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This paper proposes a new intensity-based similarity metric that can be used for the registration of
multimodal images. It combines the robust estimation with both the forward and inverse transforma-
tion to reduce the negative effects of outliers in the images. For this purpose, we firstly employ the
multiresolution technique to downsample the original images, then resort to the simulated annealing
method to initialize the transformation parameters at the coarsest resolution. Finally the Powell method
is utilized to obtain the optimal transformation parameters at each resolution. In our experiments, the
new method is compared to other popular similarity measures, on the synthetic data as well as the real
data, and the experimental results are encouraging.
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1. Introduction

Medical images provide information about pathology and associated anatomy of the human

body. Clinicians often wish to compare two or more images of the same anatomical regions

acquired under different modalities since these images can provide complementary informa-

tion. For example, position emission tomography (PET) provides information about a specific

function such as cerebral blood flow or the density of receptor in a certain area, and mag-

netic resonance imaging (MRI) provides information about morphology and the topology of

structures. Once PET and MRI have been matched well, clinicians can easily estimate the

place of pathological changes. However, it is impractical for a clinician to align many images

manually. Therefore it is highly desirable to develop methods for dealing with this issue.

Medical image registration aims at solving such problems.
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Over the past two decades, many techniques have been proposed for image registration. In

general, they are classified as the feature based [1–6] or intensity based [7–15]. Feature-based

techniques extract the features of anatomical structures from volume data such as landmarks,

surfaces or contours, and attempts to find the correspondence between them. The matching

result is critically dependent on the quality of the feature extraction. Since the anatomical

structures have complex shapes, human interaction is often needed to help select or extract the

features which is inconvenient. Intensity-based techniques operate on the image intensity value

directly and can be performed automatically. They are widely employed in the multimodal

image registration. Popular algorithms include the partitioned intensity uniformity technique

(PIU) [9], which minimizes the variance of intensity ratios, and the mutual information tech-

nique (MI), which maximizes mutual information [10–15]. These methods can give better

results.

If images are corrupted by outliers or non-Gaussian noises, registration becomes difficult.

Usually, the results using different direction transformation are different. In this paper, we

propose a novel intensity-based similarity technique to match multimodal brain images. A

robust estimator is used to reduce the effect of outliers or noise and to make the cost function

smooth. Both forward and inverse transforms are employed by the similarity metric to increase

the accuracy in the registration. The Powell method and the multiresolution technique are

introduced to optimize the transform parameters. To obtain a better initial point, a simulated

annealing method is employed. Since simulated annealing is slow, we only use it at the coarsest

resolution.

The paper is organized as following. In section 2, we briefly present two popular standard

similarity metrics, PIU and MI. In section 3, we describe on our new method. Then in section 4,

we compare the proposed method with PIU and MI, using both synthetic and real data. Section 5

contains the conclusions.

2. Standard similarity measures

2.1 Partitioned intensity uniformity (PIU) method

The intensity-based method used for multimodality registration was proposed by Woods

et al. [9] based on the idealized assumption that a uniform region in one image corresponds to

a region that is also uniform in the other image. The voxels in the uniform region should have

the same intensity value and represent the same tissue. Thus a target image is partitioned into

an isointensity set, usually 256 bins. The partitioned regions represent the spatial information

and are mapped to the float image. The process produces the same two segmented images.

When the images are aligned, the expected values µi and the standard deviations σi of the

segmented regions of the float image are computed. If the two images match correctly, the

ratio of the normalized standard deviation σi to the expected value µi in each region should

be minimal. The PIU method calculates the weighted average of the ratio in all regions:

PIU =

255
∑

i=0

ni

N

σi

µi

(1)

where

µi =
1

ni

∑

�x|Itarget(�x)=i

[Ifloat(T (�x))] i = 0, 1, . . . , 255 (2)
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σi =
1

ni − 1

∑

�x|Itarget(�x)=i

[Ifloat(T (�x)) − µi]
2 i = 0, 1, . . . , 255 (3)

where ni is the number of ith partitioned regions of the target image with intensity value i

and N is the total number of voxels in the images. The value of PIU determines the matching

result: the lower PIU, the more accurately the images match. When the method is used for

PET–MRI registration, the scalp in the MRI is required to be moved first so that uniformity is

satisfied.

However, the uniformity assumption may only define a crude approximation in some cases

[9]. In particular, when the effect of outliers in images is not taken into consideration, the

registration accuracy will be affected. Robust estimator and double-directional transformation

can cope efficiently with this problem. In the following section, we apply them to the cost

function (1), and as shown in section 4, the results show better accuracy than PIU.

2.2 Mutual information (MI) method

The MI method [11] applies mutual information I(Itarget(·), Ifloat(T (·))) to image registration,

which is assumed to be maximal if the images are correctly aligned. The cost function can be

expressed as

I(Itarget(·), Ifloat(T (·))) =

I−1
∑

i=0

J−1
∑

j=0

p(i, j) log
p(i, j)

p(i)p(j)
(4)

where I and J are the number of grey levels of Itarget and Ifloat. The joint probabilities p(i, j)

are the elements of the co-occurrence matrix of Itarget(·) and Ifloat(T (·)), and p(i) and p(j)

are the marginal probabilities of Itarget(·) and Ifloat(T (·)), respectively. This method is quite

good for multimodal situations. We will compare it with our new method in section 4.

3. Proposed method

3.1 Similarity metric

When two images are registered, it is difficult to satisfy the uniformity hypothesis completely

if there are outliers of non-Gaussian noise distribution in the images. When there are many

outliers, the result of registration is affected negatively because they have such a strong effect

on the minimization that the parameter estimation is distorted. To obtain a better registration

result, the negative effect of outliers or non-Gaussian noises should be counteracted. Robust

estimators [17] are widely adopted to solve such problems. The M-estimator is a type of

robust estimator which has been utilized as a useful tool in image processing [16, 18, 19]. The

robust function increases more slowly than the quadratic function. In fact, M-estimators give

the outliers or noise the less weight. In this paper, we use Tukey’s bi-weight estimator [20]

which is described by the following equation:

ρ(x) =

{

c2/6{1 − [1 − (x/c)2]3} if |x| ≤ c

c2/6 if |x| > c
(5)

ϕ(x) =

{

x[1 − (x/c)2]2 if |x| ≤ c

0 if |x| > c
(6)
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ω(x) =

{

[1 − (x/c)2] if |x| ≤ c

0 if |x| > c
(7)

where ρ(x) is the robust estimator function, and ϕ(x) and ω(x) are its influence function and

its weight function (figure 1).

In the PIU method, both the target image and the float image are partitioned and the

segmented regions are projected on the target image. However, the matching results are incon-

sistent. For two images overlapping at some position, we can transform the float image or

inversely transform the target image. In the proposed method, to improve the registration

accuracy, both images are partitioned and the partitioned regions are mapped to each other.

By adopting the forward and inverse transform, we define a similarity metric DRPIU (double

directional PIU) as follows:

DRPIU =

255
∑

i=0

ni

N

σi

µi

+ λ

255
∑

j=0

nj

N

σj

µj

(8)

where

µi =
1

ni

∑

�x|Itarget(�x)=i

[Ifloat(T (�x))] i = 0, 1, . . . , 255 (9)

σi =
1

ni − 1

∑

�x|Itarget(�x)=i

[ρ1(Ifloat(T (�x) − µi))]
2 i = 0, 1, . . . , 255 (10)

µj =
1

nj

∑

�x|Ifloat(�x)=j

[Itarget(T
−1(�x))] j = 0, 1, . . . , 255 (11)

σj =
1

nj − 1

∑

�x|Itarget(�x)=j

[ρ2(Itarget(T
−1(�x) − µj ))]

2 j = 0, 1, . . . , 255. (12)

In equation (8), λ is a weighted parameter which ensures that both direction matching results

are consistent. In equation (5), ρ1(·) and ρ2(·) are different estimator functions with different

values of C. The values of λ and C depend on experiment.

Figure 1. (a) The robust estimator function ρ(x), (b) the influence function ϕ(x) and (c) the weight function ω(x)

for c = 1.
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3.2 Transformation

In the present study, we only consider the rigid three-dimensional transformation Trigid(�x),

which first rotates an image and then translates it. The transformation can be represented as

Trigid(�x)

=









cos β cos γ cos α sin γ + sin α sin β cos γ sin α sin γ − cos α sin β cos γ tx
− cos β sin γ cos α cos γ − sin α sin β sin γ sin α cos γ + cos α sin β sin γ ty

sin β − sin α cos β cos α cos β tz
0 0 0 1









(13)

where α, β and γ are the rotations around the x, y and z axes, respectively, and tx, ty and tz
are the displacements on the x, y and z axes, respectively.

When one volume is transformed, its grid points do not usually coincide exactly with the

grid points of another volume. To obtain the voxel pairs for the calculation, interpolation

is required. There are many interpolation methods, such as nearest-neighbour interpolation,

trilinear interpolation or sinus cardinal interpolation. The nearest-neighbour interpolation is

fast but does not achieve a high degree of accuracy. The sinus cardinal interpolation gives the

best results but has a high computational cost. Therefore, as a compromise, we adopted the

trilinear interpolation in this study.

3.3 Optimization

The conventional optimization method, the Powell search [21], is used to obtain the trans-

formed parameters. In this method it is not necessary to calculate derivatives of the cost

function. It is a robust direction search method in which the direction of the search space is

repeatedly iterated. A set of directions are defined and a search is performed in one direc-

tion until a minimum is found; a second search is then perfomed from this minimum in the

next direction until another minimum is found, and so on. After all the directions have been

searched, the direction is updated and the one-dimensional search method is repeated until

convergence is reached. This method cannot guarantee finding the global optimal value as it is

easily trapped in local minima. The global optimal result can only be found effectively when the

initial point is near the global optimal value. To solve this problem, we adopt global optimiza-

tion simulated annealing [22] to determine the initial point. If we apply simulated annealing

to the original data, it will be very slow. Thereby we use a multiresolution approach, which

not only improves the speed of the optimization, but also effectively avoids local minima.

The images are equidistantly subsampled by a factor 2 in each dimension. The optimization

procedure is from coarse to fine. The simulated annealing method is only used at the coarsest

resolution images and selects a large stochastic search step to speed the convergence. This

technique guarantees that the initial point will be near the global optimum and the speed of

execution is not affected.

4. Experimental results

Synthetic MRI images T1 and T2 obtained from the Brainweb Database [23] were used to

evaluate our method. The images are different modalities and are correctly registered. The

image size is 181 × 217 × 181 and the voxel size is 1 mm × 1 mm × 1 mm. The image slices

are shown in figure 2. Outliers were simulated by adding the 10% salt-and-pepper noise
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Figure 2. Image slices: (a) mr_T1 image; (b) mr_T2 image; (c) image (a) rotated by −10◦ along the z axis, translated
by 10 voxels along the x axis and by −10 pixels along the y axis, with 10% salt-and-pepper noise added; (d) image
(a) rotated by −10◦ along the z axis, translated by 10 voxels along the x axis and −10 pixels along the y axis, and
with 10% speckle noise added.

Table 1. The expected value and the standard deviation of the registration error on the transform parameters
computed on a set of 20 different registration problems which were artificially predetermined transformations to

mr_T1 involving translation parameters between −15 and 15 voxels and rotations between −15◦ and 15◦ with the
addition of 10% salt-and-pepper noise.

Method 	θx (deg) 	θy (deg) 	θz (deg) 	tx (mm) 	ty (mm) 	tz (mm)

PIU 0.21 ± 0.19 0.24 ± 0.17 0.29 ± 0.34 0.76 ± 0.60 0.37 ± 0.32 0.65 ± 0.49

MI 0.05 ± 0.03 0.10 ± 0.11 0.16 ± 0.15 0.22 ± 0.30 0.20 ± 0.25 0.20 ± 0.24

DRPIU 0.07 ± 0.03 0.13 ± 0.12 0.08 ± 0.07 0.21 ± 0.27 0.18 ± 0.10 0.16 ± 0.13

Table 2. The expected value and the standard deviation of the registration error on the transform parameters
computed on a set of 20 different registration problems which were artificially predetermined transformations to

mr_T1 involving translation parameters between −15 and 15 voxels and rotations between −15◦ and 15◦ with the
addition of 10% speckle noise.

Method 	θx (deg) 	θy (deg) 	θz (deg) 	tx (mm) 	ty (mm) 	tz (mm)

PIU 0.08 ± 0.07 0.25 ± 0.32 0.33 ± 0.30 1.25 ± 1.69 0.50 ± 0.43 0.36 ± 0.46

MI 0.40 ± 0.56 1.00 ± 1.13 0.51 ± 0.18 1.10 ± 0.85 0.90 ± 0.36 1.13 ± 1.02

DRPIU 0.10 ± 0.05 0.10 ± 0.05 0.08 ± 0.06 0.05 ± 0.04 0.09 ± 0.06 0.12 ± 0.06
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Figure 3. MRI–PET scan registration of the brain of the same patient: (a) MRI image; (b) PET image; (c) contour of
the MRI image superimposed on the PET image before registration; (d) contour of the MRI image superimposed on
the PET image using the PIU method after registration (non-brain regions have not been removed); (e) contour of the
MRI image superimposed on the PET image using the MI method after registration; (f) contour of the MRI image
superimposed on the PET image using the proposed DRPIU method after registration.
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or 10% speckle noise to the T1 volumes. The expected value and the standard deviation of

the registration error on the transform parameters were computed on a set of 20 different

registration problems, which were artificially predetermined transformations to T1 involving

translation parameters between −15 and 15 voxels and rotations between −15◦ and 15◦.

Examples are shown in figures 2(c) and 2(d).

The proposed method was compared with the MI and PIU techniques, and the results are

shown in tables 1 and 2. Table 1 shows the results obtained for T1 images with salt-and-pepper

noise. The results of the proposed method and the MI method have the same accuracy and are

significantly better than those of PIU. Table 2 shows the results obtained for T1 images with

speckle noise, and in this case the proposed method gives the best registration accuracy.

The computation and optimization processes used in each method were performed on a

Pentium III PC equipped with 512 RAM. The execution times were as follows: PIU method,

about 15 min; MI method, about 19 min; our proposed method, about 29 min.

We also used actual patient data to test our method. We used a patient’s brain PET scan regis-

tered to its MRI scan; their sizes are 256 × 256 × 26 and 128 × 128 × 15 and their voxel sizes

are 1.25 mm × 1.25 mm × 4 mm and 2.6 mm × 2.6 mm × 8 mm, respectively [figures 3(a)

and 3(b)]. The non-brain regions were not removed from the MRI scan and were considered

as outliers. Figure 3(c) shows the contour of the MRI scan superimposed on the PET scan

before registration. Figures 3(d), 3(e) and 3(f) show the results of the PIU, MI and the proposed

DRPIU methods, respectively. It can easily be seen that both MI and the proposed method

give good results. In addition, the accuracy of our method has been considered satisfactory by

an expert.

5. Conclusion

We have developed a novel intensity-based similarity measure for multimodal images. We have

employed the robust estimator to reduce the negative affect of outliers or non-Gaussian noise.

Both forward and inverse transformation is used to improve the accuracy of the registration

results. To avoid the local minima, global optimization–simulated annealing was applied.

However, the optimization speed is very slow if applied to the original data, and so we combined

the multiresolution technique and the Powell method. The simulated annealing method was

only used at the coarsest resolution images to guarantee that the initial point was near the

global optimum.

We have compared our new method with the commonly used PIU method and the MI

method. The results show that our method is more accurate although it requires more com-

putation time. It can be used to improve accuracy in a number of critical image registration

problems.
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