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Abstract—In this paper, a new method to filter coherency ma-
trices of polarimetric or interferometric data is presented. For each
pixel, an adaptive neighborhood (AN) is determined by a region
growing technique driven exclusively by the intensity image infor-
mation. All the available intensity images of the polarimetric and
interferometric terms are fused in the region growing process to
ensure the validity of the stationarity assumption. Afterward, all
the pixels within the obtained AN are used to yield the filtered
values of the polarimetric and interferometric coherency matrices,
which can be derived either by direct complex multilooking or from
the locally linear minimum mean-squared error (LLMMSE) es-
timator. The entropy/alpha/anisotropy decomposition is then ap-
plied to the estimated polarimetric coherency matrices, and coher-
ence optimization is performed on the estimated polarimetric and
interferometric coherency matrices. Using this decomposition, un-
supervised classification for land applications by an iterative algo-
rithm based on a complex Wishart density function is also applied.
The method has been tested on airborne high-resolution polari-
metric interferometric synthetic aperture radar (POL-InSAR) im-
ages (Oberpfaffenhofen area—German Space Agency). For com-
parison purposes, the two estimation techniques (complex multi-
looking and LLMMSE) were tested using three different spatial
supports: a fix-sized symmetric neighborhood (boxcar filter), di-
rectional nonsymmetric windows, and the proposed AN. Subjec-
tive and objective performance analysis, including coherence edge
detection, receiver operating characteristics plots, and bias reduc-
tion tables, recommends the proposed algorithm as an effective
POL-InSAR postprocessing technique.

Index Terms—Coherency estimation, interferometry, multi-
variate region growing, polarimetric synthetic aperture radar.

I. INTRODUCTION

ASYNTHETIC aperture radar (SAR) system measures

both amplitude and phase of the backscattered signal,

producing one complex image for each recording. The principle

of SAR interferometry (InSAR) relies on the acquisition of two
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such complex images under slightly different viewing angles.

After the two initial images are coregistered, the normalized

complex cross-correlation is computed. The most commonly

known measures in interferometry are its magnitude, namely

the coherence, and its phase. The coherence is usually used

to describe the temporal and spatial variations of the acquired

signal. The phase includes a geometrical component directly

linked to the distance between the target and the sensor posi-

tions, providing the height information of the target.

In order to estimate the coherence, the required ensemble

averages are replaced by spatial averages: a number of neigh-

boring pixels are averaged to yield an estimate of the coherence

and phase image (operation called “complex multilooking”).

However, despite this initial estimation, both coherence and

phase images are highly corrupted by speckle. Hence, the need

to improve coherence estimation arises in order to reduce the

estimation bias and variance [1], [2]. The use of larger window

sizes with fixed shapes gives unsatisfactory results, since the

stationarity assumption is often no longer valid and the final

resolution decreases.

Polarimetric synthetic aperture radar (POLSAR) is an exten-

sion of the SAR imaging system, the sensors being able to emit

and receive two polarizations. Monostatic polarimetric acquisi-

tions are characterized by the 3 3 polarimetric coherency ma-

trix. The POLSAR information allows the discrimination of dif-

ferent scattering mechanisms. The first characteristic decompo-

sition of the coherency matrix for target scattering decomposi-

tion was proposed in [3]. The received signal can be split into

a sum of three scattering contributions with orthogonal polari-

metric signatures. The orthonormal eigenvectors of the Hermi-

tian target coherency matrix are used for analyzing the eigen-

vector space. The dominant scattering mechanism is represented

by the largest eigenvalue of the coherency matrix. In [4] and [5],

Cloude and Pottier introduced the target entropy and the

model by assigning to each eigenvector the corresponding co-

herent single scattering mechanism. Based on this decomposi-

tion, unsupervised classification for land applications was per-

formed by an iterative algorithm based on complex Wishart den-

sity function [6], [7].

Interferometry in POLSAR performs two acquisitions (spa-

tially separated by the baseline) of the scattering matrix for each

resolution cell. The advantages of interferometry (height and/or

displacement information) are enhanced by the polarimetric de-

composition techniques. In [8], Cloude and Papathanassiou ap-

plied the polarimetric basis transformations in the POL-InSAR
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case and obtained interferograms between all possible linear

combination of polarization states. As polarization and interfer-

ometric coherence are tightly related, an optimization algorithm

based on the maximization of the interferometric coherence is

proposed [8], [9].

A filtering step is very often required to finally obtain reliable

estimates of the complex cross-correlation. Moreover, the high

resolution of newly available SAR airborne images offers the

opportunity to observe much thinner spatial features than the

lower resolution of the up-to-now available SAR images. Being

able to preserve such a high resolution in robust estimations

of POL-InSAR coherency is an important issue to make this

information useful.

Different speckle filtering strategies proposed over the last

20 years have been reviewed for one-channel SAR images in

[10] and [11]. To handle the scene nonstationarity issue, two

different models, namely the multiplicative speckle model and

the product model, yield to two different filtering approaches.

The first approach is based on the assumption of local sta-

tionarity and yields to different filters which search for local

neighborhoods respecting this assumption and use adaptive

estimators such as the local linear minimum mean square error

(LLMMSE) [12], [13]. The second approach corresponds to

nonstationary speckle models which require to introduce prior

knowledge on the scene such as the distribution of the intensity

mean in the gamma filter [14] or multilevel pdfs in multiply

stochastic models [15], [16].

The review and the experimental results presented on inten-

sity images in [11] encourage the use of the first approach with

multiresolution techniques for optimal parameter estimation.

Most techniques developed to extend estimation windows

and respect signal local stationarity are based on tests and

thresholds which allow windows to grow in different directions

when spatial features are detected. The technique proposed by

Wu and Maître [17] selects maximum homogeneous regions

by testing the evolution of the standard deviation when the

window size increases, after splitting in one of the eight pos-

sible directions if necessary. Three thresholds are empirically

chosen to test four cases: point-target, close or on step edge, and

homogeneous area. This filter has been improved by Nicolas

et al. [18] with two modifications. First, the standard deviation

is replaced by the equivalent number of look which is

linked to the coefficient of variation CV (normalized standard

deviation) by for intensity images. Secondly, the

estimation of is based on the low-order moments, second kind

cumulant method which yields a low variance estimator with

analytically known variance linked to the number of sample

used in the estimation windows. This allows the authors to take

the estimator variance into account when comparing with the

theoretical number of looks and analyzing the evolution of

between the current window and the increased size windows. A

different strategy was proposed by Hagg and Sties [19] to test

local stationarity on directional subwindows of decreasing size:

starting from large window size such as 11 11, directional

subwindows are tested and size is reduced by 2 until the local

estimate of the CV is found to be lower than the corresponding

global estimate of the coefficient of variation. These global

estimates are obtained on the whole image for different window

size by fitting distributions with the beginning of the CV

histograms. The multiresolution technique proposed in [11]

combines these different techniques by including specific fea-

ture detectors (point targets, lines, edges) to test successively

different kind of nonstationarity. The main characteristics of

these techniques is the use of homogeneous/nonhomogeneous

tests to select (sub)windows of larger size (pixels are not tested

and aggregated individually). These “window tests” are based

on CV local estimates and require to take into account the

fact that CV estimated on small windows is lower than the

theoretical CV.

In the framework of POL-InSAR imagery, a spatially

adaptive filtering method for improving the accuracy of the

coherency estimation was introduced in [20]. Eight direc-

tional subwindows are defined in order to locate the most

homogeneous area inside the considered neighborhood. The

subwindow selection procedure is driven by the average of the

available span images of the interferometric pair. The pixels

within the selected subwindow are used to yield the filtered

covariance matrix, which is derived from the locally linear

minimum mean-squared error (LLMMSE) estimator of the

6 6 covariance matrix

(1)

In (1), stands for the average value of the POL-InSAR co-

variance matrix computed in the given subwindow, while

is a locally computed weight that measures the local sta-

tionarity.

This paper presents a new spatially adaptive algorithm for

coherency matrix estimation. Around each pixel, an adaptive

neighborhood (AN) is formed using a region growing tech-

nique rather different from the previous “window growing”

techniques: pixels are tested one by one and progressively ag-

gregated if they belong to the same statistical population as the

initial pixel. Moreover, the region growing algorithm is driven

by all the available intensity images (the terms corresponding to

the main diagonal of the roughly estimated coherency matrix).

Pixels belonging to an adaptive “intensity-driven region” are

more likely to respect the local stationarity hypothesis than

pixels belonging to a squared fixed size window. Finally, the

algorithm estimates the coherency matrix either by direct com-

plex multilooking or from the LLMMSE estimator. The two

estimation techniques were tested using three different spatial

supports: a fix-sized symmetric neighborhood (boxcar filter),

directional nonsymmetric windows, and the proposed AN. The

effectiveness of this proposed method is demonstrated using

L-band E-SAR polarimetric interferometric data.

The remainder of this paper is organized as follows. In

Section II, the principles of polarimetric InSAR are reviewed in

more detail. Section III is dedicated to the presentation of the

proposed intensity-driven adaptive-neighborhood (IDAN) esti-

mation and its application to LLMMSE filtering. In Section IV

the results obtained using the proposed filter are presented and

compared to those given by the boxcar and directional filtering

methods. Results of entropy-alpha-anisotropy decomposition

and coherence optimization, followed by a Wishart classifica-

tion are also given. Eventually, in Section V, some conclusions

and perspectives are presented.
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II. POLARIMETRIC SAR IMAGES

The POL-InSAR data are obtained by two parallel passes sep-

arated by a baseline for interferometry. By using the Pauli basis

marices [8], the obtained coherent scattering vectors are

closer to the physical phenomena of wave scattering

(2)

One complete representation of the data is the 6 6 Hermi-

tian positive semidefinite coherency matrix

(3)

where denotes the expectation value, are the

3 3 polarimetric coherency positive semidefinite Hermitian

matrices from each pass, being the interferometric co-

herency matrix between the polarized acquisitions

(4)

While the scatter vector, expressed either in lexicographic basis

or in Pauli basis, is usually modeled by a multivariate complex

Gaussian probability density function (pdf), the obtained co-

herency matrix defined in (3) follows a complex Wishart

pdf [7], [21]. The diagonal elements of the coherency matrix

have the same speckle statistics as conventional single channel

SAR images.

A. H/ /A Decomposition

To extract useful information from POLSAR data, several po-

larimetric decompositions have been introduced: Huynen [22],

Krogager [23], Cameron [24], Freeman-Durden [25], or TSVM

[26]. In [5], Cloude and Pottier proposed a decomposition based

on the projection of the coherency matrix onto its eigen-

values basis. The matrix is given by a weighted sum of three

unitary matrices of rank one, each representing a pure scattering

mechanism

(5)

where are the ordered eigenvalues and its

corresponding eigenvectors. The entropy and anisotropy

have been defined as

(6)

(7)

where the pseudoprobabilities are given by

(8)

Also, the parameter is given as the weighted mean of the

parameters corresponding to the three scattering mechanisms

[5]

(9)

The extracted two meaningful roll-invariant parameters

and indicate the random behavior of the global scattering and,

respectively, the mean scattering mechanism from surface to

double bounce scattering. They are strongly related to the geo-

physical properties of the ground target area providing reliable

classification information. In [5], nine clustering zones are pro-

posed in the and plane.

Being already implemented in POLSAR processing software

as POLSARpro (European Space Agency) or RAdar Tools [27],

the H/ /A decomposition has been chosen to illustrate the ben-

efit of the proposed filtering methods.

B. Coherence Optimization

Due to the strong influence of the polarization upon the esti-

mate of the interferometric coherence, Cloude and Papathanas-

siou proposed a method for finding the optimal linear combi-

nation of polarization states [8]. The optimum scattering mech-

anism corresponds to the projection of both master and slave

target vectors on the eigenvectors and of the

maximum eigenvalues. The highest coherence is obtained

by forming the interferogram between the two optimized scalar

complex images and

(10)

Based on the three optimized coherences

, two characteristic indicators of

the coherence distribution in the different optimized channels,

and , are introduced in [28] and [29]

(11)

III. INTENSITY-DRIVEN AN ESTIMATION

The AN concept in image processing has been introduced by

Gordon and Rangayyan [30] in medical imagery. In each pixel

(called seed when processed), a neighborhood of variable shape

and dimensions is built by a region growing algorithm, con-

taining only connected pixels that belong to the same statistical

population as the seed. Only the values of pixels aggregated in

the AN participate to the computation of the final value of the

seed.

The main advantage of the method is to gather a significant

number of samples in an estimation window where stationarity

is preserved. ANs were also used for gray-level [31], [32]

and color images [33], [34] filtering. In the context of SAR

imaging, a multidimensional extension has also been proposed

for adaptive-neighborhood filtering of multitemporal amplitude
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data [35] and interferometric coherence and phase images [36],

[37].

A. Intensity-Driven Region Growing

In the proposed method, only the intensity information is

used to decide upon the pixel membership to the AN. Small ho-

mogenous regions within all six intensity images correspond to

ground areas with an homogenous cover, which respect the sta-

tionarity hypothesis requirement for the estimation of the com-

plex correlation in (3).

After initial complex multilooking a rough 6 6 noisy esti-

mate of is available. All the available six intensity images

simultaneously drive the region growing process. A 3 2 ma-

trix is built containing only the elements of the main diagonal

of

(12)

where are the bivariate vectors corresponding

to the three lines of the real matrix . Only the diagonal ele-

ments of the matrices have been chosen as, after the Pauli

basis transformation, they are related to the physical backscat-

tering properties of the target. In the case of POLSAR data, each

bivariate component of the matrix becomes scalars. Both the

proposed algorithm and the corresponding equations remain un-

changed [38].

The idea, based on Lee’s sigma filter [39], is to retain in the

AN only pixels which differ from the seed with less than twice

the noise variation coefficient. According to the multilook SAR

intensity image multiplicative noise model, the corresponding

random variable is gamma distributed [21], [40]. For a distri-

bution with parameters and , 95% of the samples lie in the

interval . The ( thresholds

from Fig. 1) interval ensures the population retained in the AN

is statistically significant, and the following aggregation crite-

rion is proposed for all the available bivariate vectors :

(13)

where is the seed vector. The variation coefficient

is a standard parameter in SAR imagery, which is con-

stant in homogenous areas and equal to ( is the

equivalent number of looks resulting from the initial averaging).

However, it is not desirable to use a single-step region

growing algorithm with threshold (especially when the

noise is strong, which is the case in the SAR imagery) under

the risk that the region grows over boundaries, in contradiction

with the goal of the region growing algorithm [Fig. 2(c)]. This

is why a two-step region growing procedure is used [Fig. 2(d)].

In the first step, the aggregation threshold is set in order to

retain only 50% of the statistical population [Fig. 2(b)]. With

a single gamma distribution, the corresponding interval is

(see thresholds in

Fig. 1. Gamma pdf corresponding to multiplicative noise model for multilook
SAR intensity images: � = 1 and L = 2; 3; 5. The aggregation thresholds
IDAN (15) and IDAN (16) are set in order to retain only 50%, and 95%
of the statistical population, respectively.

Fig. 2. Region growing process (64� 64 pixels). (a) Two-look initial SAR
intensity image. (b) One-step region growing with the IDAN threshold. (c)
One-step region growing with the IDAN threshold. (d) Two-step region
growing with the IDAN followed by the IDAN thresholds.

Fig. 1). The first aggregation criterion for each of the three

bivariate vectors , which yields the correct estimation of the

seed, is

(14)

Using the threshold on the sum of the three

channels, the resulting AN may possibly contain many holes,

i.e., pixels that were not retained because they are affected by
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a “strong” instance of noise. However, these pixels belong to

the same statistical population and should be retained in the

AN. This is achieved in the second step ( thresholds

in Fig. 1), where only pixels that were rejected in the first step

are reinspected with a less restrictive threshold . The

advantage of reinspecting only previously rejected pixels is

that most of them are located inside the convex hull of the AN

determined in step one, as they neighbor at least one of the

pixels retained in the AN.

Based on this principle, the algorithm for constructing the AN

consists of two steps.

Step I

1) Rough estimation of the seed value. Inside a 3 3 cen-

tered neighborhood, the median is computed

on each of the six component of the matrix, in order to

yield a first estimate of the seed value. At this step, with a

3 3 neighborhood, the median is more appropriate than

the mean (maximum likelihood estimator in homogenous

areas), since the impulse response of the median filter is

zero and a stepwise change in the input signal passes the

median filter unaltered [41]. This property is very useful

when data need to be smoothed, while blurring of the

signal edges is not acceptable. At such an early stage of

the region growing process, it is better to avoid any blur-

ring effects around the edges in order to assure the signal

stationarity in the next steps.

2) Region growing. All the eight direct neighbors of

the seed are accepted inside the AN, provided they meet

the following aggregation test, which merges the three

distances corresponding to the three components of the

multivariate vector

(15)

where and are the speckle mean and standard devi-

ation. Then, the same procedure is applied for all of the

neighbors of the newly included pixels and so on. The

region growing iterates in this manner, until either the

number of the pixels already included in the AN exceeds

a predefined upper limit or none of the neighbors

verify the test condition given by (15). The pixels which

have already been tested, but not accepted inside the AN

(called background pixels in the sequel) are stored in a

separate list.

Step II

1) Refined estimation of the seed value. A more reliable esti-

mator of the selected seed value is obtained by

averaging the pixels included in this “strict” AN obtained

in Step I. The initial seed value is now updated

by .

2) Reinspection of the background pixels. The background

pixels of the list created in Step I are tested again

and aggregated in the AN, provided that they meet the

“enlarged” test condition

(16)

The test is less restrictive, as the inclusion threshold is

larger than the one used in the first step of region growing.

It is important to notice that the intensity-driven region

growing algorithm can be applied on one POLSAR acquisition,

namely by employing only one polarimetric coherency ma-

trix. The only difference is that the bivariate components

of the vector from (12) become scalars

(diagonal elements of the available polarimetric coherency )

(17)

The same two-step region growing algorithm is then applied

[38].

In summary, the proposed AN determination involves pro-

cessing the vectorial image (as in the case of color images)

mixed with multiplicative noise model (speckle noise is present

in all SAR intensity images). Around each pixel, an AN is

formed using a two-step region growing technique. It takes into

account the information contained in all the intensity images

of the available complex data. The use of ANs provides a

larger set of samples for further processing, which respect the

stationarity hypothesis.

B. Pol-InSAR Parameter Estimation

The conventional filtering method performs a complex aver-

aging over a fixed size sliding window estimating the master

and slave coherency matrices and the interferometric coherency

matrix from (3). In this type of approach the number of pixels

averaged may not be sufficient to reduce the estimation variance

and the stationarity hypothesis is not always respected. The AN

previously constructed solves these problems, considering that

the phase stationarity over the neighborhood was ensured ei-

ther by a standard flat earth fringe removal procedure or by a

local phase slope estimation (in the case of unknown baseline

or strong topography) [42], [43].

The proposed method allows to recompute the complex av-

eraging over the largest possible neighborhood without loosing

stationarity. In the case of the POL-InSAR data set, the matrices

and from (4) are estimated by replacing

the ensemble average required by their definition, with a spatial

average within the intensity-driven AN (IDAN)

(18)

(19)

In the case of single POLSAR data, using the multivariate vector

from (17), the IDAN estimation technique of the polarimetric

coherency matrix is implemented using (18).

A recent study presented in [44] determines speckle noise ef-

fects over the retrieved physical information in POLSAR data

by means of the decomposition. As the sample eigen-

values consist of asymptotically nonbiased estimators of the true

eigenvalues, the minimum number of looks in order to neglect

biases must be determined. The optimization algorithm of the
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Fig. 3. POL-InSAR initial data (1540� 1407 pixels). (a) Two-looks HH+VV
master intensity (logarithmic scale). (b) Two-looks HH+VV initial coherence
map. (c) Two-looks HH+VV initial interferogram.

sample eigenvalues proposed in [44] does not succeed in cor-

recting with less than 81 looks and values with less than

121 looks. The IDAN estimation provides such a high number

of samples, while preserving stationarity and spatial resolution.

Depending on the desired POL-InSAR application, another

refinement of the estimation method may be employed. For ex-

ample in the case of forestry applications, the height of the trees

is extracted from the interferometric coherency [45]. The strong

multilooking induced by IDAN may affect the properties of

Fig. 4. Master intensity image filtering results (logarithmic scale) (526� 310
pixels). (a)–(c) Original two-look intensity images (HH+VV, HH�VV and
2XX). (d)–(f) HH+VV boxcar, directional, and IDAN filters with complex
multilooking. (g)–(i) HH+VV boxcar, directional, and IDAN filters with
LLMMSE.

the polarimetric scattering signatures of the targets (trees). In

order to compensate these effects, a new technique which fuses

the IDAN estimation and the LLMMSE from [20] is proposed

(IDAN-LLMMSE). Instead of the directional windows, the pre-

viously constructed AN provides the necessary spatial support

for the final LLMMSE estimation of the coherency matrix as

(20)

represents the POL-InSAR coherency matrix com-

puted in the obtained AN, while is the filtering weight

which is computed as in [20], except that, instead of using

the average of the two span images from the interferometric

couple, all the AN pixels of all the six available POLSAR span

images are averaged.
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Fig. 5. Pol-InSAR data over the DLR headquarters (1540� 1407 pixels). (a) Optical image resampled and registered on the available two-looks intensity images.
(b) Sobel edge detection and thresholded reference areas used in the ROC analysis: blue for false alarm mask and yellow for detection mask.

IV. RESULTS AND DISCUSSION

To illustrate the performances of the IDAN filtering method

presented in Section III, results obtained with real airborne po-

larimetric interferometric SLC images are reported. The air-

borne data set was acquired in 1999 by an airborne experi-

mental SAR system, E-SAR [46]. It represents a repeated pass,

interferometric, fully polarimetric (monostatic mode) L-band

(1.25 GHz) acquisition with a baseline of about 15 m. The spa-

tial resolution is 1.5 m in range and azimuth. The target area

is the Deutsches Zentrum für Luft-und Raumfahrt (DLR) head-

quarters (Oberpfaffenhofen area) from Wessling, Germany. It

includes a large variety of zones, being one of the most used

test POLSAR and POL-InSAR images [46], [47].

The SLC test images have 1540 2815 pixels each. After ini-

tial two-look complex multilooking, the initial estimate of the

matrix is obtained (Fig. 3). On the master intensity image

corresponding to the HH VV polarization configuration the es-

timated equivalent number of looks is .

The results obtained by IDAN and IDAN-LLMMSE estima-

tion algorithms are presented in Section IV-A–C. Several filters

are also implemented for comparison purposes: boxcar filter and

intensity driven directional neighborhood, with complex multi-

looking or with LLMMSE estimation. The implemented direc-

tional filter is similar to the one presented in [20], with the only

difference that the window selection is driven on the sum of the

six available span POL-InSAR images (all the diagonal terms

of the matrix). The parameters used for POL-InSAR data

IDAN filtering are: . In order

to assure the compatibility of the boxcar, directional filter and

IDAN, in terms of filtering amount, the size of the chosen cen-

tered neighborhood of the boxcar was 7 7.

A. Speckle Reduction in POLSAR Span Images

In the case of nonadaptive filters, as the boxcar filter, the

speckle reduction is always associated with strong edge-blur-

ring effect [Fig. 4(d)]. The directional filter [Fig. 4(e)] is more

satisfactory than the boxcar as the resulting edges are sharper.

However, the fix size of the directional neighborhoods induces

artifacts in the vicinity of thin details (smaller than the size of

the neighborhoods). The boxcar LLMMSE [Fig. 4(g)] and di-

rectional LLMMSE [Fig. 4(h)] overcome these drawbacks, but

the quality of achieved noise reduction is somewhat decreased.

The IDAN filter [Fig. 4(f)] greatly reduces speckle over ho-

mogeneous areas, whereas structures are preserved. Thanks to

the large number of homogeneous samples used in performing

the multilooking, the achieved speckle reduction is more pro-

nounced than other filters. A general remark for all the spatial

filters is that the resulting filtered image has a “patchy” look,

which is a known effect of purely spatial filtering. This effect

is also observed for the IDAN. However, the IDAN-LLMMSE

visually has less of this effect. The only drawback of the IDAN

filter is in its high computational load.

In order to objectively assess the filtering performances, the

receiver operating characteristics (ROC) are computed and fur-

ther analyzed: first, a contour map is computed starting from the

filtered HH VV master POL-InSAR intensity image using con-

ventional edge detectors. An optical image, previously resam-

pled and registered on the initial master intensity image (Fig. 5),

is used to obtain a contour map which provides the “ground

truth” for the detection mask. A false alarm mask is also se-

lected on the homogeneous fields around the runway.

Fig. 6 represents the three ROC curves for the edge detection

on each of the filtered HH master intensity images. As it can be

observed in Fig. 6(a), IDAN provides the best contour preserva-

tion. This can be explained by the fact that the IDAN detection is

much higher for a given false alarm level. As expected, the direc-

tional filter (adaptive spatial filter) outperforms the boxcar (non-

adaptive spatial filter). By introducing the LLMMSE method in

the final filtering stage [Fig. 6(b)], directional LLMMSE and

IDAN-LLMMSE provide much better performances than the

boxcar LLMMSE with a higher detection probability.

B. Improved Estimation of the POL-InSAR Coherence Maps

TheinterferometriccoupleformedbytheHH VVcomponent

was chosen to illustrate the coherence filtering performances of
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Fig. 6. Assessment of the edge detection performance in the Pol-InSAR
filtered HH+VV master intensity images: receiver operating characteristics
(detection probability versus false alarm probability). (a) Complex multilooking
only. (b) LLMMSE estimation.

the six filters (see Fig. 7). One can observe that, also on this pa-

rameter, the IDAN [Fig. 7(c)] and IDAN-LLMMSE [Fig. 7(f)]

outperform the other filters from a visual point of view: uniform

areas are better smoothed, contours are better preserved and bias

is more reduced. This can also be remarked in Tables I and II,

which present the smoothing and bias reduction performances

of the six filters computed over manually selected homogeneous

regions of different coherence levels. An important decrease of

the mean value after filtering is present over the low-coherence

areas, i.e., where the bias was important, whereas in the high co-

herence region, the high level is preserved. Table II presents the

standard deviation computed over all of the three regions. The

minimum is obtained by IDAN, showing that this filter simulta-

neously performs the strongest bias and noise reductions inside

homogeneous regions.

C. Pol-InSAR Parameter Extraction and Classification

The coherence optimization algorithm was also applied on

the polarimetric interferometric coherency matrices filtered by

Fig. 7. HH+VV coherence map filtering results (526� 310 pixels). (a)–(c)
Boxcar, directional, and IDAN filters with complex multilooking. (d)–(f)
Boxcar, directional, and IDAN filters with LLMMSE.

IDAN and IDAN-LLMMSE (Fig. 8). The additional informa-

tion provided by the POL-InSAR parameters improves standard

POLSAR classification results. As double bounce characterizes

both building and vegetation, the decomposition reveals

higher values over the stable building areas and lower values

over the vegetation areas (high volume and temporal decor-

relation) [29]. The IDAN-LLMSE filtered interferometric co-

herency provides the best results in terms of spatial resolution

and discrimination between the two areas.

Physical parameters of the scatterers can directly be esti-

mated from POLSAR data. In Fig. 9, decomposition

was performed on the master polarimetric coherency matrix

filtered either by IDAN or IDAN-LLMMSE. Between the

two filters, IDAN performs the best noise reduction, while

IDAN-LLMMSE, ensures sharper edges, especially in the

building areas. However, it is important to notice that this

is the effect of the underestimation of the eigenvalues in the

regions where the parameter from (20) is close to one (no

further multilooking is performed in the filtering stage). Hence,

despite the high contrast, the estimated values of the POLSAR

parameters are not reliable in the areas where the number of

necessary samples is not reached.

Fig. 10 presents 2-D histograms of parameters for the

two proposed filters in three manually selected homogeneous

areas. For comparison purposes, the mass center (MC) of the pa-

rameters estimated by a 15 30 boxcar complex multilooking is

also plotted. An interesting effect can be observed, namely that

as the value of entropy increases from Fig. 10(a)–(c), the bias re-

duction performed by IDAN becomes less important. This can

be explained by the fact that high entropy values indicate strong
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TABLE I
HH+VV COHERENCE MEAN OVER HOMOGENEOUS AREAS ON THE OBERPFAFFENHOFEN REGION

TABLE II
HH+VV COHERENCE STANDARD DEVIATION OVER HOMOGENEOUS AREAS ON THE OBERPFAFFENHOFEN REGION

Fig. 8. A ;A decomposition of the interferometric coherency matrix
(526� 310 pixels). (a) A and (b) A , parameters estimated from the IDAN
filtered interferometric coherency matrix. (c) A and (d) A , parameters
estimated from the IDAN-LLMMSE filtered interferometric coherency matrix.

variation of the target scattering mechanisms inside the three-

dimensional (3-D) (2-D spatial 1-D polarimetric) estimation

Fig. 9. H � � � A color RGB composition on the master polarimetric
coherency matrix (526� 310 pixels). (a) IDAN filtering. (b) IDAN-LLMMSE
filtering.

window. In such areas, the AN has rather small dimensions,

thus it cannot provide enough complex multilooking for an un-

biased estimation of the parameter. Despite the fact that the

IDAN complex multilooking behaves much better than IDAN-

LLMMSE in terms of reducing the noise variance, the latter

[Fig. 10(d)–(f)] provides reliable bias reduction in all cases,

even with high entropy values. Hence, in the classification appli-

cations where high entropy targets are investigated, the IDAN-

LLMMSE parameter estimation technique provides better re-

sults than IDAN complex multilooking.

The behavior of the two filters can be observed in Fig. 11,

which presents the results of the Wishart classification using as

input images the master coherency filtered by either IDAN or

IDAN-LLMMSE. As expected, due to the strongest noise and

bias reduction on the homogenous area (fields, runway), the ob-

tained results are much more regularized for the IDAN filtered

coherency. The thin structures (buildings) are very well defined

in both cases. Comparing the IDAN and IDAN-LLMMSE clas-

sification map with the optical image, the IDAN classification

reveals much more spatial information than the IDAN-LLMSE

classification. It is difficult to separate runway class from

surrounding fields classes in Fig. 11(b), while with IDAN
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Fig. 10. H � � distribution on various homogeneous areas. (a)–(c) IDAN with complex multilooking. (d)–(f) IDAN with LLMMSE. MC is the boxcar MC of
the selected region, estimated with a 15(range)� 30(azimuth) complex multilooking.

[Fig. 11(a)] the runway classification is better defined. Two

forest areas clearly appear in the upper left region of Fig. 11(a).

These classes are mixed in the IDAN-LLMMSE classification.

In summary, the overall performance of IDAN and IDAN-

LLMMSE, POLSAR, and POL-InSAR filtering techniques has

been evaluated at different stages. First, the ROC analysis and

the bias reduction tables have been applied on low-level at-

tributes (POL-InSAR intensities and coherence maps). Medium

level physical parameters of the scatterers were computed and

the influence of the proposed filtering method have been inves-

tigated ( , and ). A final high-level Wishart classi-

fication have been employed and the obtained results were dis-

cussed in correlation with the visual information of the available

optical image.

As mentioned earlier, the critical point of this filtering

procedure concerns the determination of the homogeneous

area surrounding a pixel. One of the main advantages of the

proposed IDAN technique relies on the fact that homogeneity

is estimated using the three POLSAR or six POL-InSAR inten-

sities, which are directly available with a very small number

of looks. More complex statistical measures, based on the

polarimetric or interferometric information [48] could be used,

but they would require a much higher number of initial looks.

In the POLSAR case, the criterion that merges the coherency

matrix diagonal elements (17) allows to take an important

part of the polarimetric information into account [49]. How-

ever, for POL-InSAR data sets, intensity variations may be,

in some cases, unrelated to the coherence information. Over

distributed media, like forest, it has been recently shown [29]

that the average span image may be an unsuitable parameter,

involving that the resulting estimated seeds may not contain

pixels with homogeneous coherence. These areas correspond

to high entropy values and, as observed in Fig. 10(c), the bias

reduction is less important. In such cases, the IDAN-LLMMSE

filter, by performing the local stationarity test twice within all

the intensity images corresponding to the available polariza-

tion configurations, gives better results since less filtering is

performed and the local backscattering mechanisms are better

preserved.

V. CONCLUSION

A new method of filtering coherency matrices of polarimetric

or interferometric data has been presented. The proposed filter

uses ANs as spatial support, derived with respect to the inten-

sity information. All the available intensity images of the POL-

InSAR data are combined in the region growing procedure, to

ensure the stationarity assumption. The proposed filter recom-

putes the polarimetric and interferometric coherency matrices,

either by direct complex multilooking or from the LLMMSE es-

timator of the coherency matrix.

The experimental results have proved that the noise is greatly

reduced, while the contours and fine details are preserved and

the blurring effect is avoided. The reliability of the obtained

results is demonstrated by either subjective assessment or by

conventional objective analysis (ROC characteristics and bias

reduction tables). Physical parameters of the scatterers were

computed and the influence of the proposed filtering method
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Fig. 11. WishartH�� classification of master coherency matrix (500� 500
pixels). (a) Classification result using IDAN filtered [T ] . (b) Classification
result using IDAN-LLMMSE filtered [T ] . (c) Coregistered optical image
showing different land covers, related to the obtained classes, for comparison
purposes.

has been investigated for POLSAR and POL-InSAR

parameters. A final Wishart classification has been

employed and the obtained results were discussed and compared

to the available optical image. All these features make the pre-

sented adaptive filtering algorithms an effective and powerful

tool for noise or bias reduction for polarimetric or interfero-

metric data processing.

The general conclusion is that the choice of the filtering al-

gorithm to be used on a given POLSAR or POL-InSAR data

set still remains application specific. The IDAN filter is a good

compromise between variance or bias reduction and preserva-

tion of the spatial resolution, which makes it very useful for

automatic unsupervised activities (edge detection, segmentation

or automatic classification). However, in the case of supervised

activity as direct visual interpretation or scattering signature

assessment of pointwise targets, the IDAN-LLMMSE filter is

more efficient.
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