 and n2 are the number of observa-
tions for each sample. Given the variance σg

2, the sample
variance for each gene is assumed to follow a scaled Chi-
square distribution with dg degrees of freedom:

We adopt the conjugate prior distribution for σg
2

β̂
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χDependence of gene variance on average log-intensitiesFigure 1
Dependence of gene variance on average log-intensi-
ties. Typical example of the form of dependency of log-vari-
ance on average log-spot intensity. Red line was determined 
using local regression. Data were from mouse embryo 
fibroblast Ahr-/- dataset.
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where d0 and s0g
2 are the hyperparameters for the degrees

of freedom and variance, respectively. With this model,
the closed-form solutions for the posterior mean of the
variance and degrees of freedom given the hyperparame-
ters are:

where df is the posterior degrees of freedom, dg is likeli-

hood degrees of freedom, and  is the posterior mean of

the variance. Our goal is to calculate point estimates of

hyperparameters so that we can calculate expected values

for the posterior parameters, σg
2 and df.

We can now use the moderated t-statistic:

to test the hypothesis H0: βg = 0 vs. HA: βg ≠ 0 with df

degrees of freedom, where gi is the estimate of log-fold

change for gene g and contrast i, and g is the posterior

standard deviation.

As demonstrated by Smyth [12], under the null-hypothe-
sis, the resulting moderated T-statistic in IBMT is distrib-
uted as Student's-t with df degrees of freedom. Thus,
differentially expressed genes can be identified by calcu-
lating p-values and making appropriate multiple compar-
isons adjustments. However, if the data grossly deviate
from the distributional assumptions, the moderated t-sta-
tistics can be used as a heuristic score for ranking genes
based on the likelihood that they are differentially
expressed, or an alternative empirical-based multiple
comparison adjustment can be made, as in [21].

Estimation of hyperparameters

The formulas for posterior mean of the variance and
degrees of freedom assume known hyperparameters d0

and s0g. We follow the empirical Bayes approach and esti-
mate hyperparameters from the data. Gene-specific prior
variances are estimated from f(αg) as given in (1), where
f(·) is a fitted local regression model of adjusted individ-
ual genes' log-variances (see equation 4) on the average

log-expression levels. In this way, we avoid having to pre-
specify a functional form for this dependency, and obtain
predicted variances for each gene given their spot intensi-
ties.

To estimate the prior variance and prior degrees of free-
dom, we use the common empirical Bayesian method of
equating the empirical to expected values for the first and
second moments of log-variance. According to the hierar-
chical model, the sampling variance for each gene, mar-
ginally, has the following scaled-F distribution [12]:

 ~ Fdg,d0

Consequently, the log-sample variance is distributed as
the sum of a constant and Fisher's Z distribution and has
the following expected value and variance:

E (log ) = log  + ψ(dg/2) - ψ(d0/2) + log(d0/dg)  (2)

var(log ) = ψ'(dg/2) + ψ'(d0/2)  (3)

where ψ() is the digamma function and ψ'() is the tri-
gamma function [12,22]. We denote with eg the non-con-
stant part of (2) for each gene after solving for log(s0g

2)

eg = log  - ψ(dg/2) + log(dg/2),  (4)

with

E(eg) = log  - ψ(d0/2) + log(d0/2).  (5)

Next, we determine the predicted values for eg, pred(eg), as
a function of average log-intensities by local regression.
We define the prior variance for each gene, s0g

2, to be the
exponential of pred(eg) + ψ(d0/2) - log(d0/2), by substitut-
ing pred(eg) for E(eg) in (5) and solving for log(s0g

2). To
calculate the prior degrees of freedom we equate the
empirical variance of the log-sample variances with the
marginal variance in (3) and solve for d0. As indicated
before, we assume a priori that σg

2 varies with g, but its var-
iance is constant for all g. Thus, if dg's were all the same
and ψ'(dg/2) = c, say, then the marginal variance as given
in (3) would be a constant, with a consistent estimator
given by

This would yield an estimator for ψ'(d0/2), given by
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mean[eg - pred(eg)]2 - c.  (6)

When dg's are different, the marginal variances in (3) dif-
fer for different g, but by known values ψ'(dg/2). Thus if we
assume that dg does not vary drastically, in the sense that
mean[ψ'(dg/2)] = (1/n)∑ψ'(dg/2) approaches a constant c
as n gets large, then (6) is a consistent estimate of ψ'(d0/
2). Typically, dg does not vary substantially with good
quality data, and with Affymetrix data dg is usually con-
stant. Thus d0 can be estimated consistently by solving

ψ'(d0/2) = mean[eg - pred(eg)]2 - mean[ψ'(dg/2)]

for d0. Note that if dg is constant for all genes, then using
log sg

2 in placement of eg results in the same solution for d0.

Simulation study

Simulations were designed to imitate a six slide, single-
channel microarray experiment with three treatments and
three controls. The simulations were performed to com-
pare the performance of five methods (t-test, fold change,
SMT, IBMT, and Fox) with respect to: a) the strength of
relationship between variance and signal intensity, b) esti-
mation of the correct prior degrees of freedom, and c)
unbiased estimation of the true false positive rate. Average
expression intensities were generated assuming a log-nor-
mal distribution with a scale parameter of 1.1, shape
parameter equal to 0.34, and threshold parameter 5.1.
The parameters for this distribution were chosen to
closely fit the actual distribution of average expression
intensities seen from real experiments (Figure 2a). Simu-
lations were run assuming prior degrees of freedom d0 ∈
[1, 4, 16, 100]. For each prior degrees of freedom, actual
and sample standard deviations were simulated for three
different strengths of dependency on average log-intensi-
ties (Figure 2b), referred to as low, medium, and high. The
specific functional form used for this was

g(x) = p1e
-0.8(x-5) + p2

with the following values used for p1 and p2: low: p1 = p2 =
0.875, medium: p1 = 1.25 and p2 = 0.5, and high: p1 = 1.5,
p2 = 0.25. To determine differences among the methods
due to sample size, additional simulations were run for a
4-slide experiment (two treatment, two control) and a 10-
slide experiment (five treatment, five control), with the
high strength dependency, and an additional simulation
was also run for the 6-slide experiment with no depend-
ency of variance on average intensities. In the case of no
dependence, IBMT performed nearly identical to SMT. All
simulations were performed with 15000 "genes", 300
(2%) of which were designed to be "differentially
expressed". Log-ratios for all genes were simulated as
described in [12]. Actual mean log-ratios for the 300 dif-
ferentially expressed genes were simulated from the nor-

mal distribution N(0, 3•σg
2), and simulated measured

mean log-ratios for all genes were assumed to follow the
normal distribution N(µ, σg

2/3), where µ = 0 if the gene is
not differentially expressed, and the simulated log-ratio
for the 300 (2%) differentially expressed genes.

The simulation process is summarized here:

For all 15000 genes:

1. Simulate αg as random draws from a log-normal distri-
bution,

2. Define function, f(αg), for dependence of variance on
αg,

3. Simulate σg
2 as random draws from d0*f(αg)/(chi-

square with d0 degrees of freedom),

4. Simulate sg
2 as random draws from σg

2/dg*chi-square
with dg = 4 degrees of freedom,

5. W.L.O.G., assume the first 300 genes are differentially
expressed,

Simulate their mean log-ratios µg as random draws from
N(0, 3σg

2),

6. For the remaining 14700 non-differentially expressed
genes

Set µg = 0,

7. Simulate estimated log-ratios as random draws from
N(µg, σg

2/3).

Results from the simulations indicate that the added com-
plexity of the model is outweighed by the additional gain
in information. Four methods were compared in their
ability to correctly estimate the false positive rate, using
estimated False Discovery Rates (FDR) [23]: the simple T-
statistic (T), Smyth's moderated T-statistic (SMT), our
intensity-based moderated-T (IBMT) method, and Fox's
method (Fox). All methods except Fox accurately estimate
the percent of false positives, as demonstrated by Figure 3.
When the prior degrees of freedom is low, Fox's method
underestimates the percent of false positives (Figure 3a
and 3b), suggesting the possibility of a real risk of Fox's
method to give overly-optimistic results with real data.
Control of the true false positive rate under additional
parameter sets gave the same results, and may be viewed
as Supplemental Figure S2 [see Additional file 1].

We compared the ability of the methods to identify differ-
entially expressed genes by creating false positive rate
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curves for each parameter set. These were created by rank-
ing the genes by significance level, and then calculating
the number of accumulated false positives with rank less
than or equal to x. Example false positive rate curves for
the five methods are shown in Figure 4. Figure 5 summa-
rizes the results for all parameter sets by presenting nor-
malized areas under the false positive curves described
above. All results shown are the average of 100 simulation
runs. All methods performed poorly when the data was
simulated with only one prior degree of freedom. As the
number of prior degrees of freedom increased, the per-
formance of all methods except the simple t-test improved
with IBMT overall outperforming the other methods.
Fox's method closely followed the performance of the fold
change method, with a substantial advantage over fold
with high dependence of variance on signal intensity.
However, it had poor performance when gene's variances
were approximately independent (small prior degrees of
freedom). Both these results are probably due to this
method's assumption that genes with similar intensities
have identical variances. For the simulation with no
dependence of variance on expression level, the areas
under the false positive curves were the same for both SMT
and IBMT. The poor performance of the simple T-statistic
in these simulations is most likely related to the low
number of experimental replicates. We used four sample
degrees of freedom, which was insufficient to accurately

measure the variance of each gene separately. In addi-
tional simulations performed with higher sample degrees
of freedom (8, 12, and 16), the simple t-test showed
marked improvement over results based on fewer degrees
of freedom, while the other methods did not show as
much improvement as the degrees of freedom increased
(supplemental Figure S3).

Finally we compared the ability of IBMT to SMT to accu-
rately estimate the prior degrees of freedom (Table 1).
Since Fox's prior degrees of freedom is dependent only on
the free parameter and sample size rather than estimated
from the data (default d0 = 16 for all 4-slide simulations),
Fox was not included in this comparison. As expected, the
empirical Bayes method that does not account for the rela-
tionship between the variance and the magnitude of
expression measurements tends to underestimate the
prior degrees of freedom, especially for larger d0 values. As
the dependency of variance on average intensities
increases, this bias grows stronger. For the simulation
with no dependence of variance on intensity level, using
d0 = 16, both methods accurately estimated the prior
degrees of freedom, with estimates of d0/(d0+dg) equal to
0.802 and 0.803 for SMT and IBMT respectively.

Values used in simulationsFigure 2
Values used in simulations. (A) Distribution of average log-expression levels. (B) Three strengths of dependency of gene 
standard deviation on expression intensity used in simulations.

A 
B 
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Results from the controlled spike-in dataset

Two publicly-available, and completely controlled,
"spike-in" Affymetrix datasets were used to compare the
performance of the same methods, plus Cyber-T, on real-
world microarray data. The analysis of these experiments
is a natural extension of the simulation studies as the "cor-

rect" results are known. The first experiment consisted of
three technical replicates each of control RNA samples
and samples with known amounts of spiked-in RNA, and
consisting of 3,860 individual cRNAs. We used the aver-
age of the top 10 expression datasets, as reported by Choe
et al. [14] and available for download at [24]. The descrip-

IBMT correctly estimates the proportion of false positivesFigure 3
IBMT correctly estimates the proportion of false positives. All tested methods except Fox (t-test, SMT, and IBMT) 
correctly control for the true false positive rate. Data shown is the average of 100 simulations and the mid-strength depend-
ence of variance on expression level with (A) dg = 4, d0 = 1, (B) dg = 4, d0 = 4, (C) dg = 4, d0 = 16, and (D) dg = 4, d0 = 100.

A) B) 

C) D) 
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tion of all pre-processing steps used for these expression
datasets, as well as further detail of the experimental
methods are given in the original publication [3]. In the
original publication, Cyber-T was determined to be the
preferred method for identifying differentially expressed
genes, with SAM [9] and the simple t-test being the other
methods tested. For all six methods (t-test, fold, SMT,
IBMT, Cyber-T, and Fox), we ranked the genes by signifi-
cance level, and then the number of false positives was
calculated as a function of the number of genes deemed to
be significant. The order of performance in accumulating
the least number of false positives, from best to worst, is
IBMT, Fox, Cyber-T, SMT, the simple t-test, and finally
fold change (Figure 6a).

The ability of the different methods to correctly establish
the statistical significance of differential expression was
assessed by comparing estimated and empirically estab-
lished False Discovery Rates (FDR) [23]. The simple t-test
performed best in correctly estimating the FDR (Figure
6b). Of the four other methods, IBMT and SMT resulted in
estimated False Discovery rates closest to their true pro-
portion of false positive rates (Figure 6b). All five methods
underestimate the number of false positives, which under
normal circumstances may result in an unacceptable
amount of over-confidence in the significance of results.
However, we stress that in this experiment even the simple
t-test underestimated the true number of false positives, as
has been previously noted [25]. The prior degrees of free-
dom estimated for this study ranged from 4.0 – 5.4 for
IBMT and 1.6 – 1.9 for SMT, and using the defaults for the
other methods, Cyber-T used 10 and Fox used 16.

The second spike-in dataset used was the Affymetrix HG-
U133 latin-square data set available at [26], and consist-
ing of 22,300 probe sets. This dataset consists of 14 sets of
3 chips, each having 42 probe sets (0.19%) spiked-in.
After preprocessing with RMA, each consecutive pair of
triplicates was analyzed separately, to identify the 2-fold
changes in expression. In addition, IBMT was used to ana-
lyze each set of three consecutive triplicates. Figure 7a and
7b compare the average accumulation of false positives by
gene rank and estimation of the true proportion of false
positives respectively. Note the slight improvement in
using three sets at a time compared to pairs. Possibly due
to the low number of spiked-in genes for this experiment,
the ability of IBMT, Cyber-T, and Fox to rank the differen-
tially expressed genes on top could not be differentiated,
as the curves for these three experiments cross. However,
these methods did outperform SMT, fold change, and the
t-test, again indicating the importance of accounting for
the dependence of variance on gene signal intensity. Sim-
ilar to the previous spike-in experiment, Figure 7b shows
that the t-test performed best in estimating the true pro-
portion of false positives, and Cyber-T and Fox resulted in

the greatest underestimation of false positives. Prior
degrees of freedom for this data set ranged from 7.6 – 19.3
for IBMT and 5.2 – 8.2 for SMT, while Cyber-T and Fox
used the same defaults as the previous data set. The rela-
tionship between variance and intensity for this study can
be seen in Supplemental Figure S4.

Case studies: analysis and interpretation of two 

microarray datasets

Results from the MEF Ahr-/- dataset

Although simulations and spike-in datasets point to the
potential advantage of IBMT and allow a determination of
its general behavior, only with the analysis of experimen-
tal data can the practical advantages or disadvantages of
the method be observed. We compared the t-test based on
the simple linear model, fold change cut-off, SMT, and
IBMT on two experimental datasets. Cyber-T and Fox's
method were not included because they could not be
properly used with the experimental designs of these data-
sets. The first is a comparison of relative RNA levels of
wildtype mouse embryo fibroblast (MEF) cells to aryl-
hydrocarbon receptor gene (Ahr) knockout MEF cells,
involving both technical and biological replicate arrays.
The aryl-hydrocarbon receptor protein (AHR) is a critical
mediator of the molecular defense of exposures to envi-
ronmental toxicants by serving as the receptor in a toxi-
cant-activated signaling pathway [27]. The top 300
(2.2%) ranked genes from each of the four methods were
used to test for Gene Ontology categories significantly
enriched with differentially expressed genes to compare
the ability of each method to reveal pathways or cellular
processes involved in AHR function. We used a fixed
number of genes to test Gene Ontology to keep the com-
parison of methods unbiased. Testing was performed
using Expression Analysis Systematic Explorer (EASE),
and linking to the three branches of the Gene Ontology
database. Fisher's Exact probability was calculated for
each gene category, and a Bonferroni-adjusted p-value <
0.1 was used as the significance cut-off level [28]. Assum-
ing the treatment affects a certain number of known bio-
logical pathways and molecular functions in the cell, the
method that detects the highest number of these is the
most desirable.

Table 2 shows the top 10 significant Gene Ontology cate-
gories for each method. IBMT had the highest number
(17) of significant categories as well as the highest
number of unique genes (144) involved in those catego-
ries. All four methods identified extracellular genes and
genes involved in the extracellular space as important cat-
egories altered when the Ahr gene is knocked-out. This is
consistent with what has previously been observed in vas-
cular SMCs [16]. IBMT further recognized "response to
external stimulus" (as well as several of its progeny:
response to biotic stimulus, defense response, and



BMC Bioinformatics 2006, 7:538 http://www.biomedcentral.com/1471-2105/7/538

Page 9 of 17

(page number not for citation purposes)

immune response) as being significantly affected. Once
the AHR is activated by the binding of an exogenous toxi-
cant, the AHR induces the transcriptional activity of a bat-
tery of xenobiotic metabolizing genes as part of a host
defensive response [29] and interacts with other signaling
pathways to either stimulate or depress signal transduc-
tion [30]. In addition, the interaction of the AHR and
TGF-β signalling pathways is known to greatly affect those
genes that encode extracelluar matix (ECM) and ECM
remodeling proteins [16]. The full list of significant cate-
gories and top ranked genes from each method are avail-
able as supplemental information [see Additional file 1].

Results from Nickel exposure dataset

The second experimental dataset that we analysed using
IBMT is a time series response to nickel inhalation in
female 129S1/SvImJ strain mouse lung [19]. Five times
were used (3, 8, 24, 48, and 72 hours), each being com-
pared to control samples in triplicate. For each time, sam-
ples for one array were labelled with opposite dyes. Data
was normalized and analysed for differentially expressed
genes as described in the methods. As in the previous sec-
tion, the analysis of this experiment, which must account
for both dye-effect and multiple treatment conditions, is

an example not able to be analysed correctly by either
Cyber-T or Fox's method.

We tested for significant GO categories as described above
for the top ranked 200 (1.5%) genes in each comparison,
and three different p-value cut-off values were used for sig-
nificance rather than the stricter Bonferroni adjustment
due to overall lower p-values from Fisher's Exact Test in
this dataset. Two hundred rather than 300 genes were
used in this experiment because only approximately 200
genes were significantly differentially expressed at the ear-
liest time-point based on previous analysis. Table 3 dis-
plays a summary of the results from testing for significant
Gene Ontology categories. IBMT found the highest
number of unique genes (666) involved in the signifi-
cantly found categories across time. The FOLD method
results in the highest number of significant categories
overall, and IBMT found the most significant categories
using the two smaller p-values of 0.0001 and 0.001.

Given the nature of this experiment, one would expect
that some functional categories would be affected at two
or more time points. Therefore, an additional measure of
performance is the level of overlap across time points in
which categories were found to be significant. To accom-

Example false positive curvesFigure 4
Example false positive curves. Number of falsely implicated differentially expressed genes with rank ≤ x for the simple t-
test, fold change cut-off, SMT, Fox, and IBMT methods. Figure shows the accumulation of false positives by gene rank. Data 
shown is the average of 100 simulations using (A) the high-strength dependence of variance on expression level and 100 prior 
degrees of freedom, and (B) the mid-strength dependence and 1 prior degree of freedom.

A) B)
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Areas under false positive curves for all three strengths of dependency of variance on average spot intensity, and for additional simulationsFigure 5
Areas under false positive curves for all three strengths of dependency of variance on average spot intensity, 
and for additional simulations. Areas are normalized so that the highest (worst) possible area is 0.50, the lowest (best) 
being 0.00. (A) Low strength dependency- the fold change method performed poorest for low prior degrees of freedom, while 
the simple t-test is poorest with high prior degrees of freedom. IBMT performs minimally better than SMT in this case. Fox 
performs similarly to fold change (B) Medium strength dependency- Similar to above, but with the advantage of IBMT larger 
for high prior degrees of freedom (C) High strength dependency- IBMT performs better than all other methods, especially for 
mid to high prior degrees of freedom. (D) 4-slide simulation- Similar to (C), but with overall poorer performance by the t-test, 
and slightly more advantage by IBMT. (E) 10-slide simulation- Fox now performs significantly better than fold change, but both 
have very poor performance for low prior degrees of freedom. IBMT still performs best.
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plish this aim, we calculated the average number of time
points each significant category was determined to be sig-
nificant using the three same p-value cut-offs as above.
The results are, for p-values of 0.0001, 0.001, and 0.005
respectively, FOLD: 1.04, 1.16, and 1.39; T: 1.00, 1.12,
and 1.26; SMT: 1.17, 1.44, and 1.45; and IBMT: 1.30,
1.60, and 1.58. Thus, according to the results, the IBMT
method gave the most consistent results through time.
The list of significant GO categories is available as supple-
mental information [see Additional file 1].

Acute lung injury is a severe clinical syndrome that results
from multiple causes including pneumonia, sepsis,
trauma, and inhaled irritants [31]. Pathological condi-
tions associated with the development of acute lung
injury include alveolar damage, inflammatory cell influx
and activation, pulmonary edema and hemorrhage, alter-
ation of surfactant production, and insufficient gas
exchange [31-33]. Prior studies have assessed aspects of
the molecular mechanisms involved in the pathogenesis
of acute lung injury in mice using inhaled nickel [19,34-
40].

Table 1: Simulated estimation of prior degrees of freedom for SMT and IBMT

Dependency strength of variance on intensity Method d0 = 1 d0 = 4 d0 = 16 d0 = 100

Low SMT 0.200 0.494 0.774 0.923

IBMT 0.200 0.500 0.800 0.963

Middle SMT 0.198 0.472 0.703 0.813

IBMT 0.200 0.501 0.800 0.961

High SMT 0.194 0.422 0.571 0.630

IBMT 0.200 0.500 0.801 0.962

Values listed are for the function d0/(d0 + dg) and are the mean of 100 simulations. Perfect values for each prior degrees of freedom are: d0 = 1: 0.20, 
d0 = 4: 0.50, d0 = 16: 0.80, and d0 = 100: 0.962

Results from the Choe, et al. spike-inexperimentFigure 6
Results from the Choe, et al. spike-inexperiment. (A) IBMT results in the fewest false positives overall. The other 
methods, from best to worst, are Fox, Cyber-T, SMT, t-test, and fold change. (B) Comparison of how accurately each method 
estimates the true proportion of false positives. The simple t-test performs best in correctly estimating its false positive rate, 
although all methods underestimate the true number of false positives, as noted in [25]. Fox's method and especially Cyber-T 
result in the greatest underestimation of false positives.

(A) (B)
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IBMT identified several transcripts that could play signifi-
cant roles in the development of nickel-induced acute
lung injury that were not recognized using the SMT
method. For example, following 24 h of nickel exposure,
transcripts for three heat shock proteins (HSPs) were
found to be induced using the IBMT method as compared
to the SMT method, including heat shock 70 kD protein 5
(HSPA5, 2.3-fold), heat shock protein 1B (HSPA1B, 2.4-
fold), and heat shock protein 9A (HSPA9A, 2.3-fold).
HSPs are a group of genes that are transcriptionally regu-
lated in response to cellular stress. In the lung, induction
of HSPs protects against acute lung injury in in vivo
[41,42] and in vitro models [43-45]. Thus, HSP induction
in response to nickel may be involved in an early cytopro-
tective mechanism in the development of acute lung
injury.

Another transcript that was determined to be significantly
changed using the IBMT method as compared to the SMT
method was from a group of genes known as aquaporins,
which facilitate water movement through the air space-
capillary barrier in the lung [46]. Expression of aquaporin
5 (Aqp5), the major water channel gene expressed in alve-
olar, and bronchial epithelium, decreased an estimated
2.3-fold after 48 h of nickel exposure. In previous studies,
decreased expression of Aqp5 has been associated with

acute lung injury caused by adenoviral infection [47] and
bleomycin treatment [48] in mice. These data are consist-
ent with the modulation of Aqp5 expression in regulating
fluid homeostasis and abnormal fluid fluxes in the devel-
opment of pulmonary inflammation and edema associ-
ated with acute lung injury.

Finally, another significantly altered transcript that was
identified by IBMT and not SMT was fibroblast growth
factor 2 (FGF2, a.k.a. basic fibroblast growth factor).
Mouse lung FGF2 transcript levels were estimated to be
induced 5.6-fold after 72 h of nickel exposure. In the lung,
Fgf2 is expressed in alveolar type II cells [49], and may
have multiple biological activities in vitro and in vivo,
including angiogenesis, mitogenesis, and cellular differ-
entiation [50]. Additionally, induction of Fgf2 expression
can influence cell proliferation and biosynthetic events
that are important to the proper resolution of tissue injury
in the lung [51,52]. Thus, increased Fgf2 expression may
be an important molecular event in the pathogenesis of
nickel-induced acute lung injury.

Taken together, the IBMT method successfully identified
several transcripts that were significantly changed at vari-
ous times throughout the development of nickel-induced
acute lung injury in mice that were not identified by the

Results from HG-U133 latin-square spike-in experimentFigure 7
Results from HG-U133 latin-square spike-in experiment. (A) Methods that account for the dependency of variance on 
signal intensity (IBMT, Cyber-T, and Fox) accumulate the fewest false positives (B) The simple t-test performs best in estimat-
ing the true proportion of false positives, and the others from best to worst, are SMT, IBMT, Cyber-T, and Fox.

 

(A) (B) 
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SMT method. These transcripts have been previously
investigated in the development of lung injury, and may
have biological relevance in our mouse model. The lists of
top-ranked genes by IBMT but not SMT, and vice versa, are
available as supplemental information.

Conclusion
IBMT has the strength of balancing two important factors
in the analysis of microarray data: the degree of independ-
ence of variances relative to the degree of identity (i.e. t-
tests vs. equal variance assumption), and the relationship

between variance and signal intensity. We demonstrated
that incorporating information about the dependence of
the variance of genes on expression intensity level can
improve the efficiency of the Empirical Bayes moderated
t-statistics, and that properly estimating the prior degrees
of freedom is important in estimating the true proportion
of false positives. If a non-intensity-based moderated-T is
used, and the variance of low expressed genes is higher
than average, then an over-representation of low
expressed genes will occur in the top ranked differentially
expressed transcripts because their variance estimates will

Table 3: Number of significant Gene Ontology categories and assigned genes among methods for Nickel exposure dataset

Number of unique genes Number of significant categories

p-value Time pt T FOLD SMT IBMT T FOLD SMT IBMT

0.0001 03 hr 0 0 0 0 0 0 0 0

0.001 03 hr 0 0 0 0 0 0 0 0

0.005 03 hr 4 6 6 8 2 3 3 4

0.0001 08 hr 0 16 0 46 0 1 0 2

0.001 08 hr 0 49 12 54 0 5 9 12

0.005 08 hr 14 71 53 54 6 28 21 20

0.0001 24 hr 25 22 26 26 11 15 15 15

0.001 24 hr 52 32 62 56 15 19 21 19

0.005 24 hr 65 66 72 69 25 34 35 35

0.0001 48 hr 0 0 42 46 0 0 1 2

0.001 48 hr 2 9 44 52 1 3 4 6

0.005 48 hr 49 34 49 60 8 26 15 25

0.0001 72 hr 0 59 57 58 0 9 5 7

0.001 72 hr 45 61 63 66 3 17 12 11

0.005 72 hr 51 68 77 71 7 42 20 17

Total 307 493 563 666 78 202 161 175

# Zeroes 6 3 3 2

# Best 0 2 4 8 0 6 3 7

The number of significant categories, as well as the number of genes assigned to the significant categories, are shown for the five time points for 
each of three p-value cut-offs.

Table 2: Top significant Gene Ontology categories for the MEF Ahr-/- dataset

Top 10 GO t-test FOLD SMT IBMT

1 Extracellular space (77) Extracellular (91) Extracellular (90) Extracellular (92)

2 Extracellular (84) Extracellular space (82) Extracellular space (81) Response to biotic stimulus (39)

3 Integrin binding (5) Signal transducer activity (67) Receptor binding (27) Extracellular space (80)

4 Spermine/Spermidine biosynthesis (3) Organogenesis (38) Chemoattractant activity (8) Response to external stimulus (46)

5 Carboxy peptidase activity (6) Chemoattractant activity (7) Signal transducer activity (68) Defense response (34)

6 Spermidine metabolism (3) Receptor binding (24) Response to biotic stimulus (33) Signal transducer activity (68)

7 Polyamine biosynthesis (3) Histogenesis and organogenesis (9) Chemokine receptor binding/activity (7) Chemoattractant activity (8)

8 Receptor binding (22) Morphogenesis (39) Integrin binding (5) Immune response (27)

9 Adenosylmethionine decarboxylase activity (2) Serine-type endopeptidase inhibitor activity (9) G-protein-coupled receptor binding (7) Response to pest/pathogen/parasite (19)

10 Spermine metabolism (3) glycosaminoglycan binding (7) Spermine/Spermidine biosynthesis (3) Chemokine receptor binding/activity (7)

# Bonf<0.1 6 8 13 17

# genes ↑ 92 142 135 144

Top ten categories for each of the four compared methods: magnitude of fold change, simple t-test, SMT, and IBMT. The IBMT method resulted in 
both the highest number of significant categories using a 0.10 Bonferroni-adjusted p-value cut-off, as well as the highest number of genes in a 
significant category.
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be "shrunk" towards the lower overall variability. This in
turn results in a higher rate of falsely implicated genes and
makes the interpretation of the results more difficult.
Indeed, this trend could be seen in the comparison of
genes found to be significant in SMT but not IBMT, or vice
versa, in the nickel exposure experiment. SMT identified a
large number of relatively low expressed genes (49% <
100 signal level; median expression level = 99), often with
unknown function, as being significantly changed com-
pared to IBMT (0% < 100 signal level; median expression
level = 357). To our knowledge, IBMT is the first to
account for the dependence of gene variance on intensity
levels in a completely data-dependent manner, without a
need for specification of free parameters by the user,
within the empirical Bayes analysis framework. Further-
more, as opposed to Cyber-T [3] and Fox [11], IBMT can
properly analyze data from any experimental design setup
and array platform, including multiple treatments or time
series, Affymetrix chips or two-dye arrays, and experi-
ments with both technical and biological replicates. The
prior variance levels are estimated using local regression
and the prior degrees of freedom are estimated using a
consistent estimator based on the Empirical Bayes
approach.

The IBMT method outperformed or performed as well as
the simple t-statistic, fold change, SMT, and Fox in simu-
lation studies intended to mimic real microarray data and
on real microarray data itself. The improved performance
of IBMT on spike-in experiments suggests that the pooling
of information across genes, as well as accounting for the
relationship between the variances and overall intensities
of gene expression measurements, is warranted. The
"spike-in" Affymetrix datasets also revealed the need to
correctly estimate the prior degrees of freedom for cor-
rectly estimating the proportion of false positives. By sim-
ply accepting user input for this parameter (as in Cyber-T,
and indirectly in Fox), one is at risk of either greatly over-
estimating or underestimating the true accumulation of
false positives. For the "spike-in" experiments, this may
explain the poorest estimation of the true false positive
rate by Cyber-T and Fox. As our results show, all methods
underestimated the proportion of false positives in these
Affymetrix spike-in datasets. This may partially be due to
the design of these experiments, creating correlations that
would not be seen in experimental data, or even unin-
tended real changes. However, correlations among genes
and microarrays have been observed in experimental data
also, and in this case, the significance statistics may be
more accurately calculated using a local fdr procedure
with an empirical null distribution, as proposed by Efron
[21,53], rather than the Benjamini FDR [23] as applied in
this paper. Even if no correlations are expected, Efron's
local fdr procedure with the theoretical Normal null may

improve accuracy in estimating signficance levels for any
chosen analysis method.

Our method was also applied to two experimental dual-
channel datasets, a simple knockout versus wildtype com-
parison and a time-series experiment. Analysis of these
data indicated that IBMT generated the greatest number of
genes involved in GO categories significantly enriched
with genes determined to be differentially expressed.
Although the biological pathways affected in each experi-
ment can be ascribed with limited certainty, in the time
series experiment we examined self-consistency among
sampling times. Although affected pathways may change
across time, it is reasonable to expect that some should be
consistent for at least two or more times. Our analysis
showed that IBMT had the highest self-consistency. In
addition to the comparison of methods using Gene
Ontology, interpretation of the results hinted that biolog-
ical categories found in the MEF Ahr-/- experiment using
IBMT were more consistent with functions previously
ascribed to this receptor. IBMT also provided a greater per-
cent of genes directly relevant to what is currently known
of the response to Nickel exposure in mice.

Methods
Mice and exposure protocol

Two dual-channel microarray experiments were per-
formed. The first was a comparison of wildtype mouse
embryo fibroblast (MEF) cells to aryl-hydrocarbon recep-
tor (Ahr) knockout MEF cells. Four biological replicate cell
cultures each of wildtype and knockout cells were com-
pared, each with dye labelling switched for the second
technical replicate of each biological pair.

The second dataset has been published [19] and the meth-
ods are summarized here. 129S1/SvImJ strain mice
(females, age 7–10 weeks) were purchased from The Jack-
son Laboratory (Bar Harbor, ME). All mice were housed in
our animal facilities ≥ 1 week prior to exposure. Nickel
aerosol was generated from 50 mM NiSO4•6H2O (Sigma,
St. Louis, MO) and monitored as described previously
[39]. Mice were exposed to 150 ± 15 µg Ni2+/m3 in a 0.32-
m3 stainless steel inhalation chamber. All experimental
protocols were reviewed and approved by the Institu-
tional Animal Care and Use Committee at the University
of Cincinnati Medical Center.

Mice were exposed to aerosolized nickel for 3, 8, 24, 48,
and 72 h. Following exposure, mice were killed with
pentobarbital (followed by exsanguination), and the
lungs were removed, placed in liquid nitrogen, and stored
at -80°C. Total cellular RNA was isolated from frozen lung
tissue with TRIzol (Invitrogen), and quantity was assessed
by A260/A280 spectrophotometric absorbance (Smart-
Spec 3000, Bio-Rad, Hercules, CA). RNA quality was
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assessed by separation with a denaturing formaldehyde/
agarose/ethidium bromide gel, and quantified by analysis
with an Agilent Bioanalyzer (Quantum Analytics, Foster
City, CA) [19].

Microarray hybridizations

The two real datasets were performed using Qiagen-
Operon's mus musculus version 1.1 70-mer oligonucle-
otide library, representing 13,664 annotated transcripts.
The first dataset is a simple comparison of wildtype mouse
embryo fibroblast (MEF) cells to Ahr-/- MEF cells. A similar
microarray comparison performed with mouse smooth
muscle cells has previously been published [16-18]. The
second dataset has been published [19], but we summa-
rize the methods below. RNA quality for both experi-
ments was assessed by separation with a denaturing
formaldehyde/agarose/ethidium bromide gel, and quan-
tified by analysis with an Agilent Bioanalyzer (Quantum
Analytics, Inc., Foster City, CA). To examine differential
gene expression, a 70-mer oligonucleotide library, repre-
senting 13,443 mouse genes (Operon Biotechnologies,
Inc., Huntsville, AL), was used by the Genomic and Micro-
array Laboratory, Center for Environmental Genetics,
University of Cincinnati, http://microarray.uc.edu/ was
used to fabricate microarrays. The microarray hybridisa-
tions were carried out as described [16,18]. For the AHR
experiment, each biological replicate consisted of one
mouse cell culture, and for the Ni-treatment experiment,
each exposure group consisted of nine mice. RNA from
three mice was pooled for each microarray, and three sep-
arate microarrays per exposure group were compared to
non-exposed controls. Both experiments were performed
using 20 µg total RNA per array. Each sample of mRNA
was reverse transcribed and tagged with either fluorescent
Cyanine 3 (Cy3) or Cyanine 5 (Cy5) (e.g., Cy3 forcontrol
and Cy5 for72-h exposure). Cy3 and Cy5 samples were
co-hybridized with the printed 70-mers. Following
hybridization, slides were washed and scanned at 635
(Cy5) and 532 (Cy3) nm (GenePix 4000B, Axon Instru-
ments, Inc., Union City, CA).

Data normalization and analysis

Microarray protocols and analyses were performed as
described in [16-18,56]. Briefly, microarray hybridization
data representing raw spot intensities generated by the
GenePix® Pro v5.0 software and data normalization was
performed for each microarray separately. First, channel
specific local background intensities were subtracted from
the median intensity of each channel (Cy3 and Cy5). Sec-
ond, background adjusted intensities were log-trans-
formed and the differences (R) and averages (A) of log-
transformed values were calculated as R = log2(X1) -
log2(X2) and A = [log2(X1) + log2(X2)]/2, where X1 and
X2 denote the Cy5 and Cy3 intensities after subtracting
local backgrounds, respectively. Third, data centering was

performed by fitting the array-specific local regression
model of R as a function of A [57]. Normalized log-inten-
sities for the two channels were then calculated, and sta-
tistical analysis was performed for each gene separately by
fitting a mixed effects linear model [58]. For the MEF Ahr-

/- experiment the model used was: Yijkl = µ + Ai + Sj + M(S)kj

+ Cl + 'Ωijkl, where Yijkl corresponds to the normalized log-
intensity on the ith array (i = 1,..., 8), with the jth treatment
(j = 1, 2), for the kth mouse, and labeled with the lth dye (l
= 1 for Cy5, and 2 for Cy3). µ is the overall mean log-
intensity, Ai is the effect of the ith array, Sj is the effect of the
jth treatment, M(S)kj is the effect of the kth mouse with
treatment j, and Ck is the effect of the kth dye. Assumptions
about the model parameters were the same as described
elsewhere [58], with array and mouse effects assumed to
be random, and treatment, and dye effects assumed to be
fixed. The model for the second dataset was as described
above, with the exception of no mouse-within-treatment
effect, and a higher number of arrays (5·3 = 15) and treat-
ment conditions (6) [19]. Ordinary T-statistics and esti-
mates of fold change were calculated for each gene using
this model. The SMT [12] and IBMT significance levels
were then calculated as described above.

Availability and requirements
We have implemented IBMT as an R function [54] which
can be downloaded as a text file along with all other sup-
plemental material from our supporting website http://
eh3.uc.edu/ibmt[55] or from the supplemental material
[see Additional file 2]. The function requires R statistical
software and is most easily implemented using the func-
tionality of the limma package [12], but can also be used
in conjunction with other linear model or mixed model
analyses.
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