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Tandem mass spectrometry (MS/MS) has emerged as a
cornerstone of proteomics owing in part to robust spectral
interpretation algorithms1–6. Widely used algorithms do not
fully exploit the intensity patterns present in mass spectra.
Here, we demonstrate that intensity pattern modeling improves
peptide and protein identification from MS/MS spectra. We
modeled fragment ion intensities using a machine-learning
approach that estimates the likelihood of observed intensities
given peptide and fragment attributes. From 1,000,000
spectra, we chose 27,000 with high-quality, nonredundant
matches as training data. Using the same 27,000 spectra,
intensity was similarly modeled with mismatched peptides. 
We used these two probabilistic models to compute the relative
likelihood of an observed spectrum given that a candidate
peptide is matched or mismatched. We used a ‘decoy’
proteome approach to estimate incorrect match frequency7,
and demonstrated that an intensity-based method reduces 
peptide identification error by 50–96% without any loss 
in sensitivity.

We constructed a training data set of high-confidence peptide-
spectrum matches (PSMs) for modeling peptide fragmentation
within ion-trap mass spectrometers (Supplementary Figs. 1,2
online). Multiple protein sources were analyzed on electrospray ion-
trap mass spectrometers to generate one million MS/MS spectra. Of
these, roughly 140,000 PSMs were selected with high confidence
because the top SEQUEST8-ranked peptide exceeded scores shown
previously to yield an error rate of <1%7. We restricted our analysis
to doubly charged peptides with two tryptic termini (fully tryptic)
for this proof-of-concept experiment. This peptide class is estimated
to represent more than 70% of correctly matched peptides7.
Redundant PSMs were eliminated, reducing overrepresentation of
abundant proteins. Analysis of redundant PSMs (Supplementary
Fig. 3 online) shows that fragment intensities are reproducible, a
minimal requirement for our proposed method. We trained our
algorithm on the remaining 27,266 spectra.

We implemented a probabilistic decision tree9 to model the pro-
bability of observing a fragment ion intensity, conditioned on 63
peptide and fragment attributes such as those listed in Table 1, using

the PSMs above as training data. Reduction in the Shannon entropy
of intensity was used to select attributes and corresponding values
for decision points10,11. Tree branches were terminated according to
the Bayesian information criterion, previously used with decision
trees to avoid over-fitting10.The resulting match tree is graphically
represented in Figure 1. A mismatch tree, trained on incorrectly
matched PSMs, is shown in Supplementary Figure 4 online.

The root node of each tree shows the attribute yielding the most
information about fragment ion intensity within the entire training
set, that is, the attribute providing the greatest expected reduction in
entropy. For both match and mismatch trees (Fig. 1 and Supple-
mentary Fig. 4 online) this is “POS > 0.16,” indicating that ions
derived from fragmentation within the 16% of a peptide’s length
closest to the N terminus nearly always yield low-intensity MS/MS
peaks. Attributes and their abbreviations are described in Table 1.
Subsequent internal nodes (ellipses) represent attribute and value
combinations that best segregate the resulting subgroup of frag-
ment ions. Terminal (‘leaf ’) nodes are labeled with the number of
training set fragments assigned to the node and reflect the intensity
distribution of these fragments. Internal and leaf nodes are color
coded according to the intensity range, or bin, that was most fre-
quently observed (Fig. 1).

The decision tree automatically rediscovered qualitative phenom-
ena known previously to experienced mass spectrometrists. As rep-
resented by the first two nodes (Fig. 1), fragmentation events near
the N or C termini are most likely to be observed with low intensi-
ties, if at all. Also, as indicated by branches below the ION node,
y-type ions tend to be more intense (primarily blue-violet) than 
b-type ions. Furthermore, it is known that proline strongly directs
fragmentation of its N-terminal peptide bond whereas cleavage of
its C-terminal bond is reduced12–14. The influence of this residue is
evident throughout the match tree (RESN_1 = P, RESC_1 = P).

The tree also identified previously undescribed rules. For example,
proline’s inhibitory effect on fragmentation may extend to the second
C-terminal peptide bond (RESC_2 = P). Furthermore, attributes
describing residues N-terminal to fragmentation sites (GBN_1,
HLXN_1, HYDN_1) are prevalent whereas similar attributes
describing residues C-terminal to fragmentation sites are absent.
This suggests that with the exception of proline, fragmentation may
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be related more to properties of the N-terminal residue than to
those of the neighboring C-terminal residue. The automated dis-
covery of known rules that qualitatively predict fragment intensity
lends credence to our approach and supports the validity of these
and other novel rules discovered by the decision tree.

Rigorous filtering criteria gave us confidence that each training
set spectrum was correctly matched to SEQUEST’s top-ranked pep-
tide. Lower-ranked peptides, though their predicted MS/MS spectra
may resemble the observed spectrum, are therefore likely to be
incorrect. We trained a mismatch probabilistic decision tree using
the same training spectra matched with second-ranked peptides
(Supplementary Fig. 4 online). This mismatch tree serves as a con-
trol to the match tree, permitting comparison of the alternative
hypotheses that a peptide is correctly or incorrectly matched. The
second-ranked match was chosen over a randomly selected peptide
so that alternative PSMs scoring similarly by existing methods will
be discriminated from one another. Such discrimination represents
a dilemma often faced in interpreting MS/MS spectra.

Taking the predicted fragment ions from a peptide sequence as
input, one can obtain the likelihood of observing each measured
intensity under both match and mismatch models. Although a
probability score relying solely on the match model might discrimi-
nate between correct and incorrect PSMs, such a score—involving a
product of fragment intensity likelihood terms, each less than
unity—would unfairly penalize long peptides. We circumvent this
problem with a log-odds ratio (lod) approach. The odds ratio for the
ith fragment refers to the ratio of likelihoods (p) of the observed
fragment intensity under the alternative hypotheses of a correctly
(match) or incorrectly (mismatch) matched  candidate peptide
(Supplementary Fig. 5 online):

(
p(observed intensity |attributes, match)

)
lodi = log10  —————————————————

p(observed intensity |attributes, mismatch)

Summing lodi scores over all (Nf) predicted
fragments, we obtain the overall LOD score
for a peptide:

Nf

LOD = ∑ lodi
i = 1

Positive LOD scores suggest the peptide is
more likely to be correctly than incorrectly
matched.

Supplementary Figure 5 online shows
how match and mismatch trees may be con-
sulted to generate a lodi score for a single
predicted fragment ion. Performing this pro-
cedure on all predicted fragments from the
peptide SALSGHLETLILGLLK (not used in
training) yields a lodi spectrum (Fig. 2). This
spectrum reveals that although some frag-
ments’ intensities are more likely to have
arisen from the mismatch probability distri-
bution (e.g., y4, y5 and y6), observed inten-
sities for most predicted ions have positive
lodi scores. The LOD score 2.22 suggests that
this spectrum is 160 times more likely to be
correctly matched than mismatched (that is,
to have arisen from the match PSM model
than the mismatch PSM model). In compar-

ison, the second SEQUEST-ranked peptide for this spectrum,
ISADFHVDLNHAAVR, received a LOD score of –3.05, indicating
this spectrum is 1,000 times more likely to correspond to the mis-
match PSM model. Although both peptides received relatively high
XCorr (see Table 2) scores (2.7696 and 2.5580), the relative correla-
tion difference between them, measured by the ∆Cn (see Table 2)
score (0.0764), is insufficient to permit confident selection of either
peptide by most published criteria. This example suggests that the
intensity-based LOD score provides additional useful information
for correct PSM selection. Moreover, lodi spectra such as those in
Figure 2 may be useful in directing attention to predicted fragment
ions incongruent with the observed MS/MS spectrum. An example
of LOD score performance for a single protein isolated by SDS-
PAGE is presented in Supplementary Table 1 online.

To rigorously investigate whether the LOD score distinguishes
correct from incorrect PSMs on large-scale data, we used a decoy
proteome strategy (Methods). Figure 3a illustrates the relationship
between precision and sensitivity for the scores described in Table 2.
An optimal score would achieve both 100% sensitivity and precision
and would be represented as a point in the upper right corner of this
graph. LOD outperforms the other three single-component scores
(XCorr, ∆Cn, ∆LOD, defined in Table 2) over the full range of preci-
sion and sensitivity. Furthermore, the two composite scores (Disc,
CompLOD, defined in Table 2) consistently outperform their con-
stituent single-component scores15. This analysis excluded spectra
with matched peptides used in training. A repeated analysis includ-
ing these spectra indicated greater performance for all scoring
methods, but essentially the same relationships between scoring
methods (data not shown).

LOD-based scores are complementary to the traditional scores
XCorr and ∆Cn. Combinations between these two scoring methods,
such as LOD with XCorr, outperformed combinations within each
method, such as XCorr with ∆Cn or LOD with ∆LOD (data not
shown). Similarly, CompLOD, which incorporates LOD-based

Table 1  Abbreviations and descriptions for attributes appearing in match and mismatch
decision trees 

Tree Attribute description Tree
abbreviation

DISTC Distance (number of residues) from fragmentation site to C terminus Match, mismatch

DISTN Distance (number of residues) from fragmentation site to N terminus Match, mismatch

FRACF_HKR Fraction of histidines, lysines, arginines in fragment ion Match

GBC_X Gas phase basicity of residue X positions C-terminal to fragmentation site19 Mismatch

GBF Average gas phase basicity of fragment ion19 Mismatch

GBN_X Gas phase basicity of residue X positions N-terminal to fragmentation site19 Match

HLXN_X Helicity of residue X positions N-terminal to fragmentation site20 Match

HYDN_X Hydrophobicity of residue X positions N-terminal to fragmentation site20 Match

ION b- or y-type ion Match

LENF Length of fragment ion Mismatch

LENP Length of peptide Match

M_Z Fragment m/z Match, mismatch

NTERM Identity of residue at peptide’s N terminus Match

NUMP_HKR Number of histidines, lysines, arginines in peptide Match

PMASSD Fragment mass – precursor mass Match, mismatch

PMZ Precursor ion m/z Match

PMZD Fragment m/z – precursor m/z Match, mismatch

POS Fractional location of fragmentation site along peptide Match, mismatch

RESC_X Identity of residue X positions C-terminal to fragmentation site Match

RESN_X Identity of residue X positions N-terminal to fragmentation site Match

A complete attribute list is presented in Supplementary Table 3 online.
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scores (LOD, ∆LOD), outperforms Disc, which contains no LOD-
based scores. These findings show that LOD contributes predictive
power not accessible to SEQUEST, providing greater confidence in
PSM assignments.

Performance of published SEQUEST criteria (listed in Table 2) is
also presented in Figure 3. The most precise scoring criteria are
those used in the recent analysis of the Plasmodium falciparum pro-
teome16. Applied to our data set of doubly charged, fully tryptic

peptides, these criteria yield a precision rate of 99.9%, although this
precision rate may not apply to other classes of peptides identified
in that study (e.g., partially tryptic or triply charged). Despite this
high precision rate, these criteria selected only 65.4% of the esti-
mated correct PSMs in our test set. In comparison, at a threshold
yielding the same precision, CompLOD has a sensitivity of 81.1%,
yielding 23.6% more correct identifications than these criteria 
and 13.4% more than the Disc score. The criteria with the greatest 
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Figure 1  Probabilistic match decision tree automatically learned from fragment intensity data. Text within internal nodes indicates the attribute that 
provides the greatest reduction in intensity distribution entropy for fragments reaching that point in the tree. Attributes and their abbreviations are 
described in Table 1. Internal nodes (ellipses) or leaf nodes (bar graphs) each have a corresponding probability distribution of intensities. The six colors
shown in the key correspond to the six intensity bins (see Methods). Saturated internal node colors indicate probability distributions that strongly favor a
single intensity bin (low entropy); lower saturation indicates a weaker tendency to favor a particular intensity bin (high entropy). The relationship between
color, saturation and intensity is depicted by the thumbnail graphs of probability (p) versus observed intensity (i ) above (low entropy) and below (high
entropy). Arrowhead area is proportional to the fraction of fragments emanating from the source node. Arrows pointing to the right indicate fragments
satisfying the condition indicated by the source node; arrows pointing left indicate fragments that do not. The tree is used to assign each individual input
fragment to a representative leaf node. Numbers within the leaf nodes indicate the number of training set fragments used to generate the intensity
probability distribution represented by the node. This tree was generated from fragment ions of the top SEQUEST-ranked high-confidence peptide-spectral
match. Numerical values for attributes related to m/z, gas phase basicity, helicity and hydrophobicity were calculated using values found in Supplementary
Table 2 online. 
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sensitivity7 has a precision of 95.9%, identifying 83.5% of the total
estimated correct PSMs. CompLOD has a precision rate of 99.8% at
the same sensitivity. This corresponds to error rate (1 – precision)
reductions of 95% and 83% relative to the Peng et al.7 criteria and
the Disc score, respectively.

This algorithm may be used in conjunction with peptide identifi-
cation software other than SEQUEST. When this same data set is
searched with the Mascot algorithm17, we find that a composite
score incorporating LOD decreases error and false negative rates by
as much as 96% and 67%, respectively, relative to the Mascot score,
and by 83% and 50%, respectively, relative to a combined Mascot
score (AvgMascot) (Supplementary Fig. 6 online).

In the absence of a gold standard set of PSMs, we used a collection
of PSMs that scored well by SEQUEST. To reduce future reliance on
SEQUEST, we might follow an iterative process, in which PSMs with
high composite scores are used to retrain the decision tree.

Although the focus above has been on
peptide identification, the goal of most pro-
teomics experiments is protein identifica-
tion. Therefore, we compared the number of
proteins identified by each score considered
in Figure 3 and Supplementary Figure 6
online at the precision levels shown in
Figure 3c and Supplementary Figure 6d on-
line. As expected, higher precision on the
peptide level translates to higher protein
precision (Fig. 3b,c and Supplementary Fig.
6c,d online). However, this correlation is not
perfect: for the thresholds shown, the pro-
tein identification error rate is two to three
times greater than the peptide identification
error rate. This is because the set of correctly
matched peptides maps to fewer proteins
(most incorrectly identified proteins are
matched only to one peptide)7. Indeed, the
number of peptides identified for a given
protein is a commonly used heuristic meas-
ure of confidence in protein identification,
and proteins with only a single identified
peptide are often discarded. Scores incorpo-
rating LOD measurements may allow more
peptides to be identified for a given protein,
or allow high-confidence identification of a
protein based on only one matched peptide.

All data presented thus far were acquired
in-house on ion-trap tandem mass spectrometers. To determine
whether our decision trees are applicable to spectra acquired else-
where on similar mass spectrometers, we assigned LOD scores to
another SEQUEST-searched data set15. Redundancy filtering
applied to this data set yielded 287 spectra. Using parameters meas-
ured from our test data set, we assigned CompLOD scores to these
287 spectra (Methods). The Disc score yielded 49 correct matches
before its first false positive (correctness is assumed if the matched
peptide belongs to one of the 18 proteins used to generate the spec-
tra). By comparison, the CompLOD score matched 68 correctly
before its first false positive. This observation further validates our
method as one that enhances both sensitivity and precision of PSM
selection, and shows that observed fragment ion intensities are not
completely instrument dependent. Thus, a relatively unoptimized
composite score incorporating LOD (CompLOD) surpasses a com-
posite score including only SEQUEST-derived scores (Disc).

In this work, we present four main results: (i) fundamental ion-
trap fragmentation phenomena can be learned from a large collec-
tion of high-confidence PSMs; (ii) relationships between peptide
and fragment properties and peak intensities in MS/MS spectra can
be modeled probabilistically; (iii) combining fragment intensity pre-
dictions with existing spectral interpretation methods improves the
likelihood of correctly identifying which peptide gave rise to a can-
didate MS/MS spectrum; and (iv) making use of a decoy proteome
approach permits evaluation of sensitivity and precision for alter-
native scoring strategies without requiring a manually curated test
data set. The methods described here both increase the number of
spectra for which a confident match can be made and reduce the
false positive rate. Although we have applied our approach only to
MS/MS spectra acquired with ion-trap mass spectrometers, we
expect this approach will apply to other instrument types. However,
instrument type–specific training sets may be required.

Table 2  Table of scores and their descriptions

Score Description

CompLOD Composite score: average of standardized scores: LOD, ∆LOD,
XCorr, ∆Cn

Disc Discriminant score15

LOD Log(p(intensity|match)/p(intensity|mismatch))

∆Cn Normalized difference between first- and second-ranked XCorr scores

XCorr SEQUEST cross-correlation score

∆LOD Difference between LOD scores of first and second peptides as 
ranked by XCorr

A Published criteria16: XCorr ≥ 2.5, ∆Cn ≥ 0.08

B Published criteria21: XCorr ≥ 2.2, ∆Cn ≥ 0.10

C Training set selection criteria: XCorr ≥ 2.0, ∆Cn ≥ 0.10

D Published criteria7: XCorr ≥ 1.5, ∆Cn ≥ 0.08

0 250 500 750 1,000 1,250 1,500

b1 b2

b8

b10

b4

b11

b9

b12

y1

y7y6

y3y2

y8y5

y10

y4

y11 y12 y14 y15y13

b3 b5

b6 b7

b13 b14 b15

m/z

y9

b11
b12

b13
b14

S A L S G H L E T L I L G L L K
b1

b2
b3

b4
b5

b6
b9b7

b8 b10
b15

y1y3
y2y4

y7
y6y8

y5
y10

y9y11
y12y14

y15 y13

LOD = 2.22

lo
d

i

 1.2

 1.0

 0.8

 0.6

 0.4

 0.2

0.0

XCorr = 2.77

0 250 500 750 1,000 1,250 1,500

b1 b2 b4

b11

b9

b12

y1

y7y6

y3y2

y8y5

y10

y4

y11

y9

y12 y14y13

b3

b13 b14

b5 b6 b7 b8

b10
b11

b12
b13

b14

I S A D F H V D L N H A A V R
b1

b2
b3

b4
b5

b6
b9b7

b8 b10

y2
y1y3

y6
y5y7

y4
y9

y8y10
y11y13

y14 y12

“lodi spectrum”
Positive lodi
Negative lodi LOD = –3.05

XCorr = 2.56
∆Cn = 0.076

Figure 2 Example of lodi spectra. Each predicted fragment m/z is assigned a lodi score, plotted on the
lower axis below the MS/MS spectrum. Positive values (green) indicate that the fragment is more likely
to be derived from a correctly matched PSM than a mismatched PSM. Negative values (black) indicate
that the fragment is more likely to be derived from a mismatched PSM than a correctly matched PSM.
SEQUEST returned the two peptides shown as the best matches, but the XCorr scores were too similar
to allow a confident call. By contrast, the LOD score strongly indicates that SALSGHLETLILGLLK 
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Software.html/ (F.D.G., J.E.E., S.P.G. and F.P.R., unpublished software).
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[–6.425, –5.600); bin 4, [–5.600, –4.887); bin 5, [–4.887, –4.054); bin 6, [–4.054,
0.000]. All nonnumeric data (e.g., residue identity) were assigned their own 
discrete bins.

Intensity modeling. Attribute values were calculated for all 783,994 singly
charged b- and y-type fragment ions predicted from the 27,266 peptides in the
training set (Supplementary Fig. 2 online). Shannon entropy was measured for
the pre- (parent) and post- (child) split fragment intensities,

H(I) = –∑p(Ij)ln p(Ij)
j

where H is entropy, j is a given intensity bin index and Ij is the intensity bin j.
The change in entropy was calculated as,

∆H =  N—
M

(
Hparent – p(right child)Hright child – p(left child)Hleft child

)

where ∆H is the change in entropy, N is the number of data points at the parent
node, M is the number of data points at the root node, H is the measured
entropy at a given node, and p(left child) and p(right child) are the proportions
of fragments in the parent node assigned to each child. The attribute and bin
yielding the greatest reduction in entropy were selected as the next node for the
growing decision tree. Branches were terminated when the creation of addi-
tional child nodes did not reduce entropy sufficiently to improve the model.
According to the Bayesian information criterion10, entropy reduction (∆H)
must be greater than the threshold ln(M)/2N with M and N defined as above.
Probabilistic decision tree construction took ∼ 2 h on a 2.2 GHz Advanced
MicroDevices PC.
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on estimations from a composite reverse sequence database. Precision is
defined as the number of estimated correct identifications made out of 
the total number of identifications made using a given score threshold.
Sensitivity is defined as the number of estimated correct identifications
made out of the total number of estimated correct identifications available.
Curves for single component scores are drawn with lighter weight lines than
multicomponent scores. Entirely SEQUEST-based scores (XCorr, ∆Cn, Disc)
are shown with red tints. Scores incorporating LOD are shown with blue
tints. (b) Number of spectra identified by selected criteria for scores
described in Table 2. Thresholds were chosen for each scoring method to
yield a precision (shown beneath each score name) as close to 0.990 as
achievable. ‘None’ refers to no selection criteria applied beyond requiring
fully tryptic peptides. Numbers of true and false positives were estimated
using a decoy proteome approach as described (Supplementary Methods online). The number of correct peptides missed by the score threshold (false
negative) was estimated by subtracting the number of TP for a given score from the number of estimated correct TP (Supplementary Methods online). 
FP, false positive; TP, true positive; FN, false negative. (c) Number of proteins identified by selected criteria cutoffs in b, and the corresponding protein
precision (number of correct protein identifications/number of protein identifications). Precisions of peptide and protein identifications are listed below 
score names. “=1” indicates the class of proteins identified by one peptide; “>1” indicates proteins identified by multiple peptides.

METHODS
Mass spectrometry. Human, mouse, yeast and other protein sources were ana-
lyzed over a two-year period through ongoing research within the Gygi Lab and
the Taplin Mass Spectrometry Facility. MS/MS spectra were acquired by
nanoscale, microcapillary, liquid chromatography–MS/MS as described18 on
either LCQ DECA or DECA XP mass spectrometers (ThermoElectron).
Spectra were searched with the SEQUEST8 or Mascot17 algorithms (as indi-
cated) against appropriate sequence databases without enzymatic restriction
unless otherwise noted.

Training set construction. Doubly charged, top-ranked (by SEQUEST), fully
tryptic PSMs receiving XCorr scores ≥2.0 and ∆Cn scores ≥0.10 were selected as
high-confidence matches and filtered to remove redundant PSMs (those with
identical matching peptides). For each of these top-ranked (matched) as well as
second-ranked (mismatched) PSMs, 63 peptide and fragment attributes were
recorded. Observed intensities were assigned to predicted fragment ions if the
corresponding observed fragment ion’s m/z was within 1.25 amu of the pre-
dicted fragment ion. We used a window of 1.25 amu to allow selection of longer
fragment ions that may exceed the commonly applied 1.00 amu window as a
result of expected shifts in isotopic distributions in these larger ions. Numerical
data were assigned to one of six (for intensity) or a maximum of 20 bins (for
other attributes). All unobserved data or data that could not be assigned to a
specific bin were assigned to an additional ‘undefined’ bin. Bin ranges were cho-
sen to equalize the number of fragments assigned to each bin. Fragment inten-
sities were normalized (Inorm) so that Inorm = ln(Iraw ⁄ ∑

ı Ii) (Iraw, raw fragment
intensity; Ii, the i th raw fragment intensity). Intensity bin ranges are as follows
(normalized intensity units): bin 1, (unobserved); bin 2, [–∞, –6.425); bin 3,
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Test data set. 81,206 MS/MS spectra previously obtained from an analysis of
the Saccharomyces cerevisiae proteome7 were searched with SEQUEST and
Mascot algorithms against a sequence database containing translated yeast
open reading frames in both forward (correct, ‘target’) and reverse (incorrect,
‘decoy’) orientations as described7. We estimated precision (selected correct
PSMs/all selected PSMs) and sensitivity (selected correct PSMs/all correct
PSMs) for several scoring methods (Supplementary Methods online). Doubly
charged, top-ranked (by SEQUEST or Mascot), fully tryptic, nonredundant
PSMs were selected as test data.

Composite score. The CompLOD and CompLODm scores combining multiple
score types were generated as follows: each score’s mean (µ) and standard devi-
ation (σ) were measured from the top-ranked (by either SEQUEST or Mascot),
doubly charged, fully tryptic, nonredundant peptides used as the yeast pro-
teome test set. Individual scores (xi) were standardized and averaged to yield
the composite score as follows:

Nx 

Comp =  
1

—
Nx

∑ xi—
– µi——σii

where i is a particular score type (e.g., XCorr, LOD) and Nx is the number of
score types.

Note: Supplementary information is available on the Nature Biotechnology website.
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