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To design successful hew products and services, managers need to measure
consumer preferences relative to product attributes. Many existing methods
use ordinal measures. Intensity measures have the potential to provide more
information per question, thus allowing more accurate modeis or fewer con-
sumer questions (lower survey cost, less consumer wearout). To exploit this
potential, researchers must be able to identify how consumers react to these
questions and must be able to estimate intensity-based preference functions.
This paper provides a general structure for using intensity measures for
estimating consumer preference functions. Within the structure: (1) alternative
measurement theories are reviewed, (2) axioms for developing testable implfi-
cations of each theory are provided, (3) statistical tests to test these implica-
tions and distinguish which theory describes how consumers are using the
intensity measures are developed, (4) functional forms appropriate for the
preference functions implied by each theory are derived, and (5) procedures
to estimate the parameters of these preference functions are provided. Based
on these results, a practical procedure, implemented by an interactive com-
puter package, to measure preference functions in a market research envi-
ronment is developed. An empirical case illustrates how the statistical tests
and estimation procedures are used to aid in the design of new telecommu-
nications devices. Empirical results suggest the majority of consumers can
provide intensity judgments. The intensity-based estimation procedures do
better on several criteria than ordinal estimation.

O DESIGN and evaluate new product or service strategies, managers

require an understanding of how consumers form preferences and
how they will behave if a new product or service is launched. Accurate
predictions on consumer response coupled with models of production
costs, tax rates, cash flow, and product-line considerations can lead to
more successful products and can reduce the risk of failure [46].

Many researchers have investigated the twin problems of understand-
ing consumer preference and predicting consumer choice. Some tech-
niques estimate consumer preference functions by representing “con-
sumer utility” as a function of the product’s attribute levels [13, 14, 18,
24, 29, 41, 49]. (These technigues assume either (1) the product with the
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largest “utility” is chosen, or (2) the higher the “utility” of a product, the
more likely a consumer is to choose that product.) For a review of this
literature, see Green and Srinivasan [13]. Such techniques are useful in
the product design because they indicate the relative effects of changes
in the attributes of that product. Other techniques measure interval or
ratio-scaled preference directly based on actual products prior to test
market or national introduction. For example, see Silk and Urban [48].
These techniques are useful in the evaluation of new products because
they are based on actual products and on strong direct preference
measures.

Conjoint analysis (Luce and Tukey [34], Tversky [53], Green and
Srinivasan [13]) is one effective technique to measure preference func-
tions. Conjoint analysis has been quite successful in marketing (Green
and Devita [11], Green and Wind [14], Wind and Spitz [57]), but the
application of conjoint analysis can be improved. The consumer task can
be quite tedious, often requiring each consumer to rank order 20-40
“products” in terms of preference. (Products can be real or represented
by attribute levels.) The number of products is usually kept at a minimum
with a fractional factorial design [6, 14]. Furthermore, the measurement
estimates ordinal preference, i.e., a ranking over products, rather than
intensity of preference, i.e., how much a product is preferred over another.
Finally, because the conjoint measurement task can be tedious, it is
difficult to ask further questions to check behavioral assumptions under-
lying the preference measurement. It is possible to use a form of conjoint
analysis called tradeoff analysis (Johnson [24, 25]) which reduces the
consumer task by having consumers rank order products where only two
attributes vary at a time. Preference measures are still ordinal and
assumptions still difficult to check.

If conjoint analysis or tradeoff analysis were extended by the use of
intensity measures for preference, it would be possible to gather more
information per question. With the proper theoretical structure and
estimation technique, this detailed information could be used to develop
preference models providing a more accurate description of the consumer
evaluation process. Also, if estimation requires fewer consumer measure-
ments, more questions can be asked to test behavioral assumptions and
to help understand the evaluation process.

One form of preference intensity measures is von Neumann-Morgen-
stern utility theory [55]. Preference is ordinal; however, the preference
function can handle products with uncertain attributes. The consumer
task, indifference measurement, provides more information per question
and the axiomatic theory allows the measurement of more complex
preference functions [17, 18]. Some underlying behavioral assumptions
can be checked (preferential indifference, utility independence, see Kee-
ney [26, 28]), but it remains infeasible to check all behavioral assumptions
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as is done in the lengthy interviews (often 2 days or more) of prescriptive
applications (Keeney [27], Keeney and Raiffa [29], Farquhar [8]). Even
with indifference questions and axiomatic theory, marketing applications
still require a 40-50-minute personal interview to measure a consumer’s
preference function. Furthermore, the theory cannot yet handle the
measurement error inherent in consumer interviews.

Another form of preference intensity measures is constant sum paired
comparisons (CSPC). With CSPC, consumers are asked to allocate fixed
sum of points or “chips” between pairs of actual products or product
concepts in proportion to their preferences for those products. Ratio-
scaled preference scales are developed from analyses of these responses
(Torgerson [62]). Silk and Urban [48] report ease of measurement and
excellent predictive capability in over 10 product categories. As high as
80% of the uncertainty is explained where uncertainty is measured by
information theory (Hauser [15]). (Unfortunately, pure constant sum
measurement, in which chips are allocated simultaneously among all
products, is a difficult consumer task often leading to inaccurate results,
Pessemier [42].) But the applications to data have not developed prefer-
ence functions. Instead, they have developed composite measures, i.e., a
preference value for each product. To design new products and to better
understand the consumer response, we need preference functions which
identify how consumers use product attributes to form preferences.

Intensity measures ask respondents for more information about their
preferences. Therefore, CSPC measures provide the potential to estimate
more accurate preference functions and to do so using fewer consumer
questions. All we need to do is test the data to find out if it does, indeed,
contain the additional information. Unfortunately, the axioms of conjoint
and utility theories are based on ordinal measurement. Consequently,
any estimation based on these axioms would only use the ordinal prop-
erties of the CSPC measures and neglect the intensity information
inherent in the measures. Furthermore, as we will show, there are many
alternative hypotheses regarding exactly what the intensity portion of
the CSPC measurement means to the consumer. To use CSPC measure
for preference functions, we must develop tests to identify how consumers
interpret the CSPC task and we must develop estimation procedures
incorporating the intensity information.

A third form of preference intensity measures is graded paired com-
parisons (GPC). With GPC, consumers are asked to choose between two
stimuli and to indicate the intensity of their preference between the
stimuli. In marketing, Huber and Sheluga [21] and Neslin [40] have used
GPC measures to estimate consumer preference functions and/or func-
tions mapping product attributes to perceptions. Both applications report
good empirical results using analysis of variance estimation based on an
assumption of interval intensity information.
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But interval is only one possible assumption. Other assumptions about
how consumers allocate chips may lead to improved preference functions
with different scale properties. If we can develop a common structure
which incorporates the interval assumption as well as the ordinal (con-
joint, utility) assumption and possibly other assumptions, and if we
develop statistical tests to distinguish among these assumptions, we can
improve the GPC applications and extend the CSPC task to measure and
estimate preference functions.

This paper provides a general structure for using intensity measures
for estimating consumer preference functions. Within the structure we
(1) review alternative measurement theories, (2) provide axioms for
developing testable implications of each theory, (3) develop statistical
tests to test these implications and distinguish which theory describes
how consumers are using the intensity measures, {(4) derive functional
forms appropriate for the preference functions implied by each theory,
and (5) provide procedures to estimate the parameters of these preference
functions.

1. INTENSITY MEASURES AND THEORY

To develop and evaluate new products and marketing strategies, we
must develop preference functions relating the attributes of potential
products to consumer preference for those products. The goal of the
measurement and estimation is to understand and to predict a consumer’s
preferences by observing his(her) perceptions of each product in a choice
set relative to a set of attributes (e.g., quality, personalness, convenience,
and value for health services). The preference function (¢:X — C) maps
the attribute perceptions (X) into a scalar measure of preference (C),
such that the consumer is most likely to prefer the product with the
largest scalar measure. (We do not require perfect prediction due to
measurement variance, incomplete specification and other random er-
rors.) The remainder of this paper will assume that any feasible product
can be represented by a set of attributes, X = Xy X0 ... «Xg. Let x;z be
the level of attribute & for product j and let x; = {x1, xp, -+, xx}.
Various methods to identify and measure these attributes are factor
analysis (Urban [54]), discriminant analysis (Johnson [23], Pessemier
[42]), and similarity scaling (Green and Rao [12}). Alternatively, one can
use physical characteristics (e.g., lens speed and exposure time for cam-
eras) in place of measured perceptions.

An important objective in the following discussion is the development
of preference functions rather than composite preference values. Thus,
we will be concerned with attribute-based measurement rather than
estimating preference values for existing products. Nonetheless, each of
the theories or models and statistical tests apply to the special case of
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composite measures. In this case there is only one attribute, product
identity. For a discussion of composite measures versus preference func-
tions (component measures) with GPC, see Huber and Sheluga [21].

All analyses and measurements are presented at the level of the
individual consumer, however, the theory can be readily modified for
aggregate level analysis. With individual measures demand is estimated
by aggregating predicted individual preference behavior or by using
models that translate preference to choice. The measurement is attribute-
based. We illustrate the theory with CSPC measurement, but indicate
extensions to GPC measures and other intensity measures such as dollar
metric (Pessemier [42]). For example, Figure 1 schematically represents
one form of CSPC measurement. The consumer is given two product
concepts (or occasionally existing products) with known or measured
attribute levels, x; and x,, and asked to allocate a fixed sum (S) of “chips”

DIVIDE 100 CHIPS BETWEEN EACH OF THE FOLLOWING PAIRS
OF HYPOTHETICAL DEODORANTS:

PRODUCT A PRODUCT B
PUMP SPRAY AEROSAL
HERBAL SCENT UNSCENTED
REGULAR ANTI-PERSPIRANT
ENTER CHIPS

74, 26

Figure 1. An example of constant sum paired comparison

measurement.

between the products according to his(her) preferences for those prod-

ucts.
Suppose the consumer allocates ai» chips to x; and az; = S — ai2 chips

to xo. If the mechanism for allocation is left unspecified as in Figure 1,
there exists some ambiguity as to what type of preference the pair (a1,
as) represents. Perhaps ais > a2 means only that x; is preferred to x,. In
this case the CSPC measure is no better than simple pairwise comparisons
(Johnson [25]) and one would continue to use conjoint analysis, tradeoff
analysis, or von Neumann-Morgenstern theory.

But perhaps more information is contained in the measurement (i.e.,
chip allocation). One possible assumption is based on a cardinal utility
theory developed by Shapley [44]. Here the allocation is made so that
c¢(x1) — ¢(x2) and a2 — az are proportional. This assumption implicitly
implies c¢(-) has at least interval scale properties and chips are allocated



Measures of Consumer Preference 283

by differences. Another stronger assumption, following Torgerson’s ratio-
scaled postulates [50], is that c(x1)/c(x2) = aiz/az. This assumption
implies c¢(-) has at least ratio scale properties and chips are allocated by
ratios. By making full use of the measured preferences, either of these
assumptions yields preference functions which measure intensity of pref-
erence, but each theory requires (a) a test for the appropriateness of the
assumptions [i.e. how chips are allocated by differences, ratios, etc.] and
(b) a method to estimate the preference function, c(x;).

If the researcher has some indication of how the consumer will respond
to the CSPC measurement, he(she) may assume one theory, say ratio,
and encourage the consumer to respond according to that theory. For
example, additional instructions may request the consumer to “allocate
chips in proportion to the ratio of your preferences for the hypothetical
products.” In this case the general structure and statistical tests can be
used for theory testing rather than for theory identification. If the tests
do not reject the theory, the same estimation procedures apply.

We begin with a general structure. This structure provides a common
notation that clarifies the parallel assumptions of alternative theories and
allows each theory to be formulated as a special case of a general axiom
system. We will formulate alternative theories by adding behavioral
assumptions which specialize the structure and which adapt it to appli-
cations. Statistical tests determine whether the data are consistent with
the behavioral assumptions (e.g., merely random, ordinal, interval or
ratio).

General Structure

Let ¢(.) be a preference function mapping attribute levels into a real-
value depicting preference. Suppose that a particular consumer is pre-
sented with two potential products, i and j, with known attribute levels,
x; and x;, and suppose he(she) responds to the CSPC question with the
pair (a;, a;) where a; + a; = S. For example, in Figure 1, x; would
represent the attribute levels for product A and (a;, a;;) would equal (74,
26). We implicitly define the properties of the preference function for this
consumer by the equation:

clx)*c(x;) = ayea;i (1

where the measurement relation, o, indicates mathematically how the
consumer reacts to the CSPC measures thus specifying how consumers
allocate chips. The property operator, =, indicates the corresponding
mathematical relationship among the preference values thus specifying
minimal scale properties for ¢ (-). (For GPC and other intensity measures,
replace a;oa; by f( g;) where g, is the graded scale comparing i and j
and f(-) is a function dependent upon the theory represented by °.)
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To be practical, ¢(-) will be measured for a relatively small subset of
the possible elements of X. To be useful, c¢(-) must apply to all elements
of X. This requires consistency in the form of symmetry, identity, and
property transitivity. We formally express these properties with 3 axioms.
Later, we develop statistical tests to empirically test special cases of this
general axiom system. The first property is symmetry. Symmetry simply
states “the order of evaluation does not affect c¢(.).” (We assume any
instrument bias such as order effects have been statistically corrected or
randomized.)

AxIoM 1 (Symmetry). If c(x:)*c(x;) = ayoq; then c(x;)+c(x:) = aicay .

Identity states that once instrument bias is corrected, an equal allocation
among the stimuli means the consumer is indifferent among the stimuli.
Mathematically, identity is a necessary property of the measurement
relation.

Axiom 2 (Identity). ajoa; = Iy for all a; where a;oly = a; .

Symmetry and identity are binary relations; property transitivity is a test
for consistency among three or more stimuli. Property transitivity will
provide a method for testing the validity of a particular measurement
relationship. Given three responses, Axiom 3 defines the necessary rela-
tionship among the responses, thus creating a statistically testable impli-
cation. We must first define a transitive operator, T, that acts to reverse
the measurement relation. The third component of Definition 1 is nec-
essary to ensure that 7 is not a null operator.

DEFINITION 1 (Transitivity Operator). T is a transitivity operator for the
measurement relation, <, if T is commutative, (ajoa;) T (a;0a; ) = I, and
(aijoaﬁ)T Ay = @ .

AxioMm 3 (Transitivity).‘ If T is a transitivity operator associated with o,
then (ayoa;) T(apear ) T (arcan) = In. When T is not associative, Axiom
3 holds if at least one of the possible groupings holds.

Finally, we do not want our analyses to be logically dependent upon the
choice of the constant sum, S. Thus, subject to measurement and roundoff
errors, we require Axioms 1, 2, and 3 to hold for any S.

To simplify measurement, we investigate whether c (-) can be separated
into uni-attributed functions. For example, c(x;) would be simpler to
estimate if it were separable into a sum of K uni-attributed functions,
c1(xy ), ca{xei ), etc. The separable form depends on * and o, but in each
case there are identifiable independence properties which imply the form
of separability. These independence properties are special cases of eval-
uative independence, defined as follows.

Suppose that X = X eXse ... «Xg are partitioned into ¥ = X;+ X,

+ o X and Z = Xpr19Xmsze -+ Xx. Let yi, y; € Y, let z;, 2; € Z, then
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xi = (y;, 2;) etc. As a special case, define Xz = X; e XoXs 10 Xp110 - -+ o Xg.
Define Xj; similarly. We can define a general independence property,
evaluative independence. We later use this property to specify functional
forms for the consumer utility function. If evaluative independence holds
for a given theory, then we show that specific functional forms apply for
the consumer’s utility function and, hence, different estimation proce-
dures are appropriate.

DEFINITION 2. Let Y, Z be a partition of X. Then for a given consumer,
Y is evaluative independent of Z (written Y e.i. Z). If for any z° € Z

c(yi, z0)*c(y;, 2°) = a°q;

then
c(yi, 2)xc(y), 2) = ayea; forall z € Z.

In words, the consumer’s answers depend only upon the attributes, Y,
varying among the products in the pair. If evaluative independence does
not hold, the theories may still apply, but separability cannot be exploited
in the estimation procedures. Evaluative independence is a generalization
of independence properties found in utility theory (Keeney and Raiffa
[29)).

To proceed further, we must make assumptions with respect to *, o,
and the implied 7. We now proceed to develop statistical tests capable of
rejecting the axiom system for particular operators.

Notation

In the following discussion, we use standard matrix notation. Let
M:R x C denote a matrix with R rows and C columns. Let M’ denote the
transposed matrix. Let (M) equal rank of M and let M~ denote the
inverse of M if its exists, otherwise let M~' denote the pseudo inverse of
M (Caradus [5]). Let I denote the identity matrix, 1 a matrix of only
ones, and 0 is a matrix of only zeros. Finally, if dimensions are not
specified, assume they are conformable.

Interval Theory

Interval theory, one special case of our axiom system, assumes that the
consumer allocates the chips such that the difference, d;; = a; — a;,
indicates the intensity of preference. Shapley [44] derives fundamental
axioms implying the existence of an interval preference function. Within
the general structure, interval theory is given by (2).

c(xi) —cly) = a; — a;. (2)

The property operator and measurement relation are both subtraction,
the transitivity property operator is addition, and the identity element is
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zero. Then Axiom 3 for interval theory requires (3) to hold for all triplets
of product concepts, x;, &;, and xx. (Test Axioms 1 and 2 in an analogous
mannetr.)

(ay — az) + (@i — aw ) + (ap — ax) = 0. 3)

In practice, measurement error may prevent (3) from holding precisely.
Hence, the left-hand side of (3) may be some (not necessarily zero)
number vz The superscript I denotes interval theory. Let v/ = () for
transitivity test £. A useful measure of fit is then sum of squared interval
error, E?, shown in (4).

E'=3" )=y 4)

where ¢ indexes the transitivity tests (specific triplets), v’ is the vector of
v"s, and m is the number of such tests. E! is a useful intuitive measure:
but to test the theory, we must investigate distributional properties of E’
and related statistics. Then if E’ is significantly small (statistically), we
say interval theory is consistent with the data.

Assume that there exists an interval measurement error €; distributed
normally with mean u; and variance o/* [denoted N (ur, o/°)]. (We do not
need the assumption of zero-mean.) Then the observed value of a; is-
given by: .
aj = aj + € (9)

where af; is the true chip allocation under the interval assumption. Make
similar assumptions for a;;, a;., @, air, and ax;. To derive the distribution
for E’, we must consider the relationship of the errors for the terms in 3.

AssuMPTION 1. In a CSPC measurement, the consumer first selects a;
and sets a; = S — a

Under Assumption 1, a; is functionally related to a;; thus if error is
uncorrelated across measurements, v’ is the sum of three independent
normal random variables each with variance s/ = 40/ Under the
hypotheses of interval theory, (3) holds and the expected value of » is
zero. Thus »? is distributed as N (0, 120%).

AsSSUMPTION 2. In a CSPC measurement, the consumer first selects dy
= q,; — a;; then adjusts both a; and a;; such that a; + a; = S.

Under Assumption 2 the errors €/ and ¢} are not perfectly correlated. If
they are uncorrelated, »’ is the sum of six independent normal random
variables and »” is distributed as N (0, 60;°). In general, there will be some
negative correlation p and the variance of E’ will be given by 6o/ — 601"
where —~1 = p; = 0 (Mood and Greybill {38], Theorems 9 and 10).

Assumption 1 1mp11es pr = —1. Assumption 2 (extreme case) implies p1
= 0. In general »’ is zero-mean normal random variable with variance s/’
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< 6(1 — pr)o/”. Note that whether or not the variables are independent
and regardless of the value of s/, »’ will be normally distributed (with
mean zero for interval theory).

If the transitivity tests were independent, then E’ would be the sum of
squared independent normal variates and would be a chi-squared (x?
variate. Unfortunately, not all transitivity tests will be independent,
because the same €} can appear in more than one transitivity test.

Let v: m X 1 be the vector of m transitivity tests. Let d’: D X 1 be the
data vector of differences (we will suppress the I for notational simplicity),
ie, d = [a; — aji, @&s — s, +-+]. Let Mim X D be the experimental
design matrix identifying transitivity tests. Then, » = Md. For example,

o111 ,
- =[0 N ﬂ[d,-jd,-kdkid,-qqu]

M should be formulated such that the transitivity tests are not redundant,
i.e. such that (M) = m. Otherwise the experimentor may assume more
degrees of freedom than allowable by the experimental design. The
maximum rank for M is the number of different products in the design
minus two. From the preceding arguments, d has a nonsingular multivar-
iate (D-variate) normal distribution with mean p:D X 1 and covariance
matrix 2:D X D, denoted d ~ Np(y, Z). Therefore, if r(M) = m, then
(Giri, [10, Theorem 4.1.5])

v~ N, (My, MEM')

and if A = (M T M’) "' is the inverse (or generalized inverse, Caradus [5]),
of MEM', then ([10, Theorem 6.2.21) ¥’ Av has a noncentral x* distribution
with m degrees of freedom and noncentrality parameter n, = u’M' AMyu.
We will call ¥ Av the adjusted sum of squared error, denoted &”. Now for
interval theory, Mu = 0. Hence,

THEOREM 1. For interval theory, the adjusted sum of squared error, &'
= VAv is x* distributed with m degrees of freedom where v = Md, A =
MEM)and r(M) = m.

Here &’ represents the weighted sum of squared errors across transitivity
tests. The weights are determined by the measurement covariance mod-
ified by the experimental design. Note that &’ simplifies for the special
case when (1) the design is orthogonal (MM’ = I), and (2) the errors are
homoscedastic and independent for successive pairs, i.e., = = s’I. Under
these conditions, & becomes E'/s".

We see &’ provides a test statistic for interval theory when = or §* is
known. That is, given confidence level a, reject interval theory if & > K,
Where K., is the value of a cumulative x? distribution with m degrees of
freedom at probability level 1 — a.

However, in general 3 is unknown. In that case assume independence
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and homoscedasticity across measurements, that is, £ = s°I. Alternatively,
we could assume some other special structure for X. Note that these
assumptions do not prevent the measurement means from being func-
tionally related. Now, let

n = Wd where W: w X D satisfies MW" = 0.

Now, v and 7 are independent (Giri [10, Theorem 6.2.3]) because MW’
= (. The vector » can be interpreted as the weighted sum of arbitrarily
chosen chip allocations. It is, therefore, logical to choose W such that
each row has exactly three nonzero elements, each being +1. Together,
M and the maximum rank W represent all orthogonal triplets. M repre-
sents the independent triplets implied by Axiom 3 and W represents
other orthogonal triplets. If B is the inverse or generalized inverse of
s’WW, then 7By is a noncentral x* variate [43] with w = r(W) degrees
of freedom and noncentrality parameter n, = E[n] WBWE([y] where
E[-] denotes expected value. If A = (MZM')"", then

(m/w)('Bn) /(W Av) = (m/w)(s 5y (WW’) 'n) /(s%v (MM')"'v)
= (' (WW ) 'n)/ (v (MM') v} (m/w)

has no unknown parameters. It has a doubly noncentral F-distribution
(see Giri [10, p. 109]) with m, w degrees of freedom and noncentrality
parameters n; and n.. As a null hypothesis, we assume interval theory is
not correct. Under this hypothesis, E[v'Av/m]| = E[v'Bn/w]. Intuitively,
the null says the variance left unexplained by our theory is of the same
magnitude or greater than the general variability that is not covered by
the theory {(correct by degrees of freedom). Under the null hypothesis n;
= n, equals some n. Theorem 2 defines @' which is the ratio of general
variance over the variance left unexplained by interval theory.

THEOREM 2. For the null hypothesis, if W is defined such that MW =
0 and if errors are independent and homoscedastic across measure-
ments, then

Q = (W (WW') 'n/w)/(»' (MM’) v/m)

has a doubly noncentral F-distribution with (w, m) degrees of freedom,
with equal noncentrality parameters.

If more than one W exists such that MW’ = (, then we take that W such
that w = r (W), the number of degrees of freedom, is maximized (tending
to a more powerful test). Then interval theory is supported when ¢’ in
Theorem 2 is greater than K,(n) where K,(n) is determined from a
noncentral F-distribution with noncentrality parameters both equal to n.
Note, the ratio can be interpreted as the inverse of the percent unex-
plained variance in the transitivity tests. The ratio ¢ (WW’) '/
[v (MM)'v + 7 (WW) 'y] is the percent explained variance. Hence, as
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the variability explained by interval theory increase, @ increases. If
transitivity tests are perfectly satisfied without error, » = 0 and @’
approaches infinity.

Next we must find the noncentrality parameter n. Rejection of the null
hypothesis supports interval theory, therefore n is chosen to bias the test
toward accepting the null hypothesis {(making the test more conservative).
Theorem 2’ provides a method for doing this.

THEOREM 2'. If K, (n) is the cutoff value for rejecting the null hypothesis
given noncentrality parameter n and confidence level a, K, (0) is the
cutoff value for probability 1 — a for a cumulative F-distribution and
K,(0) > 1, then K.(n) < K,(0).

The conservative test for interval theory becomes,

Reject the hypothesis that interval transitivity does not explain a
significant amount of triplet variability at confidence level o if and only
if @ = K,(0) where K,(0) is determined from a central cumulative F-
distribution with w, m degrees of freedom.

Hence @' = K.(0) supports interval theory. Note that this is a very
conservative test for interval theory (i.e., tending not to support interval
theory). Intuitively, setting n = 0 assumes arbitrarily chosen differences
add to zero, thereby exaggerating measurement variance and flattening
the x* distribution. In effect, the test acts as if a were smaller than the
one specified. Finally, increasing the number of transitivity tests tends to
more powerful tests.

There are three final comments. First, in practice the W matrix is
unique with w < m. It can be found by exhaustively enumerating all
linearly independent vectors to the M matrix. Second, if we wish to test
a sample of people to find if the entire sample is interval (rather than
each individual), then let n = v — ¥ where 7 is the sample mean. The ratio
of Theorem 2 has a central F-distribution under the interval theory
hypothesis. Third, Theorems 1, 2, and 2’ can also be proven for GPC
measures. Simply define g as the vector of signed intensity judgments,
e.g., &, &q, -+, and replace d by g in the above theorems. For the
independent, homoscedastic case, = = s°I.

Theorems 1, 2, and 2’ provide a useful battery of tests. If p and o°, or
more simply s%, are known from external experiments, the x° test provides
a statistical test of the axioms. Alternatively, Theorem 1 can be used to
jointly test interval theory and an error variance. If the error variance is
unknown, Theorem 2, or more simply Theorem 2’, still provides a test of
interval theory, but because s* is free to vary, Theorem 2’ will not be as
stringent a test as Theorem 1.

If interval theory is not rejected, we proceed to estimate c(x;). Many
decompositions are possible. We show one particularly useful decompo-
sition based on each attribute being evaluative independent of its com-



290 Hauser and Shugan

plement set. Based on this simple proof, one can readily extrapolate the
ideas to less restrictive functional forms when certain interactions are
important.

THEOREM 3. For the interval theory, X, e.l. Xi for all k implies c(x;) =
cilxyy) + calxwg) + - -+ + cxlxgy).

Proof. Y e.i. Z implies by Definition 1 that c(y;, z°) — c¢(y;, 2°) = ¢ (¥,
z) —cly;, 2) for all g, thus ¢(y;, 2) — ¢{y;, 2) = f (i, ¥;). Assume that
c(-, -) is differentiable. Then of (y;, y,)/0z = 0. Thus dc(y., 2)/dz =
ac(y;, z)/9z for all y;, y,;. Thus dc(y, z)/dz = ¥’ (2). Integrating gives
c(y, 2) = y(z) + B(y). Thus, for ¥ = X\, ¢(x;, xi7) = ci(xp) + cilxi).
Continuing we get ¢ {x;1, Xj2, X12) = ci{xj1) + c2(xp) + c2(x;i3), ete., until
the result is attained. The proof when c¢(., -) is not differentiable is
similar but more tedious. (Note that Y e.l. Z is reflexive for the interval
theory, i.e. Y el. Z implies Z e.i. Y). Furthermore, this theorem could
easily have been proven with telescoping sets such as X; e.d. Xpr10Xpi20
e Xk,

If Theorem 2 holds, then c(x;) can be estimated with linear programs
based on an absolute error structure or with ordinary least squares
regression (OLS). Simply discretize each attribute and define:

c(x;) = Zp Zy AiOmpy (6)

where A = the utility derived from attribute £ at level 1.
Sy = 1if xs; is at the Ith level and i, = 0 otherwise. The estimation
equation is:

a; — a; = Ek El }\lk(Blki - Sgkj) + error. (7)

In the linear programming formulation, (7) is used to define absolute
error which is then minimized subject to any constraints on the Aj. This
algorithm is a modification of LINMAP (Srinivasan and Shocker {49])
for intensity measures. Empirically, we have found that the linear pro-
gram performs better on fit and predictability measures than OLS be-
cause one can easily add prior information (known by the researcher) to
the constraints in the linear program. For example, if the A;, are known
to be monotonic in /, a monotonic constraint can be added to the
estimation:

Atk < Aperg i=1,..-,L -1 (L =no. of levels).
Or if an ideal level, [, is specified,
Are < Arerg, i=1,---,i—1 and Ajx > Apg, i=Z,---,L-—1.

If there are L levels, a minimum of (L — 1)K questions must be asked
to specify c(-). (Base points for ¢ (.) are chosen such that no redundancy
exists.) More questions are required when an error term is included in (7)
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and estimates, Ay, are obtained. Theorem 3 and (7) apply to GPC
measures with g; = a; — a;. For an illustrative example of the interval
theory analysis see Appendix 3.

Ratio Theory

Ratio theory is another special case of our axiom system. It assumes
that the consumer allocates chips such that the ratio a;/a;i, indicates the
intensity of preference. This theory was originally formulated by Torger-
son [52] to produce composite preference measures rather than preference
functions. (In Torgerson’s measurement, consumers are explicitly re-
quested to use the CSPC scale as a ratio scale.) Within the general
structure, ratio theory is given by:

c(x)/clx)) = ay/a; (8)

The transitivity operator is multiplication, the identity element is 1.0,
and Axiom 3 becomes

(ai/aii) - (ajr/ ar) - {@ir/ ar) = 1. 9

Note that (8) does not necessarily require a zero-point for c(x;) within the
range of feasible products. In (8) we are concerned primarily with the
method in which consumers allocate chips as well as with the scale
properties of the preference scale. It is possible that preference is a ratio
scale, but (8) does not apply because the consumer reacts differently to
the CSPC measurement. Similar comments apply to (2) in the interval
theory.

Axiom 3 for ratio theory can be tested by checking (9), which must
hold for all product triplets. (Test Axioms 1 and 2 in an analogous
manner.) As in interval theory, we expect measurement error. In general,
the left-hand side of (9) will equal some nonunity number, v¥ (where R
superscript denotes ratio theory). For convenience we define »* = log(v.*)
for transitivity test £. A useful measure of fit is the sum-of-squared ratio
error, E¥, given by:

EF =37 (nF)? = v®o" (10)

where »* is the vector of »™’s.

Again, for ratio theory we assume the error in »* is normally distrib-
uted. Therefore, v¥ has a lognormal error. If we assume that the observed
value of a; is given by:

a;=ak-§ (11)
where €f is A(ur, 0r°) and aff is the true chip allocation under the ratio
assumption. [A(ug, or’) is a lognormal random variable with generating
Parameters ur and ox°. That is, logA(ug, 0r%) is N(ug, or”).] Make similar
assumptions for a;;, @z, ax;, as and ag.
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Using the reproductive properties of the lognormal distribution
(Aitchison and Brown {2, Theorem 2.3]), one can show that the hy-
potheses of ratio theory imply that »® is a zero-mean normal random
variable with variance sz’ = 6(1 — pgr)or® where pr is the correlation
between log e and log €%, and o%” is the variance of (log €%).

Following the development for interval theory, we define »*:m X 1 as
the vector of transitivity errors. Let d®:D X 1 be the vector of log-ratios,
ie., d® = [logla;/a;), log(ar/as), ---1. (The R superscripts denoting
ratio theory on »v* and d¥ are suppressed in the subsequent development
when there is no possibility of confusion with »’ and d’ from interval
theory.) Then v = Md where M is the same experimental design matrix
defined earlier. Using the properties of the lognormal distribution, d has
a multivariate normal distribution with mean p:D X 1 and covariance
matrix X:D X D and v ~ Nn(Mp, MEM'). When the errors across
measurements are independent and homoscedastic, T = s*L If M'M = |
then »"(MEZM’)"'v = E*/s® Theorems 4 and 5 provide the test for ratio
theory. For GPC, replace log(a;/a;) by a signed value of log(g;;). The
sign indicates whether i is preferred to j or vice versa.

THEOREM 4. For ratio theory, v'(MEM") 'v is x* distributed with m
degrees of freedom where v = Md.

THEOREM 5. For ratio theory, if W is defined such that MW’ = 0 and if
errors are independent and homoscedastic across measurements, then
QF = (MW" 'y/w)/(v'(MM'"'v/m) where w = Wd has a doubly
noncentral F-distribution with (w, m) degrees of freedom, and equal
noncentrality parameters.

Using Theorem 2’, the conservative test for ratio theory at confidence
level 2 becomes,

Reject a random chip allocation for ratio theory if and only if QF =
K, (0) where K,(0) is determined from a central cumulative F-distribu-
tion with w, m degrees of freedom.

Finally, in some cases, we will use Theorems 1 and 4 to compare
interval and ratio theories. While it is reasonable to assume p; = pg, in
general, or # o;. To provide equivalent tests for the ratio and interval
theories, we must relate or to o;. For equivalence, we require that the
variance of a; due to measurement error be the same for both theories.
Using the lognormal distribution and (11), we can show that the variance
of a; due to €f is (E[a%])[exp(0r®) — 1] where E[af] is the expected
value of aff (Aitchison and Brown [2, p. 8]). The equal variance require-
ment then gives:

or” = log[o/(E[af])? + 1] (12)

If we know or wish to test an error variance, o, then we match oz’ and
use Theorem 4. If 6z® is unknown, use Theorem 5.
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If ratio theory is not rejected, we proceed to estimate c(x;). As in
interval theory, we can use evaluative independence to derive decompo-
sitions for c(x;). For example, the following theorem parallels Theorem 1
in the interval theory. Again, Theorem 6 can be extended as needed.

THEOREM 6. For the ratio theory, X, e.i. Xi for all k implies e(x;) =
ci{xy)ecalxgj)e -+ - o cxlxgy).

Proof. Y ei. Z implies by definition 1 that c(y;, 2°)/c(y;, 2°) = ¢(y;,
z)/cly;, 2) for all z, thus c(y;, 2)/c(y;, 2) = h{y:, y;). Thus, log c(y,-,_z)
—log c(y;, 2) = log h(yi, y;) = f(y:, y;). Following the proof to Theorem
1 then gives log c(x;) = log c(x;1) + log cax;2) + - -+ + log ex(x;x) which
is the result.

If Theorem 6 holds, the c(x;) can be estimated by taking logarithms of
(8) and formulating a linear program for absolute error or by using OLS.
Simply discretize each attribute and define:

e(xy) = ILILAL)™ (13)
where 8y is defined as before. To estimate Az use the equation:
log(a; /) = Zx2Z(0m: — Sus)log Ay, + error. (14)

For L levels, (L — 1)- K questions are required to specify c(.), more if the
log Aw’s are to be estimated. Theorem 6 and (14) apply to GPC measures
with a;/a; = g; when i is preferred to j and a;/a; = 1/g; when j is
preferred to i.

Hybrid Model

If ratio theory is rejected and interval theory is not rejected, we use
the interval theory. If interval theory is rejected but not ratio, we use
ratio theory. But it is possible that the tests reject neither theory. In this
case, we can use either theory or, heuristically, select the theory with the
best fit to the data.

Another alternative, that is suggested by the general structure, is to
formulate a hybrid model by carefully specifying the relationship between
¢(x;) and a;. We use the word model since axioms, distributional assump-
tions, and tests would be required for a theory. In this case, our axiom
system would have to be extended to a more general system. One hybrid
model that combines the features of interval and ratio theories is given
by:

c(x) = (ay/ai)e(x;) = Blay — ap) (15)

When y — 0, 8 — 1 the interval theory applies; when y — 1, 8 — 0 the
ratio theory applies. While a hybrid theory based on (15) is complex, the
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hybrid model can be estimated by nonlinear estimation procedures such
as OPTISEP [1] and SUMT [7].

In the special case when y = 0, then (15) is a simple extension of (2).
Similarly, if 8 = 0, (15) is an extension of (8). In either case, the estimation
equation is linear in the new parameter and linear programming or OLS
can be used.

Ordinal Theory (Utility Theory, Conjoint Analysis)

If both the ratio theory and the interval theory are rejected, then we
test the hypothesis that the CSPC questions measure ordinal preference.
That is, a; > a;; means that x; is preferred to x;. This is the case of either
von Neumann-Morgenstern utility theory or more simply ordinal utility
theory. See von Neumann and Morgenstern [55], Friedman and Savage
[9], Marschak [36], Herstein and Milner [19], and Jensen [22] for axioms
which imply the existence of such functions. If the data structure has
reasonable properties (Tversky [53], Krantz et al. [30], and Luce and
Tukey [34]) and sufficient measurements are made, conjoint analysis can
be used.

To put ordinal theory in the general structure, define an indicator
function, 8(¢), such that §(f) = -1if ¢ < 0,8() =0if £t =0, and 6(¢) = 1 if
t>0.

Mel(x) ~ e(x)] = 8(ay; — a). (16)

A test for Axiom 3 is ordinary transitivity. (Note that both ordinal
properties and the stronger intensity properties can hold simultaneously.)
If §; = 8(a; — a;), then the test for ordinal transitivity can be written as:

8;’,’ Tajle‘)\ki =0 (17)
where OpgT0rs = 8[Bpq + Ors].

Here T is not associative and hence all cases must be checked. This is
equivalent to testing whether the following equation holds (the proof of
equivalence is by exhaustive enumeration):

8ij + Qjr + ki + 8y 0indri = 0 (18)

which covers all possible preference and indifference orderings among x;,
%, and X

Following the intensity theories, let the left-hand side of equation 18
be 1° where the superscript 0 denotes ordinal theory. Since we are
concerned with the ordinal properties, we use §*(+°), which acts as an
indicator function for errors in (18). A useful measure of fit is the number

of times, E°, that ordinal properties do not hold where E® =¥, 8*(»°).
If the consumer gives consistent ordinal preferences, then we expect

(18) to hold more often than if the consumer allocates 8, randomly. Our
test is formulated to reject random allocation. One random assumption
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is that the three values of §;, (—1, 0, 1), are equally likely. Another
assumption is that only strong orders occur, 8; = —1 or 1, and they are
equally likely. In general, we assume that indifference, 8;; = 0, occurs with
probability ¢ and the other values of §;; each occur with probability (1
— q)/2. By exhaustive enumeration, one can show that, under the random
assumption, » # 0 with probability, p, given by:

p=2[(1— q)/2 + 6q[(1 — ¢)/2)* + 6¢*[(1 - ¢)/2].  (19)

For example, if ¢ is zero, then p = (%4); if ¢ = (4), then p = (*%47). These
are bounds on p for ge[0, '5). In general, % < p < 7. The first value, p
= Y assumes all preference orderings are equally likely. If we assume
chips are allocated completely randomly, then a;; is uniformly distributed
and ¢ = 1/(S + 1). Then when S grows large, the first value (p = %) is
approached.

If the errors in the transitivity tests are independent, E° can be thought
of as resulting from m independent Bernoulli trials with success proba-
bility given by p. This is stated formally in the following theorem.

THEOREM 7. Let p be given by (19). Then the cumulative distribution of
E' is given by ProblE’ < E]= Y%, ('Z) pH1 — py .

As in interval and ratio theory, the errors in the transitivity tests in an
arbitrary experimental design matrix are not independent, in which case
the distribution for E° can be derived analytically for any given M as the
exact distribution of interdependent Bernoulli trials; but it is notationally
and computationally cumbersome and must be done for ea¢h M. Fortu-
nately, simulation results show Theorem 7 to be a good approximation
for the M matrix used in our empirical work (see Appendix 1).

Theorem 7 sets confidence levels for rejecting the random hypothesis.
For example, if m = 8, then E° < 1 rejects, at the 0.05 level, the hypothesis
that (=1, 0, 1) are equally likely for 8,. Under the same hypothesis, E°
=< 2 rejects at the 0.15 level. Under the hypothesis of only strong orders
E° = 0 corresponds to the 0.10 level and E° < 1 corresponds to the 0.37
level. The same tests apply for any ordinal measurement or for the
ordinal properties of GPC and other intensity measures.

If the random hypothesis is rejected, we can use utility theory (Hauser
and Urban [18]) or conjoint analysis (Green and Srinivasan [13]) to
estimate the preference function, ¢(x;). Once again, evaluative indepen-
dence yields decompositions that simplify estimation. Evaluative inde-
pendence becomes preferential independence (Keeney and Raiffa [29])
and Y e.i. Z implies that there exists a value function v(y) such that c(x;)
= u[v(y,), z;]. In particular, if each pair of attributes is preferential
independent of the other attributes, then there exists some ordinal c(-)
which decomposes additively separable. This is stated formally in Theo-



296 Hauser and Shugan

rem 8. The proof is contained in Ting [51], Farquhar {8], or Keeney and
Raiffa {291

THEOREM 8. For ordinal theory, X;-X; e.i. Xjz for all k implies there is
some c(-) such that c(x;) = c1(xy) + cafxy) + -+« + ex(xg;).

If the consumer task involves stimuli with uncertain attributes, i.e.,
lotteries, then the axiom structure for c(x;) implies ¢(x;) is unique to a
positive linear transformation (von Neumann and Morgenstern [55]) and
evaluative independence becomes utility independence and mutual utility
independence implies the quasi-additive form (Keeney [26]). Theorem 9
formalizes these implications.

THEOREM 9. For von Neumann-Morganstern uttlity theory, X e.i. Xx for
all k implies c(x;) = YrMrCr(Xrj) + Yok kAmrCm{Xmi)Cr(Xrj) + third order
terms + --- + Kth order terms where A, Ay, €tc. are scalar constants.

For estimation procedures applicable to ordinal theory, see [11, 13, 14,
24, 30, 41, 49, 53]; for von Neumann-Morgenstern theory, see [8, 16, 18,
29, 301.

Stochastic Theory |

If E; rejects ordinal theory in favor of a random allocation, then we
must investigate theories more general than deterministic preference. We
could interpret a; > a; as meaning the probability of choosing x; is
greater than the probability of choosing x;. For axioms implying the
existence of ¢(x;) under this interpretation, see Hauser {16]. For condi-
tions leading to probabilistic choice, see Shugan [45]. There exists many
interpretations of stochastic theory. We now derive one CSPC theory
consistent with probabilistic preference. The theory, again, concerns chip
allocation and the implied estimation, rather than, the consumer’s mental
processes.

Let Plx; > x;] be the probability that the consumer will prefer x, to x;
in a paired comparison. Now suppose (1) chips are allocated sequentially
to achieve the chip allocation (a;;, a;;). For each toss, i.e. individual “chip”
allocation, there is a probability Pn; that the mth “chip” will be allocated
to product ¢ rather than to product ;. If one assumes (2) a stationary
process (i.e., Py = Py = Py for all n, m); (3) Py = Plx: > x,], and since
P; + P; = 1, then given Axiom 3, each individual chip allocation is
Bernoulli. For details see Appendix 2. The total chip allocation for any
fixed sum of “chips” is given by:

Prob{ay, a;} = (aij f:j aﬁ>[P u 1" Pl (20)

The maximum-likelihood estimator for P(x; > x;] for a single comparison
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is given by:
Py = Plx; > %] = a;/(a; + az) 21

If P(x; > x;) is a function, f(-, +), of only the preference values, then (21)
becomes a special case of the general structure. That is:

fle(xd), e(x))] = ay/(ay + a;) (22)
A special case of stochastic theory is the logit model [37] where
fle(x), c(x)] = exple(x)]/ (exple(x)] + exple(x;)]) (23)

In this case, Axiom 3 (property transitivity) becomes Luce’s choice axiom
[32, 33]):

(Py/Pji)« (Pjr/Prj) + (Pri/ Px) = 1. (24)

For sufficient conditions for Luce’s axiom and a survey of its extensions,
see Shugan [45]. To test stochastic Theory I, we formulate a likelihood
ratio test on the basis of (20). Since estimation is analytically cumber-
some, we refer the reader to Appendix 2. (It is interesting to note if S is
sufficiently large and if neither a; nor a; is close to zero, then (20)
becomes approximately normal (Mood and Greybill, [38, Theorem 7.5])
which is consistent with an assumption of normally distributed measure-
ment error.)

(23) can be estimated with standard maximum likelihood-based com-
puter packages (Berkman et al. [4]). Evaluative independence implies a
multiplicative decomposition of exp[c(x;)] which indicates an additive
decomposition of ¢(x;). (22) can be extended with an exponent for a;; and
a;; (Stevens [50], Pessemier [42]) and (23) can be extended to probit and
other probabilistic models. To use stochastic Theory I for GPC, one must
assume that g, is a probability scale.

Stochastic Theory I

If the ratio, interval, ordinal, and stochastic theories are all rejected,
we must search for alternative explanations. One such explanation is
provided by Bass [3] who derives a theory of stochastic preference that
makes no assumptions with respect to specific individual consumers but
is based on distributional assumptions about how the market as a whole
behaves. (Preference probabilities vary across the consumer population
with some known distribution.) For a review article on these models, see
Horsky et al. [20].

Summary

The general structure, c(x))*c(x;) = aj°a;;, provides a common link
between the measurement theories and models. Within this structure one
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can proceed systematically, searching and testing for the measurement
theory that best explains how consumers react to the CSPC scale or
other intensity scales. When the proper theory is identified, we posit (and
will support with an empirical case) that prediction and understanding is
improved.

In exploratory research we suggest the CSPC, GPC, or other intensity
tasks be left unspecified and the general structure be used to identify the
natural and easiest consumer response to the questions. Then modify the
questions to encourage response according to the identified theory and
use the statistical tests with more stringent confidence levels to test the
theory.

One such search/test/estimation procedure is suggested in Table 1.
Ratio and interval theories are tested first. If one is clearly identified, it

TABLE 1
ONE PossiBLE USE OF THE THEORY TEsTS WITHIN THE GENERAL STRUCTURE
Interval Ratio Test (Eg) Ordinal Likelihood Ratio Test
Test Test
(E;) Accept Reject (Eo) Accept Reject
Accept Best fit or Interval Accept Ordinal or Ordinal
hybrid theory stochastic 1 theory
model
Reject Ratio Further Reject Stochastic Stochastic
theory testing theory I theory I1

is used. If both are accepted, either the best fitting theory or the hybrid
model is used. If both are rejected, the ordinal theory is tested and, if
accepted, it is used. If the ordinal theory is rejected, stochastic Theory 1
is tested. If it is rejected, stochastic Theory II is used.

Estimation proceeds only after identification of the appropriate theory.
If evaluative independence holds, decomposition simplifies estimation. If
evaluative independence is strongly rejected, interaction terms may be
required. For brevity we have not derived statistical tests for evaluative
independence, although such tests are straightforward employing the
assumed distributional properties. Furthermore, even if evaluative inde-
pendence does not hold, the decompositions may provide good approxi-
mations.

The search/test/estimation procedure can proceed at either the indi-
vidual or the aggregate levels. At the individual level, the best theory is
chosen for each consumer in the sample. At the aggregate level, a best
representative theory is chosen for the sample. In either case, estimation
is at the individual level. In the former case, accuracy is enhanced, but
interpersonal comparisons cause difficulties. In the latter case, some
accuracy is sacrificed, but the ability to compute summary statistics
(mean, median, interquartile interval) can lead to enhanced managerial
understanding.
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We now provide a numerical example to illustrate the application of
the general structure to CSPC measurement. Section 3 then provides an
empirical case from a marketing research application.

2. NUMERICAL EXAMPLE AND IDENTIFICATION TEST

Table II is one example of a hypothetical consumer’s response to 16
CSPC questions. This design for three attributes at three levels contains
10 tests of Axiom 2 (property transitivity) of which 8 are nonredundant.
These are used to select the appropriate theory. For example, question
triplets {1, 3, 6}, {1, 4, 5}, and {3, 2, 4} form three such tests. Further,

TABLE II
ONE HyroTHETICAL CONSUMER'S RESPONSE TO A 3 X 3 DESIGN ATTRIBUTE LEVELS®
Product i (x;) Product j (x;) CSPC
Question

X1 X2 X3 X1 X2 X3 Qi Q;i

1 H H L H L H 43 57
2 M M M L H H 27 73
3 H L H L H H 25 75
4 M M M H L H 53 47
5 H H L M M M 40 60
[ L H H H H L 80 20
7 L H L L L H 43 57
8 H L L L H L 25 75
9 L L H H L L 80 20
10 M M L L H L 47 53
11 L L H M M L 60 40
12 L M M M M L 71 29
13 H L L L M M 13 87
14 M M L H L L 73 27
15 L L H M L M 45 55
16 L H L M L M 47 53

“H, M, L = high, medium, and low levels of each attribute.

question pairs {1, 7}, {3, 8}, and {6, 9} each test evaluative independence
for one attribute.

This design, one of many, is chosen to illustrate how to test theories
and properties. Products (combinations of attribute levels) are order-
balanced to minimize order-bias effects in measurement and approxi-
mately balanced across questions. That is, subject to tradeoffs in achiev-
ing theory tests, each product appears approximately equally often as x;
and x; and equally often throughout the measurement. (Order balance is
not exact because some products appear an odd number of times.) For a
discussion of balance, see Huber and Sheluga [21]; for a discussion of
experimental designs, see Cochran and Cox [6].

We have chosen S = 100 chips because empirically the round-off error
inherent in a 10-chip allocation makes it difficult to discriminate between
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interval and ratio theories. Furthermore, the normal or lognormal distri-
butions are more reasonable if S is large. However, an optimal value for
S could be determined for any particular theory by relating S to the
confidence level of the test. Consumer reaction to date has been favorable
for an allocation of 100 chips.

Transitivity Tests

Table II was generated based on a ratio-scaled preference function
with a random error of 6 = 1 and p = 0 (which is equivalent to ox = 0.02
for E[af] = 50). The statistical tests should uncover this fact. First, £°
= (0.0 is significant at the 0.005 level. Thus, the data are at least ordinal.
The transitivity experimental design is not orthogonal (MM’ 3 I), thus
we compute the adjusted mean square error which gives §” = 33.5. This
value is above the 0.05 level cutoff at 15.5, thus rejecting the interval
theory. The equivalent statistic, &%, equals 0.45 for the ratio theory. This
is well below the 0.05 cutoff. Together, the test statistics give evidence in
favor of the ratio theory.

Had we not known o and p, we could have used the F-statistic with
Ko05(0) = 4.1. For Table II, @® = 217.8 and @’ = 117.1, indicating that
both ratio and interval theories are better explanations of the data than
the alternative hypothesis. (Note that ratio theory has a larger statistic.)
We compare these statistics to @” = 1.0 and @' = 1.4 which were obtained
from random data. Thus, we see that the x° tests are more stringent and
should be used if ¢ and p are known, but even if they are unknown, the
F-tests provide good discrimination between intensity theories and ran-
dom data.

The reader may select ¢ by comparing the CSPC process to a process
where the chip allocations are generated from S independent Bernoulli
trials. In that case, the error variance is Sa; (1 — a;). For example, with
S = 100, then a; = 50 corresponds to o = 5, a; = 10 or 90 corresponds to
o =3, and a; = 1 or 99 corresponds to ¢ = 1. If the true a,’s are uniformly
distributed, then the expected error variance corresponds to ¢ = 4.08.
Interestingly, o/or is approximately 50 for 0 = 1, 2, 3, 4, or 5. Alternatively,
we can use external estimates of 6 measured through repetition of the
consumer task or we can use post hoc estimates obtained from the error
variance in the regressions (7) and (14) used to estimate c(x;). Future
empirical research may use these techniques to establish guidelines for
o®. The error correlation, p, is related to the assumptions about how
consumers allocate chips. Thus, qualitative discussions with consumers
can give guidance to select p.

Estimation

After the transitivity tests, a ratio theory preference function was
estimated with a linear program minimizing the absolute error in (14).
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The utility values, Ax’s, were constrained to be monotonically increasing
in /. The estimated parameters, shown in Table IIla, compare well to the
“actual” parameters which produced the data, shown in Table IIIb.

3. EMPIRICAL EXAMPLE: TELECOMMUNICATIONS

The previous sections have developed procedures for the identification
and estimation of preference functions to measure intensity of preference.
This section illustrates these procedures with an empirical example. The
results show that at the 0.05 level, 61% of the tested consumers react to
the CSPC measure via a ratio or an interval theory and 83% are at least
ordinal. Furthermore, preference models based on these theories improve

TABLE III
PREFERENCE PARAMETERS FOR THE HYPOTHETICAL CONSUMER RESPONSES IN
TaBLE 11
X1 X2 X3

H 29 8.7 116
M 2.0 3.9 4.9
L 1.0 1.0 1.0
a) Estimated preference parameters (X;’s)

X1 X2 X3

H 3.0 9.0 12.0
M 2.0 40 5.0
L 1.0 1.0 1.0
b) “Actual” preference parameters (Ay’s)

ex) = [LIIAW

predictive capability relative to the ordinal theory normally used in
conjoint analysis.

The empirical problem is to design a mix of telecommunications
technology for use in a small research community. Scientific research
requires close effective communication among scientists, but in many
government laboratories cooperating scientists and managers find them-
selves in buildings two to three miles apart. Furthermore, laboratories,
such as Los Alamos Scientific Laboratory (LASL) in New Mexico, do
much of their work for federal agencies, and there is a strong need for
effective communication with managers and policy makers in Washing-
ton, D.C. Currently, the most common means of communication at LASL
is telephone (39% in LASL) and personal visit (58% in LASL), with only
a small percentage (3% in LASL) of the interactions using other means.
The National Science Foundation would like to enhance communication
among the scientists, managers, and policy makers with an improved
system which is more effective than telephone for technical communi-
cation, yet more efficient than personal visits in terms of cost, time, and
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energy. Among the options being considered are closed-circuit television,
telecopiers (facsimile transfer devices or teletypewriters), and narrow-
band televideo systems (an attachment to the telephone which transmits
still pictures over voice-grade telephone lines). Since the laboratories
have limited budgets, each laboratory would like to implement the
communications system that would be most cost-effective. To do this the
laboratories need to know how scientists and managers would react to
the various systems.

Study Design

To address this problem, we used the normative methodology described
in Hauser and Urban [17] to identify the relevant dimensions that
describe communications options and to identify the relative importances
of these dimensions. These dimensions form the basis for the CSPC
questions used in the estimation of preference functions.

First, consumer focus groups were run and analyzed to produce an
indication of the choice process, consumer semantics, and a set of 25
attribute scales to characterize consumer reactions to communication
technology. Based on the focus groups and on previous research in the
area of communications, a mail-back questionnaire was designed and
implemented in which consumers rated telephone, personal visit, and the
three new communications options (one-page concept statements) on the
25 attribute scales. Factor analysis of the response revealed two percep-
tual dimensions labeled “ease of use” and “effectiveness.” Ease of use
correlates with the ability to find the right person, save time, eliminate
paperwork, and get a quick response as well as saving hassle, planning,
time, and cost; effectiveness correlates with the ability to exchange
scientific and technical information, persuade people, convey all forms of
information, control the impression you want to make, monitor people,
operations, and equipment, yield a high level of human interaction, solve
problems, express feelings, and enhance idea development.

Scientific and managerial commmunication is complex, and it is probable
that the communications needs would vary by individual depending upon
his or her requirements. Thus, to accurately analyze preferences for
communications options, we need to stratify by use scenario (purpose,
distance between communicators, relation of communicators, etc.) and
estimate preference functions within each category. CSPC questions were
used to measure these preference functions.

Consumer Measurement

Based on the results of the mail questionnaire, a preference assessment
questionnaire was designed to measure the CSPC data needed for the
preference functions. This questionnaire was then implemented via an
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interactive computer interviewing system (Shugan and Hauser [47]) to
scientists and managers at LASL and practicing managers enrolled in
Northwestern University’s Manager’s Program (evening work toward a
master’s in management). The questionnaire contained six sections: (1)
warm-up questions; (2) questions to establish a scenario for usage; (3)
consumer rating of effectiveness and ease of use for telephone, personal
visit, and for the concept statements; (4) the CSPC questions; (5) pref-
erence ranking and usage intent for the existing products and the con-
cepts; and (6) various personal and demographic questions and comments.

Section 3 of the questionnaire was included to acquaint consumers
with the measurement scales for effectiveness and ease of use and to
provide us with their perceptions of each product or concept. Section 5

Ease of use Ease of use
I 3 Y
Tele.| 10 T f
. & {10
PV PV
s ® eEffect “10 s Effecti
-+ + -+ E ffectiveness $ ————p Effectiveness
NBvTe KW NBVTH
+
oFAX T
e CCTV -104 eCCTV
-1.0+
o) Direct Measures {Standardized) b) Factor Scores {Standardized)
Tele. Telephone NBVT Norrow Band Video Telephone
PV Personal Visit CCTV Closed Circuit Television
TTY Teletype FAX Facsimile Tronsfer

Figure 2. Perceptual maps of communications options.

provided preference measures for the actual products and concepts.
These measures were used to validate predictions made by each theory
based on CSPC questions.

The complete questionnaire contained 96 questions, including 16 CSPC
questions, and took about 15-30 minutes to complete. The administration
cost, including on-line hookup, was about $1.00 per respondent on a CDC-
6400 ($510 per cpu hour). The comparative results reported below are
based on the exploratory phase of the study where the directions of the
CSPC question were left ambiguous. The sample was 41 practicing
managers.

Resuits

Figure 2 gives the perceptual maps positioning of the five stimuli based
on factor scores (mail survey) and the direct measures (preference sur-
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vey). The close agreement of the relative stimuli position in the two maps
supports the direct measures of effectiveness and ease of use as sufficient
for the preference analysis. (Note the stimuli “teletype terminals,” used
in the mail questionnaire, was revised to “facsimile transfer devices” in
the preference questionnaire.)

Since we did not know either o or p, we need the F-tests in the
exploratory analyses with the 0.05-level cutoff of Koos(0) = 4.1 (the @'
and @QF statistics each have three and eight degrees of freedom). When
neither ratio or interval theories were rejected, consumers were assigned
to the theory with the largest @.

The ordinal test identified 83% of the consumers as using at least
ordinal theory at the 0.05 level (one of fewer transitivity violations) and
98% at the 0.15 level (two or fewer transitivity violations). The F-tests
identified 44% of the consumers as using interval theory and 17% as using

TABLE 1V
PERCENT OF FIRST PREFERENCES CORRECTLY PREDICTED

Estimation Procedure

Indicated

Theory Ordinal Interval Ratio
Stochastic (7) 0.6 0.7 0.7
Ordinal (9) 0.6 0.7 08
Interval (18) 0.5 0.7 0.7
Ration (7) 0.7 0.8 0.9

Total (41) 0.57 0.72 0.74

¢ Numbers in parentheses are sample sizes.

ratio theory at the 0.05 level (61% of the consumers satisfied at least one
intensity theory). No one was interval who was not at least ordinal.

To provide an alternative test for these identifications, we used each of
the estimation procedures on each consumer and used the results to
predict preference for the actual products (telephone, personal visit,
NBVT, CCTV, and FAX). This test is a predictive test because the
models are estimated on CSPC questions relative to product attributes
but used to predict preference for products not involved in the estimation.
Based on the preceding results, we would (1) expect intensity theories to
predict best overall, (2) expect the intensity theories to predict better on
consumers identified as using an intensity theory, and (3) we would
expect the ratio (interval) estimations to predict best for consumers
identified as ratio (interval). Table IV reports the results of these tests.
We have rounded to one decimal except for totals because of the ex-
tremely small sample sizes.

In general, Table IV supports these hypotheses. Intensity-based esti-
mations were found superior to ordinal-based estimations. The estima-
tions predict best for consumers identified as following ratio theory. Some
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anomalies do appear with interval theory, but one must be cautious when
examining specific small sample entries which are not statistically differ-
ent. It is interesting to note that the percentage of correct predictions for
interval theory improve when we relax the confidence level on the F-test.

Table IV also suggests a potential robustness of intensity measures.
Interval and ratio estimations exhibit similar overall predictive ability,
and both intensity estimations outperform ordinal estimations, even if
the intensity theories are rejected. There are small sample hypotheses
which should be subjected to further testing.

To better understand Table IV, we analyzed individual predictions.
Detailed analysis uncovered a fascinating finding. The improved predic-
tion came from the intensity theories’ ability to discriminate preferences
between products which ordinal theory predicted as being equal in
preferences. (E.g., the ratio theory might predict telephone as first

TABLE V
COMPARISON OF PREDICTED MARKET SHARES OF PREFERENCE"
Predicted Market Share (%)

Estimation atl:/slgla;te
Procedure  ejophone  FerSonal  NByT  CCTV  PAX error
Ordinal 28.0 38.2 13.8 130 8.1 6.90
Interval 325 39.0 13.0 10.5 49 454
Ratio 325 39.0 14.2 9.3 49 454
(Actual) (36.6) (46.3) 9.8) (4.9) 2.4)

¢ NBVT, narrow-band video telephone; CCTV, closed circuit television; FAX, facsimile
transfer device.

preference, while ordinal theory would predict that telephone is tied with
NBVT for first preference.) We have found by discussion with other
researchers that others have also observed this limitation when estimat-
ing ordinal preference functions. Thus ordinal analysis is a “correct”
representation of consumer preference, but the intensity theories produce
preference functions which allow discrimination among products at the
individual level by extracting additional information from individual
responses.

Table V compares the techniques on their ability to correctly predict
market preference shares. Again the intensity estimations provide im-
proved predictions over the ordinal estimations. The overprediction of
preference for the concepts over actual products results from consumers
tending to favor an existing alternative over a new concept when predicted
preference indicated indifference. Future research will expand the theo-
ties to include this “preference inertia” effect (Neslin {39]). Empirically,
when the models are applied to existing alternatives only, the mean
absolute error is reduced to 1.4% for both intensity theories. Furthermore,
the relative comparisons remain the same.
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Predictive accuracy is important for the evaluation of alternative
products; but to improve the design of new products, managers need
diagnostic information to help them understand consumer preferences
and thus design improved products (Little {31], Hauser and Urban [17]).
Although preference functions are estimated at the individual level, it is
useful to present summary statistics (mean, variance, median, interquar-
tile range) to represent the target population. Figure 3 is a graph of the
average preference functions. (The “utility” of effectiveness is scaled 0 to
1 for consistent comparison.) Note that although the average individual
functions (ratio, interval, ordinal) are relatively close, the ordinal theory
overestimates the importance of ease of use relative to intensity theories.
The interpretations are quite intuitive with decreasing returns on effec-
tiveness and a slight threshold on ease of use. These results are consistent

4 u(effectiveness) } u{ease of use)
1.0 L— 1.0
S 5
. | ! .
not moderately effective very very difficult eosy very
effective effective effective difficult easy
4~ -4 Interval [ S - Ordinal (Conjoint
o——a Rgtio Anolysis)

Figure 3. Comparison of preference functions.

with two preceding conclusions. First, as expected, ordinal theory pro-
vides “correct” representations of consumer preference and, second, the
improvements achieved by intensity of preference theories result from
improved discrimination among individual preference functions.

Thus the empirical evidence supports the theoretical development.
Furthermore, this case illustrates how the theories can be used in an
actual marketing research environment to provide managerially useful
diagnostics and predictive capabilities. Even with the CSPC question left
unspecified, predictions and diagnostics improved over the ordinal theory
and estimation used in standard conjoint analysis or utility theory. We
expect stronger evidence with more directed questions.

4. SUMMARY AND FUTURE DIRECTIONS

Consumer preference functions are important for many marketing
research applications. The use of intensity measures such as CSPC or
GPC has the potential to improve the accuracy and/or decrease the
measurement burden of preference measurement. This paper provided a
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general structure, identification tests, and estimation procedures for
preference functions based on intensity measures. Furthermore, the em-
pirical implementation demonstrates how the theoretical development
translates into a practical technique with potentially many managerial
~ advantages.

This paper addresses many issues of intensity measurement, but many
issues remain. Within the structure, further theoretical and practical
development is necessary for the hybrid model and stochastic Theory L.
The statistical models should be further investigated (e.g. does Theorem
2 ever support interval theory if the data is merely ordinal). Empirical
work is needed to provide further guidelines for the magnitude of the
error variance. Methods for estimating more complex utility functions

TABLE Al-I

CUMULATIVE PROBABILITIES FOR INDEPENDENT AND INTERDEPENDENT
OrDINAL TEST

E p = (%) P = (%)

° Theorem7  Simulation  Theorem?7  Simulation
0 0.003 0.005 0.100 0.101
1 0.028 0.040 0.363 0.348
2 0.122 0.141 0.678 0.653
3 0.324 0.336 0.886 0.874
4 0.595 0.595 0.973 0.971
5 0.829 0.825 0.996 0.997
6 0.955 0.953 1.000 1.000
7 0.994 0.994 1.000 1.000
8 1.000 1.000 1.000 1.000

must be found. The robustness hypothesis requires empirical testing and
perhaps a theoretical explanation. The robustness of the tests to the
normality assumption should be shown. Preference inertia can be added
to the theories and models. In conclusion, intensity measurement was
motivated by our expectation that intensity questions give more infor-
mation per question. This hypothesis was supported. But intensity ques-
tions may be more difficult for the consumer to answer than ordinal
questions. It remains an empirical question whether, in a given time
period, more information can be gathered with intensity or with ordinal
questions.

APPENDIX 1: SIMULATIONS FOR ORDINAL THEORY TEST

In Theorem 7 we derived a Bernoulli test for independent ordinal
transitivity tests and conjectured that it was a good approximation for
interdependent tests (Table A1-I). To support this conjecture, we ran-
domly generated data for the experimental design in Table II and com-
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pared the observed violations to those predicted by Theorem 7. The
simulation sample size was 70,000 consumers for each comparison gen-
erated by an HP3000 random number generator.

APPENDIX 2: TEST FOR STOCHASTIC THEORY |

The assumptions for stochastic theory implies if p = a;;/S where a;; +
a;; = S then p, = p,+ for all positive integers .

This implication indicates a;;, a; and a; are distributed binomially,
ie.

S

i)

B(ay; 6) = ( )o“vu — )

where 0 < 6 < 1. Let p, ¢, and r be the probabilities that generated a;;,
ajr, and a;, then Axiom 3, (p/(1 — p))(g/(1 — @))(r/(1 — r}) = 1, hence,

r=[pq/(1-p—q+2pgl (A.1)
The likelihood ratio A is given by

_ P ~ pYug®i(l — g)%rer(l — r)™ _ [r(l _ R)]a"( 1 - r>s
pU(1 — p)¥q™(1 — @)VR**1 — R)*™* R(1 ~7r) 1-R

where R is independent of p and ¢, r is given by (A.1), hence, ai is our
test statistic.

Then, for any given R, the Neyman-Pearson lemma (Wilks [56]) states
the most powerful test of size « would be to reject stochastic theory if

and only if A < k, where a« = Y1 i (1 —r)%. However, to use

Axiom 3, it is necessary to estimate p and q. The maximum likelihood
estimators for p and ¢ are found by interatively solving {perhaps by a
Fibonacci search [35]), the following single parameter equation:

(e — Q" + (¢" — awp + ayg(l — q) =0

where g=(-A+ p\/E)/C
A= 1+ 2a)p* — Bay — Saxp + 2a; + 2ai)
B =[(1+ 2au)p + (a; — an)]’ — Ha; + ai)
C = (—4 — 8aw)p® + (4a; + 8aw)p + (—2a;, — Zaw).

When employing this method of estimation, our experience has identified
problems involving global optimality and boundary solutions. One must
ensure against convergence to local optimal and infeasible values for
plp>1lorp<0).

APPENDIX 3: ILLUSTRATIVE EXAMPLE

This example illustrates how the statistical tests and estimations de-
veloped in the paper are applied in practice. We also illustrate how the
Hauser-Urban [17] methodology was employed.
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We arbitrarily (randomly) select the very first respondent in our sample
and demonstrate, in detail, the calculations for this respondent.

As noted earlier, focus groups identified different product attributes as
important in decision-making. Table A3-1 illustrates how these attributes
were cataloged and typical focus group quotes referring to these attri-
butes.

The results of the perceptual questioning were factor analyzed. As we
can see from the factor loadings in Table A3-III, there are two perceptual
dimensions, “efficacy” and “ease-of-use.” We, therefore, ask respondents
to allocate 100 chips between hypothetical products specified by these
two dimensions. We used an interactive query system [47] for this
purpose. Chips allocations for the first respondent for the 16 CSPC
questions were:

(60, 40), (10, 90), (60, 40), (10, 90), (90, 10), (40, 60),
(20, 80), (1, 99), (70, 10), (10, 90), (99, 1), (70, 30),
(70, 30), (80, 20), (40, 60), (30, 70).

For example, in the first question the respondent allocated 60 chips to
the first product and 40 chips to the second product (see Table A3-1V).
Although Respondent 1 tended to round off the chip allocations, this did
not happen for all respondents.

Our experimental design matrix identifying transitivity tests for these
16 paired comparison questions had 8 embeded transitivity tests. That
matrix follows:

[10 1 0 01000 0000 00 O]
10 0-1-10000 0000 00 0
01-1-1 00000 0000 00 0
- |00 0 0 00111 0000 00 0
00 0 0 00000 0011-10 0
00 0 0 00100 1100 00 0
00 0 0 00100 0000 011
[00 0 0 00010-1000-10 0

We now generate a matrix Wsuch that (1) MW’ = 0, (2) W has exactly
3 nonzero elements per row each being +1 and (3) W is of maximum
rank. The W matrix was found by exhaustive enumeration. W was unique
and is given as follows:

0-1 0-11 00000000000
W=(1 0 0 01-10000000000
1 0-1 10 00000000000

We did not know the measurement error variance and therefore em-
ployed the F-tests. For interval theory, the data vector of differences, d’



TABLE A3-1

FUNDAMENTAL ATTRIBUTES®

Generic L Engineerin; Marketin, Agree-
Name Description Vg;riable ¢ Conceptg Quote S?;iggggt
Group Teamwork, several Symbiotic Teamwork, synergic “Group work,” “team CCTYV would be good
interaction speakers, effort,” “teamwork” for group discusson
multiperson
interaction,
collaboration
Speed Expedient, quick, Real time, frame Time spent, takes “Crisis calls,” “frame CCTV would save me
information per rate, delay forever rate” time
minute, rapid time
transmission, waiting
time, prompt
Security Confidentiality, Security level “Need approval,” Security would be no
classified “security clearance” problem with CCTV
Preparation Ready, groundwork, Setup cost Preparation, “Preparation 1 would need to plan
time convenient to use, preliminaries involved,” “easy to far in advance to use

commitment,
foundation, planning

i

use

CCTV

@ Consumer perceptions on these attributes were now measured with 25 agree-disagree statements. Three such statements are illustrated in
Table A3-II. CCTYV, closed circuit television.

uebnys pue 19sneH
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TABLE A3-II

SAMPLE AGREE-DISAGREE QUESTIONS

311

My Rating of Narrow-band Video Telephone (NBVT)
(for the Interaction I Described Earlier)

S . Neither

trongly 1y: agree Strongly

disagree Disagree nor Agree agree

disagree

1. By NBVT 1 could not effec- [ 1 [ I 1 I 1]
tively exchange scientific and
technical information.

2. I could always find and reach 1 [ 1] [ ] {1 [ 1]
the person I want by NBVT.

3. NBVT would save me time. [ [ 1] [ 1 [ 1 [ 1]

was computed from the preceding chip allocations. That vector follows:

d]

=[20 —80 20 —80 80 —20 —60 —98 40 —80 98 40 40 60 —20 —407.

We compute the vectors » and n. The vector » represents the vector of
transitivity tests as determined by the experimental design. The vector

TABLE A3-TII

FACTOR L0OADINGS ON FUNDAMENTAL ATTRIBUTES

Efficacy Ease of Use
1. Effective information exchange 0.77 0.17
2. Find right person 0.25 043
3. Save time 0.17 0.48
4. Not need visual 0.39 0.16
5. Get trapped 0.33 0.21
6. Eliminate paperwork 0.31 043
7. Persuade 0.69 0.20
8. Focus on issues 0.04 0.08
9. All forms information 0.65 0.18
10. Real hassle 0.11 0.83
11. Control impression 0.56 0.07
12. Security 0.18 ¢.11
13. Plan in advance 0.23 0.44
14. Eliminate red tape 0.00 0.21
15. Monitor people, operations, experiments 0.65 0.15
16. Interaction 0.78 0.05
17. Solve problems 0.55 0.27
18. Express feelings 0.66 0.17
19. Misinterpret 049 0.00
20. Group discussion 0.75 0.05
21. Inexpensive 0.27 0.52
22. Quick response 0.07 0.71
23. Enhance idea development 0.77 0.09
24. Commitment 0.44 0.32
25. Maintain contact 0.50 0.52
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TABLE A3-1V
FirsT CONSTANT SuM PAIRED ComPARISONS (CSPC) QUESTION
Product A Product B
Effective Moderately effective
Difficult to use Easy to use

7 60, 40

7 represents independent triplets or randomly selected transitivity tests.
These vectors follow:

v=Md =[20 20 —-20 -118 20 —42 —40 -78)
n=Wd'=[240 120 -80}

For interval theory the adjusted sum of squared error, &7, is given as
follows:

éal
= ' (MM’) 'v/s?

’

(207 [ 50 -25 25 00 00 00 .00 00[ 207
20 {{-25 50 —25 00 00 00 .00 .00f| 20
-20 || 25 -25 50 00 00 .00 .00 .00ff-20
00 .55 .10 —.25 —.10 —.30 | {-118

1) |-118{] .00 .00
- (?) 20 |] 00 00 00 .10 .40 -10 .00 —20| 20
—42 || 00 00 00 -25-10 .55 -10 .30)[-42
—40 || 00 .00 .00 -10 .00 —-.10 .40 —.00{[—40
78 || 00 00 00-30-20 30 -00 60]|-78
= 6484/5”.

If we knew the measurement variance, s%, we could test to see if 6484/s>
was significant. However, we do not. Therefore, we compute the non-
central x? variate o' (WW’)"'y/s>.

We find,

24017 5 -2 .25 240
(1/s® ) (WW")'p=| 120]|-25 5 —.25 120 s?
—80 25 —25 5 |L—80

= 20,000/s2.
We now employ Theorem 2 and find
Q1 = (s (WW")"'n/3)/ (s> (MM’)"'v/8) = (8/3)(20000/6484) = 8.22.

Using Theorem 2’, we employ a central F-test. The cutoff values for the
F-distribution are 2.92 for « = 0.1 and 4.07 for « = 0.05. Hence, @’ is
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significant for both « = 0.1 and « = 0.05. Interval theory is therefore
supported.

For ratio theory, d” represents the vector of log-ratios and is given as
follows (values are rounded to nearest integer for display purposes):

d¥=[0-20-22-0-1-51-25111-0-17.
We continue by computing the value of @* as expressed by Theorem 5.
y = (405 405 —405 —5.134 .308 1.012 —.944 —3.784]
Y (MM') 'y
[ 405 50 -25 25 00 .00 .00 .00 .00} .405]
A405)|-25 50 —-25 00 .00 .00 .00 .00}| .405
-405|] 25 —25 50 .00 .00 .00 .00 .00]|]-.405
-5.13|] 00 .00 00 55 .10 —.25 —10 —.30 |[-5.13
3081 00 00 .00 .10 .40 —10 .00 —20}| .308
1.01{] .00 .00 .00 -25 —10 .55 —10 .30]|| 101

—.944 00 .00 00 —-10 .00 ~10 .40 —.00}]—.944
——3.78J .00 .00 .00 —30 —.20 .30 —.00 .60J —3.78J

’,

i
=12.16

65911 5 —-25 25| 6591
MMy =] 3008||-25 5 -—25|| 3008
—2197] 25 -25 5 J[-2197

= 14.81

QF = (8/3)(14.81/12.16)
= 3.25.

Noting the same cutoff values of 2.92 and 4.07, we see Q" is significant at
the 0.1 level but not the 0.05 level. Therefore, ratio theory is only
supported at the 0.1 level.

Finally, for ordinal theory we find E° = 0. Hence, ordinal theory is
supported at any « level. If, however, E° was greater than 0, then
Appendix 1 would provide cutoff values for judging significance. The
results for this respondent (Table A3-V) can be compared to the results

TABLE A3-V
FirsT PERsoN ExaMPLE REsuULTS
Confidencelevel ... .. .. ... ... . ... ... . .. .. 0.10 0.05
F-Cutoff . ... ... .. . . . ... 2.92 4.07
Interval theory ... ... ... ... ... .. .. .. ... Supported Supported
Ratio theory ... ... ... .. ... ... ... ... Supported Rejected

Ordinal theory . ....... ... ... . ... . ... .. ... Supported Supported
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TABLE A3-V1
ToTAL SAMPLE

Confidence level ... ... ... . ... ... ... ..., 0.10 0.05
Interval supported ... ...... ... ... ... ... . ............ 63.4% 58.5
Ratio supported .. .. ....... ... ... .. ... .. ... e 53.7% 48.8
Intervalorratio ... .. ... ... ... ... ... ... ... .. ....... 63.4% 61.0
Ordinal supported .. ... ... ... ... ... .................. 98.0%" 83.0

® Due to integer requirements the ordinal theory corresponds to the 0.15 level.

in Table A3-VI which represent total sample statistics. Note that the
ratio test was able to reject ratio theory at the 0.05 level even though the
respondent had no ordinal transitivity violations.

We now proceed to estimate this respondent’s preference functions.
For interval theory, we employ Equations 6 and 7. Using Theorem 3, we
solve the following linear program.

minimize Y%, e;
subjecttoe, = - E; for ¢t=1,..--,16
e.=E, for t=1,...,16
AM=Aa=An<AgandAp s A=A <Ap
where for example,
E; = (60 — 40) — [(As1 + Az2) — (Aa1 + As2)]
E;= (10 - 90) — [(Ann + As2) — (Asg + A19)], ete.

and, A;; = the utility of the /th level of effectiveness (1 = not effective, 2
= moderately effective, 3 = effective, 4 = very effective) and A;; = the
utility of the [th level of ease-of-use (1 = very difficult, 2 = difficult, 3 =
easy, 4 = very easy).

The results of this linear program for the first respondent for ordinal,
interval, and ratio theories are given in Table A3-VII.

TABLE A3-VII
REsPoNDENT UTILITIES

Effectiveness Ease-of-Use
Level
Ordinal  Interval Ratio® Ordinal  Interval Ratio®
1 0.0 0 0.00 0.0 0 0.00
2 1.5 90 2.63 1.0 30 1.24
3 3.0 140 4.31 2.0 80 2.92
4 3.0 150 5.14 2.5 90 3.35

“ Ratio utilities are expressed as logarithms,
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TABLE A3-VIII
RESPONDENT RATINGS

Product® Effectiveness Ease-of-Use
TEL Moderate (2)° Easy (3)

PV Effective (3) Difficult (2)
NBVT Effective (3) Easy (3)

CCTV Not very (1) Very difficult (1)
FAX Moderate (2) Easy (3)

“TEL, telephone; PV, personal visit; NBVT, narrow-band video telephone;
CCTYV, closed circuit television; FAX facsimile transfer device.
® Numbers denote the attribute level.

TABLE A3-IX
RESPONDENT UTILITIES®
Theory TEL PV NBVT CCTV FAX
Ordinal 35 40 5.0 0 3.5
Interval 170.0 170.0 220.0 0 170.0
Ratio 5.55 5.55 7.23 0 5.5

* Abbreviations as in Table A3-VIIL

We next asked the respondent to rate telephone (TEL), personal visit
(PV), narrow-band video telephone (NBVT), closed circuit television
(CCTV), and facsimile transfer devices (FAX). Summary descriptions of
the product concepts are given in Table A3-XI1. The respondents were
given one page verbal descriptions of these concepts. For example Table
A3-XII gives the NBVT concept. The first respondent’s ratings are given
in Table A3-VIIL

We can now combine the ratings in Table A3-VIII with the utility
values in Table A3-VII to derive composite consumer utility values for
each product. The product utilities for the first respondent are shown in
Table A3-IX.

The respondent was asked to rank the products in order of preference.
These rankings are given in Table A3-X along with the rankings implied
by Table A3-IX.

TABLE A3-X
RESPONDENT'S PREFERENCE RANKING®
Predicted
Actual

Ordinal Interval Ratio
1. NBVT NBVT NBVT NBVT
2. TEL PV TEL-PV-FAX TEL-PV-FAX
3. PV FAX-TEL CCTV CCTV
4. FAX CCTV
5. CCTV

“ Abbreviations as in Table A3-VIIL.



Feature

Video
Audio
Availability

Equipment for:
Transmission

Reception
Transmission medium

Picture resolution
Transmission time
Memory
Security—crypto
Conference features
Higher resolution
Color

Transmission cost
Reservation

Usage limitation

TABLE A3-XI
FEATURES oF DIFFERENT PRODUCT CONCEPTS
Narrow-band Closed Facsimile
Video Circuit Transfer
Telephone Television Device
(NBVT) (CCTV) (FAX)
Still pictures Motion pictures Hard copy
Yes Yes No
Your office Common area in Your office
building
TV camera TV camera Mechanical
cylinder
TV set TV set Xerox-type
machine

1 or 2 telephone
lines

Good

30 sec

Yes

Optional
Optional
Optional
Optional

Telephone charge

None
None

Coaxial cable

Fair to good
Immediate
Optional
No

No

No

Yes
$14/min

4 days

1 hour

Telephone line

Excellent.

5 min

Not needed
Optional
Optional
Optional
No

Telephone charge

None
None

Teletype
Terminal
(TTY)

Typed page
No
Your office

Typewriter
Typewriter
Telephone line

Perfect

60 characters/min
Not needed
Optional

No

No

Telephone charge
None

None

100

9L€

uebnys pue iasneH
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TABLE A3-XII
ExXAMPLE CONCEPT STATEMENT

NARROW-BAND VIDEO TELEPHONE (NBVT)

The narrow-band video telephone (NBVT) allows the user to transmit still pictures of
himself, diagrams, drawings, written material, or equipment over ordinary telephone grade
lines. Input is via a TV camera and display is on a standard TV set. The ability of NBVT
to reproduce detail and shades of gray is similar to that of ordinary TV. In essence, NBVT
is like transmitting viewgraphs, such as one might use with an overhead projector, over
telephone lines. However, with NBVT the user can make pictures on the spot and edit
these pictures before transmitting them.

No modification of the telephone is required. Units may be placed at any telephone
location using either an acoustic coupler or a permanent jack. This makes NBVT portable,
readily available, and allows individuals to use it in their own offices. Furthermore, because
NBVT transmits over ordinary telephone lines there are no additional costs associated with
its use once the basic equipment has been purchased.

While NBVT can be used with only one telephone line, ordinarily an additional line is
dedicated to voice transmission. Anything which can be viewed by a TV camera may be
sent, but it takes 30 seconds to transfer a completely new picture. Once a picture is received,
it is stored in memory and can be displayed indefinitely on a TV monitor. In addition,
because the system is narrow-band, both audio and video transmission can be recorded on
the stereo tracks of an ordinary audio cassette. With the cassette system it is possible to
call and receive calls from an unattended terminal.

A variety of additional features are possible with NBVT. These are summarized below.

» Voice-grade crypto units can provide secure transmission when required

» Conferencing features of the audio telephone network

» Higher resolution and color

« Units are available which can display more than one stored picture simultaneously (on

two monitors) or switch from one stored picture to another instantaneously.

You should assume that there is an NBVT unit in your office or laboratory and another
NBVT unit in the office of the person you wish to interact with. Assume that special units
with the additional features listed above will be available on a reservation basis.

As we can see from Table A3-X, the intensity theories do slightly better
than ordinal theory. Here they predict TEL, PV and FAX as equally
preferred while ordinal theory incorrectly resolves the tie. By examining
the results for other respondents, we find this case is not quite typical.
Intensity theories do best. However, ordinal theory often predicts nu-
merous ties while the intensity theories correctly resolve those ties. All
three theories seem to have good predictive ability.

ACKNOWLEDGMENTS

Parts of the empirical study in Section 3 were funded by a grant from
the National Science Foundation, DS176-09479, Stuart Meyer, principal
investigator. We wish also to thank R. J. Taschek and T. Norris at Los
Alamos Scientific Laboratory for their valuable assistance in the study.
Paul Green, Dan Horsky, Subrata Sen, Al Silk, V. Srinivasan and Glen
Urban provided important comments on earlier versions of this paper.



318 Hauser and Shugan

We would also like to thank the referees who provided insightful
guidance and provocative questions which led to major improvements in
the theories, their use, and exposition.

REFERENCES

1. H. ABELMAN, “OPTISEP—A Package of Subroutines for Non-Linear Opti-
mization,” Vogel Computing Center, Northwestern University, Evanston,
1., Document No. 322, July 1976.

2. J. AITCHISON AND J. A. C. BROWN, The Lognormal Distribution with Special
Reference to Its Uses in Economics, Cambridge University Press, England,
1969.

3. F. Bass, “The Theory of Stochastic Preference and Brand Switching,” /.
Marketing Res. 11, 1-20 (1974).

4. J. BERKMAN, D. BROWNSTONE, G. M. DuncaN AND D. McFADDEN, “Quail
User’s Manual,” Urban Travel Demand Forecasting Project, University of
California, Berkeley, Calif.; prepared for the National Science Foundation,
revised January 1976.

5. S. R. Carapus, Operator Theory of the Pseudo-Inverse, Queens University,
Kingston, Ontario, Canada, 1974.

6. W. G. CocHrAN AND G. M. Cox, Experimental Design, John Wiley & Sons,
New York, 1957.

7. C. COHEN, “SUMT Version 4: Sequential Unconstrained Minimization Tech-
niques for Non-Linear Programming,” Vogelback Computing Center,
Northwestern University, Evanston, Ill., Document No. 200 (Rev. A),
February 1975.

8. P. H. FARQUHAR, “A Survey of Multiattribute Utility Theory and Applica-
tions,” Stud. Mgmt. Sci. 6, 59-89 (1977).

9. M. FRIEDMAN AND L. J. SAVAGE, “The Expected-Utility Hypothesis and the
Measurability of Utility,” J. Political Econ. 60, 463-474 (1952).

10. N. C. GIRI, Multivariate Statistical Inference, Academic Press, New York,
1977.

11. P. GREEN AND M. DEvITA, “An Interaction Model of Consumer Utility,” /.
Consumer Res. 2, 146-153 (1975).

12. P. GREEN AND V. Rao, Applied Multidimensional Scaling, Holt, Rinehart,
& Winston, New York, 1972.

13. P. E. GREEN AND V. SrINIVASAN, “Conjoint Analysis in Consumer Behavior:
Status and Outlook,” J. Consumer Res. 5, 103-23 (1978).

14. P. E. GREEN AND Y. WIND, Multiattribute Decisions in Marketing, Dryden
Press, Hinsdale, I11., 1973.

15. J. R. HAUSER, “Testing the Accuracy, Usefulness, and Significance of Prob-
abilistic Choice Models: An Information Theoretic Approach,” Opns. Res.
26, 406-421 (1978).

16. J. R. HAUSER, “Consumer Preference Axioms: Behavioral Postulates for
Describing and Predicting Stochastic Choice,” Mgmt. Sci. 24, 13 (1978).

17. J. R. HAuskER aND G. L. UrBaN, “A Normative Methodology for Modeling
Consumer Response to Innovation,” Opns. Res. 25, 574-619 (1977).

18. J. R. HAUSER aND G. L. URBAN, “Assessment of Attribute Importances and



19.

20.

21.

22.

23.

24.

25.

26.

Measures of Consumer Preference 319

Consumer Utility Functions: von Neumann-Morgenstern Theory Applied
to Consumer Behavior,” J. Consumer Res. 5, 251-262 (1979).

1. N. HERSTEIN AND J. MILNER, “An Axiomatic Approach to Measurable
Utility,” Econometrica 21, 291-297 (1953).

D. HorsKY, S. SEN AND S. SHUGAN, “Choice Models: A Review,” Proceedings
of the 1978 Educators’ Conference, American Marketing Association, Au-
gust 1978.

J. HUBER AND D. SHELUGA, “The Analysis of Graded Paired Comparison in
Marketing Research,” Working Paper, Purdue University, Bloomington,
Ind., May 1977.

N. E. JENSEN, “An Introduction to Bernoullian Utility Theory; 1. Utility
Functions,” Swed. J. Econ. 69, 163-183 (1967).

R. M. JounsoN, Multiple Discriminant Analysis Applications to Marketing
Research, Market Facts, Inc., Chicago, January 1970.

R. M. JounsoN, “Tradeoff Analysis of Consumer Values,” J. Marketing Res.
11, 121-127 (1974).

R. M. JounsoN, “Beyond Conjoint Measurement: A Method of Pairwise
Trade-off Analysis,” Proceedings of the Association of Consumer Re-
search, Cincinnati, Ohio, October 1975,

R. L. KEENEY, “Utility Functions for Multiattributed Consequences,” Mgmt.
Sci. 18, 276-287 (1972).

27. R. L. KEENEY, “A Decision Analysis with Multiple Objectives: The Mexico

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

City Airport,” Bell J. Econ. Mgmt. Sci. 4, 101-117 (1973).

R. L. Keeney, “Multiplicative Utility Functions,” Opns. Res. 22, 22-23
(1974).

R. L. KEENEY AND H. RAIFFA, Decision Analysis with Multiple Conflicting
Objectives, John Wiley & Sons, New York, 1976.

D. H. Krantz, R. D. Lucg, P. SurpEs AND A. TVERSKY, Foundations of
Measurement, Academic Press, New York, 1971.

J.D. C. LITTLE, “Models and Managers: The Concept of a Decision Calculus,”
Mgmt. Sci. 16, 466-485 (1970).

R. D. Luckg, Individual Choice Behavior, John Wiley & Sons, New York,
1959.

R. D. Luck, “The Choice Axiom After Twenty Years,” JJ. Math. Psychol. 15,
213-233 (1977).
R. D. Luce anp J. W. TUKEY, “Simultaneous Conjoint Measurement: A New
Type of Fundamental Measurement,” J. Math. Psychol. 1, 1-27 (1964).
D. C. LUENBERGER, Introduction to Linear and Nonlinear Programming,
Addison-Wesley, Reading, Mass., 1973.

J. MarscHAK, “Rational Behavior, Uncertain Prospects, and Measurable
Utility,” Econometrica 18, 111-141 (1950).

D. McFabpeN, “Conditional Logit Analysis of Qualitative Choice Behavior,”
in Frontiers in Econometrics, P. Zarembka (ed.), Academic Press, New
York, 1970.

38. A. M. Moobp aND F. A. GREYBILL, Introduction to the Theory of Statistics,

39

McGraw-Hill, New York, 1963.

. S. H. NEsLIN, “Analyzing Consumer Response to Health Innovations: The
Concept of Preference Inertia,” Research Paper, Sloan School of Manage-
ment, M.I.T., Cambridge, Mass., May 1976.



320 Hauser and Shugan

40. S. H. NEsLIN, “Linking Product Features to Perceptions: Applications and
Analysis of Graded Paired Comparisons,” Proceedings of 1978 Educators’
Conference, American Marketing Association, August 1978.

41. D. PEKELMAN AND S. SEN, “Measurement and Estimation of Conjoint Utility
Functions,” J. Consumer Res. 5, 263-271 (1979).

42. E. A. PESSEMIER, Product Management: Strategy and Organization, Wiley-
Hamilton, New York, 1977.

43. J. PrEss, Applied Multivariate Analysis, Holt, Rinehart & Winston, New
York, 1971.

44. L. S. SHAPLEY, “Cardinal Utility from Intensity Comparisons,” RAND Report
R-1683-PR, Santa Monica, Calif., July 1975.

45. S. M. SHUGAN, “The Cost of Thinking,” Working Paper No. 7813, Graduate
School of Management, University of Rochester, Rochester, N. Y., July
1978.

46. S. M. SHUGAN AND V. BALACHANDRAN, “A Mathematical Programming
Model for Optimal Product Line Structuring,” Discussion Paper No. 265,
Northwestern University, The Center for Mathematical Studies in Eco-
nomics and Management Science, Evanston, Ill., April 1977.

47. S. M. SHuGAN AND J. R. HAUSER, “Designing and Building a Market
Research Information System,” Working Paper 602-001, Department of
Marketing, Northwestern University, Evanston, 111, revised February 1978.

48. A. SiLK AND G. L. UrBAN, “Pretest Market Evaluation of New Packaged
Goods: A Model and Measurement Methodology,” J. Marketing Res. 15,
171~191 (1978).

49. V. SRINIVASAN AND A. SHOCKER, “Linear Programming Techniques for
Multidimensional Analysis of Preferences,” Psychometrika 38, 337-370
(1973).

50. S. S. STEVENS, “Ratio Scales of Opinion,” in Handbook of Measurement and
Assessment in Behavioral Sciences, D. K. Whitla (ed.), Addison-Wesley,
Reading, Mass., 1968.

51. H. M. TING, “Aggregation of Attributes for Multiattributed Utility Assess-
ment,” Technical Report No. 66, Operations Research Center, M.L.T.,
Cambridge, Mass. August 1971.

52. W. S. ToRGERSON, Theory and Methods of Scaling, John Wiley & Sons, New
York, 1958.

53. A. TVERsSKY, “A General Theory of Polynomial Conjoint Measurement,” /.
Math. Psychol. 4, 1-20, (1967).

54. G. L. UrBaN, “PERCEPTOR: A Model for Product Positicning,” Mgmt. Sci.
8, 858-871 (1975).

55. J. vON NEUMANN AND O. MORGENSTERN, The Theory of Games and Eco-
nomic Behavior, Ed. 2, Princeton University Press, Princeton, N. J., 1947.

56. S. S. WiLKs, Mathematical Statistics, John Wiley & Sons, New York, 1962.

57. Y. WinDp anp L. K. SpiTz, “Analytical Approach to Marketing Decisions in
Health-Care Organizations,” Opns. Res. 24, 973-990 (1976).



