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Intensity-based modal analysis of partially coherent beams
with Hermite–Gaussian modes

F. Gori and M. Santarsiero
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Many partially coherent beams are made up of a superposition of mutually uncorrelated Hermite–Gaussian
modes. We prove that knowledge of the transverse intensity profile of such a beam is sufficient for evaluating
the weights of the modes in an exact way. Simulations indicate that the proposed method resists noise
well.  1998 Optical Society of America
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The output beam of a stable-cavity laser oscillating
in many transverse modes can be written as an
incoherent superposition of Hermite–Gaussian (HG)
beams.1,2 As is well known,3 this superposition gives
rise to partially coherent beams. The same type of
representation holds true, according to Wolf’s modal
theory of coherence,4 for several partially coherent
beams of interest.3,5– 8 For all cases, the problem
consists of determining the weights of the underlying
modes, starting from experimentally determined
quantities. This problem has been tackled in various
ways, including coherence measurements,9,10 M2-factor
analysis,11 best-fitting procedures,12,13 and matrix-
inversion methods.14

In this Letter we prove that the problem can be
solved in a fairly simple way, starting from intensity
measurements and making use of Fourier-transform
techniques. According to numerical simulations the
present method also exhibits good performance in the
presence of noisy data.

Let us consider a superposition of independently
oscillating HG modes. We limit ourselves to the one-
dimensional case. Extension to the (rectangular) two-
dimensional case is straightforward.

The expression for the disturbance of the nth HG
mode at its waist plane, say, the plane z  0, is2
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where Hn is the Hermite polynomial15 of order n
and v0 is the spot size. The functions in Eq. (1) are
normalized in the sense thatZ 1`

2`
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Since the modes are independent of one another,
their time-averaged intensities are additive, and the
transverse intensity profile of the beam at its waist
plane is
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where cn is a positive coefficient representing the
power content of the nth mode. The problem of inter-
est to us is to evaluate the cn coefficients when I sxd is
known. In doing so, we assume that the spot size of
the modes is known.

The diff iculty with this evaluation stems from the
fact that, although the Gn constitute an orthogonal
set, their squares obviously do not. Consequently, the
usual scalar-product rule that we would adopt for
evaluating the coeff icients of a series expansion into
orthogonal functions cannot be applied. We can even
wonder whether a unique solution exists for the values
of cn. Surprisingly, we have found that when we pass
to the Fourier-transform domain the coeff icients can be
evaluated by the scalar product rule; this may sound
contradictory because the scalar product is conserved
under Fourier transformation. As a matter of fact,
the property that we exploit here is slightly subtler.
Brief ly, it turns out that the Fourier transforms of the
Gn

2, although they are not orthogonal on the whole
p axis (p is a spatial-frequency variable), are indeed
orthogonal on the half-axis p $ 0 with respect to the
variable p2.

Our derivation starts from the following Fourier-
transform relation:
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where F denotes the Fourier-transform operator with
respect to x and the functions
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are introduced, where Ln is the nth-order Laguerre
polynomial.15 Equation (4) can be easily derived from
formula (22.13.20) of Ref. 15.
 1998 Optical Society of America
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It is well known that the Cn functions are orthogonal
on the half-axis t $ 0, i.e.,

Z `

0
CnstdCmstddt  dn,m , (6)

where dn,m is the Kronecker symbol.
On Fourier transforming both sides of Eq. (3) and

using Eq. (4), we obtain
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where the tilde stands for the Fourier transform.
Then, by exploiting the orthogonality of the Cn func-
tions [see Eq. (6)], we f ind the following expression for
the expansion coeff icient cn:
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This amazingly simple equation completely solves the
problem of finding the powers that are contributed to
the beam by the various modes. Furthermore, thanks
to the completeness of the set of Cn functions, Eq. (8)
proves that cn values are indeed unique.

We have referred to the case in which the intensity
is known across the waist plane, which is easily gener-
alized. Indeed, any beam constituted by an incoherent
superposition of HG modes is endowed with well-known
shape-invariance properties.6 To a constant factor ac-
counting for energy conservation, the intensity distri-
bution at any plane z fi 0 is a magnified version of the
one specified by Eq. (3), and the same magnif ication
occurs for the spot sizes of the modes. Accordingly, we
could rephrase our analysis for a plane z fi 0, substitut-
ing the value of the spot size of the propagated modes,
vz, for v0. The spot size of the modes as well as the
waist position can be determined in various ways. For
example, if the beam is generated by a laser, knowledge
of the cavity parameters allows us to specify the mode
characteristics. On the other hand, if the laser cavity
is unknown or if the beam is generated by a synthetic
source, the mode parameters can be evaluated starting
from measurements of the intensity profile at distinct
cross sections.

Let us now discuss how Eq. (8) can be exploited in
practice. Suppose that the intensity profile I sxd has
been measured. Using standard sampling criteria, we
can evaluate the Fourier transform Ĩ spd by use of fast
Fourier-transform and interpolation techniques. We
can then use a quadrature rule to compute the values
of cn through Eq. (8). An important question is how
resistant such a procedure is to noise. Without going
into detailed analysis, we present here the results of
a few simulations from which some hints about the
performance of the method can be gained.

We simulated a f lat-top intensity distribution by
means of a f lattened Gaussian profile16 of order N 
20. Noise was added to the intensity value of each
sample as a random number with a uniform distribu-
tion in the interval s2´I0, ´I0d, where I0 is the maxi-
mum value of the intensity profile and ´ is a positive
quantity. Possible negative values of the corrupted in-
tensity were set to zero.

In Fig. 1(a) we show intensity profiles for ´  0, 0.05,
0.1. In Fig. 1(b) the cn values obtained from Eq. (8) for
these three cases are shown. For ´  0 they are joined
by a dashed curve and coincide with the theoretical
values that were derived in the study reported in
Ref. 14. For ´ fi 0 it should be noted that noise breaks
down the even character of the intensity profile, which
leads to possibly complex values for the coefficients,
whereas the true values are real and positive. For
this reason we show in Fig. 1(b) the real part of the
values of cn; the imaginary part can be ascribed to only
noise. Some negative, and hence meaningless, values
are exhibited, but this occurs only for those values
of n for which the true cn is near zero. Accordingly,
the performance of the method with noisy data seems
satisfactory.

In summary, a simple method of evaluating the
modal content of a partially coherent beam obtained
as a incoherent superposition of HG beams has been
presented. The method requires the knowledge of the
propagation characteristics of the modes and uses
the intensity distribution of the beam at an arbi-
trarily chosen transverse plane to yield the set of
the mode weights. In turn, this method permits the
evaluation of the cross-spectral density function of the
field and then leads to a complete characterization of
the beam.3 Although transverse modes emitted from
most stable-cavity resonators are well described by HG

Fig. 1. (a) Intensity f lat-top distributions in the presence
of additive noise. (b) Real part of the expansion coeff i-
cients. N  20.
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beams, sometimes the beams of interest can be of the
Laguerre–Gauss family. The possibility of extending
the present method to Laguerre–Gauss modes remains
to be seen.
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