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Summary: Radiation therapy planning is always a tight rope walk be-
tween dangerous insufficient dose in the target volume and life threatening
overdosing of organs at risk. Finding ideal balances between these inher-
ently contradictory goals challenges dosimetrists and physicians in their
daily practice. Todays planning systems are typically based on a single
evaluation function that measures the quality of a radiation treatment plan.
Unfortunately, such a one dimensional approach cannot satisfactorily map
the different backgrounds of physicians and the patient dependent necessi-
ties. So, too often a time consuming iteration process between evaluation of
dose distribution and redefinition of the evaluation function is needed.

In this paper we propose a generic multi-criteria approach based on Pareto’s
solution concept. For each entity of interest - target volume or organ at risk
a structure dependent evaluation function is defined measuring deviations
from ideal doses that are calculated from statistical functions. A reason-
able bunch of clinically meaningful Pareto optimal solutions are stored in a
data base, which can be interactively searched by physicians. The system
guarantees dynamical planning as well as the discussion of tradeoffs between
different entities.

Mathematically, we model the upcoming inverse problem as a multi-criteria



linear programming problem. Because of the large scale nature of the prob-
lem it is not possible to solve the problem in a 3D-setting without adaptive
reduction by appropriate approximation schemes.

Our approach is twofold: First, the discretization of the continuous problem
is based on an adaptive hierarchical clustering process which is used for a
local refinement of constraints during the optimization procedure. Second,
the set of Pareto optimal solutions is approximated by an adaptive grid of
representatives that are found by a hybrid process of calculating extreme
compromises and interpolation methods.

Keywords: multiple criteria optimization, representative systems of Pareto
solutions, adaptive triangulation, clustering and disaggregation techniques,
visualization of Pareto solutions, medical physics, external beam radiother-
apy planning, intensity modulated radiotherapy

1 Introduction

Intensity-modulated radiotherapy (IMRT) has a much greater potential to
shape dose distributions than conventional radiotherapy with uniform beams
[2]. This capability has been used to tailor the dose distribution to the
tumor target volume in conformal radiotherapy. In general IMRT allows
one to achieve a better dose conformation, especially for irregularly shaped
concave target volumes. The improved physical characteristics of IMRT
can lead to improved clinical results, as was suggested in recent clinical
studies. Although IMRT is already in clinical use at several hospitals in
Europe and many in the USA, there is a lot of potential and need for further
improvements.

In most systems IMRT planning is considered as an optimization problem.
The goal is to find the parameters (intensity maps, sometimes also beam
orientations, energy, etc.) that yield the best possible treatment plan under
consideration of various clinical, technical, and physical constraints. A huge
number of current research activities is related to this problem. In this
presentation we will focus on the principal optimization concept.

1.1 Current optimization strategies

IMRT allows for a much greater flexibility in the delivery of spatial radiation
dose distributions. Nevertheless, because of physical limitations, it cannot
deliver the ideal dose distribution, which is 100% in the target volume and
0% everywhere else. While IMRT does allow to achieve a somewhat steeper
dose gradient between normal tissue and the target volume, especially for
irregularly shaped targets, the steepness of the gradients is still physically
limited; the 20% to 80% penumbra is at least about 6 mm wide. As a
consequence of this, if the target is directly abutting to a critical structure,



the minimum target dose equals the maximal dose in the critical structure.
In a more general sense, the goals of delivering a high dose to the target and
a small dose to the critical structures contradict each other.

1. Weight factors

A realistic objective can only be to find a suitable compromise between
target coverage and normal tissue sparing. One way how this is actu-
ally done in current IMRT planning systems is to combine objectives
or costlets for the different critical structures (FR) and the target vol-
ume (FT) using weight factors w (also called penalties or importance
factors). Mathematically, an objective function is defined that is of
the form F' = wrFr + w1 Fgr, + ...+ wgFg, . By using a large

value for wy, more emphasize is put on the target dose, and vice versa.
The problem of this approach is that the weight factors have no clinical
meaning. Suitable weight factors have to be determined by trial and
error, which may be quite time consuming.

2. Constraints
Another approach, which is also used in commercial planning systems,
uses constraints on, say, the maximum dose in the critical structures
or the minimum dose in the target. Here the potential problem is that
there is no reward for reducing the dose in the critical structures below
the tolerance.

A problem with both of the above approaches (weighting and constraining)
is that in general there is no ”sensitivity analysis” done. That means, it is
unclear how dependent the dose in one structure, say the target, is on the
constraints in other structures.

1.2 The new optimization paradigm - a generic multi-criteria
concept

To solve the above-mentioned drawbacks and problems in IMRT planning,
a new optimization concept was developed in collaboration between the
Fraunhofer Institute for Industrial Mathematics (ITWM), Kaiserslautern,
Germany, German Cancer Research Center (DKFZ), Heidelberg, Germany,
and Massachusetts General Hospital (MGH), Boston (MA), United States.
Instead of defining a single objective function as a measure of the quality
of the treatment plan, the new approach is generically multi-criteria. To
characterize the dose distribution in each structure (critical structures and
target), we use the equivalent uniform dose (EUD) [9]. This is defined as the
uniform dose that leads to the same effect as the actual non-uniform dose
in that organ. The whole plan is characterized by the set of EUDs in the



different organs. What we seek is an optimal compromise between the EUDs
in the target and the critical structures. Now, there is an infinite number of
combinations of those EUD values. To make the search tractable, we look
at so-called efficient (Pareto optimal) solutions only [13]. These are defined
as combinations of EUDs in which an improvement of the EUD in one organ
will always lead to a worse result in at least one of the other organs. The
advantages of this concept are threefold:

1. Artificial weight factors, which have no clinical meaning, are avoided.
The whole concept is based on dose-like values, which are amenable
to a clinical interpretation.

2. Unnecessarily high doses in some of the critical structures, which can
occur in constrained optimization (see above), are avoided by definition
of the efficient (Pareto) solution.

3. Plan tuning can be done interactively using "knobs” that have a clin-
ical meaning. It is easy to do a sensitivity analysis and determine the
dependency of, say, the target EUD on any of the critical structure
EUDs.

The last point requires further explanation. The new concept comprises
a database in which a large number of efficient solutions are stored. The
solutions are calculated and the database is filled over night. At the planning
stage, the treatment planner and the physician can search the database
interactively. At the beginning, the system suggests a balanced solution
that matches the planning goals to a large degree. If one or more aspects of
the plan are not desirable (e.g., the EUD in one critical structure is too high),
the planner can immediately go to another solution in which that specific
criterion is fulfilled. In this way the relevant solutions can be explored
interactively and the most suitable solution can be found efficiently.

2 The mathematical model

Throughout the rest of the paper we will assume that a meaningful irra-
diation geometry, i.e. the number and the directions of beams are given.
Typically but not necessarily in case of IMRT, the irradiation geometry will
be isocentric and coplanary. The absorbed dose d = d(£) in an infinitesi-
mally small element v € V of the relevant body volume V is given by the
formula

d(E) () = / p(v, B)E(D)dD 1)
B

where ¢ is the fluence distribution on the beamheads B. p(v,b) represents
the dose deposit in v € V' from the infinitesimal beam element b € B under



unit fluence. We assume in this paper, that p is given in an appropriate way.
Evaluation of radiation therapy plans is done by discussing the dose distri-
bution d|Vk, k € {T, Ry, Ry,..., Rk} for all entities of interest, i.e. target
and risk structures separately. The goal of a radiation therapy treatment
planning is to determine the fluence distribution ¢ > 0 in such a way that
the dose distribution in any entity of interest approximately satisfies some
ideal bounds, which guarantee a high oftumor control probability (TCP)
and a low normal tissue complication probability (NTCP).

2.1 The equivalent uniform dose - EUD

TCP and NTCP functions can be mathematically described using the equiv-
alent uniform dose (EUD) model. Here, a non-uniform dose distribution
d|y, is related to a uniform dose level EUD(d) that generates a compara-
ble biological impact. In literature there are some approaches for modelling
the EUD based on statistical data. E.g. Niemierko [12] defines EUDs with
the aid of normalized g-norms, i.e. EUDk(d) = |[d||,,, where ¢ is organ
dependent and found by curve fitting methods from statistical complication
probabilities, cf. [8]. For critical structures ¢ ranges between 1 and oco. If
an organ is more parallely organized like e.g. the lung, g will be close to 1,
i.e. the EUD will be close to the mean dose. If on the other hand, an organ
is more serially organized like the spinal chord, ¢ will be close to oo, i.e. the
EUD will be close to the maximum dose. A similar concept is due to Thieke,
Bortfeld, and Kifer [14], who defined the EUD by convex combinations of
the mean dose and the maximum dose, i.e. depending on the organisational
structure of the organ

EUDk(d) = ay - gmaz(k) + (1 — ay) - gmean(k) 2)

for an appropriate organ dependent «y € [0,1]. Analogously to Niemierko’s
g-scale, ay will be close to 1 for more serial organs, while o will be close
to 1 for more parallel organs. A table with values for organ related ¢’s and
a’s based on statistical data by Burman, Kutcher, Emami and Gotein can
be found in [3]. Notice, that for both EUD-models the function EUDy is
homogeneous, i.e. EUDg(Ad) = AEUDg(d) for A > 0. This property aside
the convexity of the EUDg-functions will be important for the optimization
approach described in Section 3.

The biological impact of the absorbed dose in the target can be described
by the minimal dose value.

In terms of the EUD, the NTCP (normal tissue complication probability)
functions of the different organs at risk Ry,..., Rx are S-shaped functions,
while the TCP (tumor control probability) is an S-shaped function defined
on the minimum dose value in the target, cf. Figure (1).
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Figure 1: The S-shaped NTCP- and TCP- functions

An ideal dose distribution function d would meet the following conditions

NTCPy(EUDk(d(€)) < 6k, k€{Ri,...,Rk} (3)
TCP(ming(d(§))) > 1-6r

where typically all 6 will lie below some thresholds < 5%. If we rewrite
this condition by inverting the S-shaped functions, this leads to a system of
inequalities of type

EUDy(d(¢))
ming (d())

where Uy, = NTCP, () for k € {Ry,..., Rk} and L = TCP~!(1 — 6).
Unfortunately, the inequality system (4) will in general be mathematically
infeasible due to the physical constraint ¢ > 0. Hence, the problem is to
calculate a fluence distribution that results in a tight approximation of (4).
In the language of therapists this means we have to find a decent compromise
between overdosing of the risks and underdosing of the target in the light of
the ideal dose bounds U and L.

Us, k‘E{Rl,...,RK} (4)

<
> L

2.2 Multi-criteria optimization of radiotherapy - definition
of a planning domain

Deviations from the ideal goals (4) can be represented by use of costlet
functions Fj, that define relative deviations from the ideal goals. More
precisely,

EUDg(d(£)) — Uk

Fk(f) = U, , ke {Rl,...,RK}, (5)
Py - Lominsld)



The radiation therapy planning problem can now be expressed as the fol-
lowing multi-criteria optimization problem

Fr(¢) — Min, k€ {T,Ry,...,Rg} subject to (6)
& >0

Problem (6) is a restricted convex optimization problem, if the EUD-func-
tions are convex in £. This is true for Niemiercko’s g-scale concept and for
the max-and-mean model from (2) as well.

Up to now, in the radiation therapy planning community problem (6) is
solved by a weighted scalarized approach: Define positive weights wy solve
the optimization problem

Fo(€) = > wpF(§) — Min subject to
kG{T,Rl,...,RK}
§ > 0,

check the quality by eye using appropriate dose visualizations and update wy
by trial and error until a satisfactory result is achieved. This process is time
consuming and does not allow dynamical treatment planning, cf. Bortfeld
[7]. Therefore, Hamacher und Kiifer proposed in [5] a generic multi-criteria
approach, that is based on Pareto-optimal solutions. A fluence distribution
¢ is called efficient or Pareto-optimal for (6), if there is no additional im-
provement for one of the costlets Fj, without worsening at least one of the
others.

Unfortunately, the class of Pareto solutions also includes ”bad compromises”
that are clinically irrelevant. E.g. a zero fluence is Pareto-optimal, since an
improvement in the target would require to worsen at least one of the risks.
Hence there is need to define a planning domain that covers only clinically
meaningful solutions and approximates relevant parts of the set of Pareto-
optimal solutions.

This is done with the aid of an equibalanced solution, defined by:

s — Min subject to (7)
Fk(f) < s, kE{T,Rl,...,RK},
& > 0.

Problem (7) always gives a least common tolerance value s* that will hold
for all relative deviations Fj. A solution & of (7) can be seen as a prototype
of a balanced solution that will lead in the clinical meaningful area. Though
a solution of (7) guarantees mathematically a balance between the planning
goals in (6), it is absolutely necessary for planning purposes to have a plat-
form for further plan tuning, as the evaluation functionals Fj cannot reflect
the dose distribution completely.



For this reason, we define the planning domain as a neighborhood of an
equibalanced solution defined by (7) with

PD(S):={¢>0:  Fu(€)  <sp k=T, Ri,...Re} (8)
={(>0: EUDy(d()) <Ur(l1+sk), k= Ru,...Ry,
mingd(§) > L(1 —s7)},

where S := (si) denotes the vector with the entries s := s* + Asy, k €
{T,Ry,...,Rg} with As > 0. Typically, the values of Asy should be
chosen such that known hard constraints from statistical data on tumor
control probabilities and normal tissue complication probabilities

are met. The choice of As; will depend on personal preferences and the
experience of dosimetrist and therapist. As a general principle, As should
not be chosen too small in order to allow a flexible planning process. Due
to the convexity of the EUDg- and ming-functions, PD(S) is a convex set.

3 Pareto-optimal representatives in the planning
domain

The most promising ¢ in the planning domain PD(S) are those that are
Pareto-optimal for (6), because these therapy plans cannot be improved for
all costlets Fj, at the same time. Therefore, let

Par(S) := {{ € PD(S) | ¢ is pareto for (6)}. (9)

Par(S) is a coherent and bounded subset of the set of feasible solutions of
problem (6). It will be the goal of this section to define a reasonable set of
representative plans out of Par(S) that will satisfy a decision makers’ need
for choice. The representative system for Par(S) will be calculated in such
a way that two basic principles are met:

- Resolution:
The F-vectors of representatives are significantly different.

- Homogeneity:
The representatives form a nearly equidistant cover of F(S) := F(Par(S5)).

Even if possible, a complete description or calculation of Par(S) is far too
costly on the one hand side and widely not interesting for the planner on
the other hand, as therapy plans with too tiny F-differences are of identical
worth for decision makers.

For the calculation of the representative set of Par(.S) we propose a two phase
algorithm. The first phase will find compromises in PD(S) that equibalance
specific sets of so-called active costlets only. These plans are called extreme



compromises, because the active costlets will attain minimal values within
PD(S) whereas the non-active costlets may exhaust the prescribed bounds of
the planning domain. A second phase will care about reasonable resolution
and homogeneity of the representative system and will appropriately place
representatives in between the extreme compromises by means of an adaptive
triangulation scheme.

3.1 Phase I - the extreme compromises

For any partition (M,N), M # 0 of {T, Ry, ..., Rx} we generate solutions
of the problem

s — Min subject to (10)
Fu(6) < s YkeM
Fp(§) < s VEEN

¢ € Par(9).

With this setting, we will find therapy plans that give an equibalanced solu-
tion for active costlets Fy, with indices k € M, while the remaining non-active
costlets with indices & € N satisfy the relaxed condition of merely staying in
Par(S). Tentatively, the active costlet values will attain small values com-
pared to non-active costlets. Therefore, we call a solution of (10) exztreme
compromise with respect to the active costlets with indices in M. However,
a solution of (10) will not be uniquely determined in general. In order to
avoid such ambiguities, we solve first the relaxed problem

s — Min subject to (11)
Fu§) < s VkeM
Fr(§) < sp VkeEN

& > 0

ending up with an optimal objective value s3,. Afterwards, we force Pareto-
optimality and uniqueness of the solution by solving

> F, — Min subject to (12)
ke{T,R1,..,.Rk}
Fk(f) < sk VkEeN
Fe(§) < sy VkeM
& > 0.

The solution &y; of (12) will be called M-extreme compromise and

E(S) = {&u | (M, N) partition of {T, Ry,...,Rx}, M # 0} (13)



will denote the set of extreme compromises in Par(.S).

Though extreme solutions might be seen as corner stone solutions among
the relevant part of the objective space F(S) = F(Par(S)), F(cone(&(S)))
does in general not cover all but major parts of F(S) that are large enough
to satisfy a decision makers’ need for choice. As an advantage of this setting,
the number of optimization problems that have to be solved for calculating
£(S) is fixed and known beforehand as 25+1 —1. This number only depends
on the number of costlet functions and not on the complex geometry of F(S)
or specific discretizations of the decision space.

We will restrict ourselves to generate a system of representatives that covers

Fe(S) := F(cone(E(S))) NF(S) (14)

in the following.

3.2 Phase II - generation of a p-cover

Starting with the extreme compromises that serve as corner stone solutions
in the relevant area of the planning domain, we want to calculate a ho-
mogeneous set of representatives of F(S), that covers Fg(S) at reasonable
resolution. This is done with an adaptive triangulation scheme that intro-
duces successively new representatives at places, where the current resolu-
tion or homogeneity is not sufficient. This is done by a two stage procedure.
First, a basic triangulation scheme approximates Fg(S) by simplices that
are spanned as convex hulls of K + 2 neighboring extreme solutions. In
a second step, this mesh of points is adaptively refined by introduction of
new points from Fg(S) that split too large simplices, cf. Figure (2). This
procedure successively delivers a finer approximation of Fg(S) and will be
stopped when a p-cover of F¢(S) has been constructed. A p-cover is a set
of representative points in Fg(S) such that any point of Fg(S) lies within
p-distance from at least one representative.

Basic triangulation: Each M-extreme compromise &y € £(S) can be iden-
tified with an incidence vector eps, that has zero entries corresponding to
active and one entries corresponding to non-active costlets. In this setting,
£(S) maps one-to-one to the vertex set of a (K + 1)-dimensional cube where
the all-one-vertex is missing. It is easy to verify, that the partial order rela-
tion 7 <” of the F-vectors belonging to extreme compromises is isomorphic
to that of the incidence vectors. Therefore, we can transfer a triangulation
of the hypercube’s surface to a triangulation of F¢(S5).

Fe(S) corresponds to those facets of the unit hypercube that do not con-
tain the all-one-vertex. Hence in order to triangulate Fg(S) we dissect the
associated K + 1 facets of the hypercube into simplices and reinterpret this
triangulation in the objective space. Algorithmically, any of these simplices

10



+ extremal compromises ¢ new intermediate point

— triangulation triangulation refinement

Figure 2: Covering the planning domain
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can be identified with the convex hull of the column vectors of some permu-
tation of the (K + 1) x (K + 1) matrix

01 ---1
0-cvv-- 0

Here, those simplices generated by matrices, whose k-th row consist of zero
entries only, partition the k-th facet. If in a degenerate situation two or
more extreme compromises coincide, we only reconsider proper simplices for
further refinement and avoid duplicates.

Refinement step: The extreme solutions will be used as corner stone solu-
tions of Fg(S). It will be the objective of a refinement procedure to calculate
an adaptive homogeneous p-cover that approximates Fg(S). More precisely,
we are looking for a mesh of points Rg(p, S) C Fe(S) such that any point
of Fg(S) lies within p-distance from Rg(p, S). The points of Re(p, S) are
representative solutions of Fg(S).

In order to achieve a p-cover we use a local criterion that ensures the covering
properties. The simplest choice is to bisect edges of the current triangulation
that are longer than p. The procedure stops, when there is no edge longer
than p. This is a valid but clearly suboptimal choice with respect to com-
putational complexity. More sophisticated rules lead to better computation
times. We refer the interest reader to the literature on homogeneous mesh
generation. Recent results and further reference on this topic can be found
in [11]. Unfortunately, the convex combination of Pareto-optimal solutions,
e.g. the midpoint of a long edge will in general not be Pareto-optimal. In
this case we have to find a near-by Pareto-optimal point. In order to achieve
this we use the following method:

Let Fi,k € {T,Ry,..., Rk} be entries of a costlet vector found as convex
combination of Pareto-optimal solutions. We can find a neighboring Pareto-
optimal representative solution by solving the optimization problem:

0 — Min subject to (15)
Fr(€) < 0(Fr—1)+1
Fo(§) < O0(Fs+1)—1 ke{Ry,...,Rx}

£ € Par(S).

The optimization setting (15) profits from the homogeneity of the EUDs. By
changing of 6 we move along a line in the objective space from the current
convex combination Fj to the boundary of F(S).
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3.3 The approximation algorithm for the planning domain

We summarize the algorithm described above:
PARETOPLAN

Lyuy,...,Ug,S,p
Phase I

Calculate all extreme compromises by enumerating the different par-
titions (M, N).

Phase 1I1:
(a) Perform the basic triangulation.
(b) If no further refinement is needed, stop.

(¢) Introduce a new solution where it is needed most
(e.g. longest edge in the current cover).

(d) Split the affected simplices into appropriate sub-simplices.
(e) Goto (b).
Output:

p-cover Re(S, p)
The given algorithm calculates the representative p-cover Re (S, p) of Fg(S).

3.4 Some practical remarks

Complexity: Algorithms like PARETOPLAN that compute representations
or approximations of the Pareto set of a multi-criteria optimization prob-
lem have in general a computational complexity that is exponential in the
number of criteria. In our case, we have to solve exactly 24+1 — 1 convex
optimization problems in Phase I. If we use a simple edge-bisection strategy
for phase Il the number of convex optimization problems to be solved will

be
K
O ((K +1) (7101%65; edge) ) . (16)

2

This means for practical purposes that the number of criteria in use should
not exceed 5 - 6.

Tradeoff- Entities: Unfortunately, in many clinical cases, e.g. tumors in the
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brain, the number of entities under consideration will be larger. But it is
observed in practice that typically no more than 4 - 5 organs at risk domi-
nate the tradeoff discussion in a planning process. Hence, if we knew these
tradeoff-entities afore, all other entities might be taken out of the objectives
of problem (7) while we ensure that their EUDs remain below reasonable
bounds. This will result in a considerably reduced computation time. But
how can we find these tradeoff-entities? Here, a key-phenomenon is correla-
tion.

Correlation: Two entities of interest are correlated, if worsening or improv-
ing one of them has a similar effect on the other. It is observed in practice
that correlation effects are particularly relevant if many entities are involved.
Correlation gives us a chance for reducing the set of tradeoff-entities. E.g. if
two organs at risk are hit by the same combination of irradiation directions,
they are highly correlated. If two entities are correlated, it is not necessary
to include both into the set of tradeoff-entities. This can be used to reduce
the number of organs included as optimization criteria and henceforth for a
significant reduction of computation time. Algorithmically, we can exploit
correlation phenomena, in the following way: We start Phase I of the algo-
rithm with all organs on stage as tradeoff-entities. During the run of Phase I
correlation can be tested from time to time by use of appropriate correlation
coefficients that measure dependences between different entities. If a signif-
icant threshold value for correlation is achieved the set of tradeoff-entities is
appropriately reduced.

The choice of p: The parameter p is introduced in order to guarantee that
the representative solutions’ objective values form a homogeneous mesh in
Fe(S) which is on the one hand side coarse enough such that its mesh-
points belong do distinguishable solutions (Resolution), but on the other
hand dense enough to give a smooth representation (Homogeneity). A good
choice of p will in practice be found adaptively during the run of the algo-
rithm and is bounded from below by a preset value.

Discretization of optimization problems: The complexity of PARETOPLAN
has been described alone in terms of the number of convex optimization
problems to be solved in the course of the algorithm so far. But depend-
ing on the specification of these problems, the computational effort can be
perceptibly different. First of all, the type of optimization problems to be
solved can differ depending on the choice of the EUD functions. Using e.g.
the Max&Mean-Model, all optimization problems to be solved can be rep-
resented as linear problems. In order to solve such problems with standard
optimization algorithms we have to discretize these continuous problems.
The way how these problems are discretized affects strongly the computation
time. A detailed discussion of discretization strategies for the Max-&Mean
Model can be found in Section 4. Similar considerations can be made for
the p-Scale Model, which will be omitted.
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Figure 3: Schematic discretization of the volume

4 Discretization of the continuous problem

From now on, we will concentrate on the description of the Max & Mean-
Model, where the mathematical structure profits a lot from linearity of the
constraints.

In order to solve problems (7), (11), (12) and (15) numerically, one has to
discretize body volume and beam head area appropriately. The necessary
discretization will be twofold: First, we have to discretize the body - a 3D
figure, and second, we have to discretize the beam heads - a 2D-figure.

4.1 Discretization of body volume and beam head area

Let B = J; B;, V = U, V; denote partitions that divide the total beam head
area B and the body volume V into small elements called bizels and vozels.
These dissections are done in the following way:

The width of the leaf channels, cf. Figure 4, imply natural slices of B in one
beam head dimension. Typically, these slices are dissected into quadratic
bixels whose edge length is identical to the width of the leaf channel.

The size of the voxels is usually related to the distance between adjacent
CT-slices. The relevant volume is cut into cubic voxels whose edge length
corresponds to the distance of CT-slices, cf. Figure (3). Hence, we are
dealing with a large scale optimization problem.

The continuous functions used for the description of the optimization prob-
lems in Section 3 are then discretized in the following way:

The fluence distribution £(b) is replaced by a step function defined on the
partition of B,

£(b) = ZzilBi(b), (17)

and can thus be identified with a fluence vector = (z;), where the i-th entry
denotes the fluence value for bixel B, cf. Figure (4). With this notation the
integral equation (1) turns into
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Figure 4: Schematic form of a fluence profile

d(€)(v) => /B p(v,b)dbxz; =Y p(v, Bi)a; =: d(x)(v), (18)
where the continuous kernel function p(v, b) is replaced by a vector-valued
function (p(v, By));.

The partition of V' in cubic voxels V; allows to approximate d(x)(v) by
D(z)(Vj) =Y p(Vj, Bi)wi, (19)
i

where p(Vj, B;) denotes the dose deposit into voxel V; from bixel B; under
unit fluence. We replace the kernel p(v,b) by the matrix

P = (pij) = p(Vj, Bi), (20)
and the dose distribution d(§)(v) by a dose vector D(z) = (D;(x)), whose
J-th entry denotes the dose value in voxel V;. The matrix-vector equation

D=D(z)=P- -z (21)

becomes the discrete analogue of the integral equation (1). Altogether,
both discretization steps lead to an approximate description of the contin-
uous problems, where the discretization error is governed by the numerical
approximation error of the kernel function.

4.2 The discrete problem

At first, we introduce discrete analogues of EUDy and ming in case of the
Max & Mean Model:

Mean and maximum dose in the volume Vg, of entity Rj are replaced by
the corresponding discrete norms

ID(@) oo = maxv,evy, (Po,ej) = maxy,evy, (z,Plej)  (22)
ID@)lly == Ve, ™" - (Pz,er,) = (z,[VR,|™" - P' 1g,),
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where e; is the j-th unit vector and 1p, € {0, 1MVeel with (1r,); = 1 iff
Vj € Vg, . With this notation the discrete EUD of Vg, and the minimal dose
in the target attain the forms

EUDg(D(z)) = ap- D)) + 1 —ar)- D)l (23)
ming D(z) = minvjeVT(:r,Pteﬁ.

These discrete reformulations of the problem preserve convexity and homo-
geneity of the continuous ancestor.
The continuous constraints from (4) change into the discrete voxel-related
constraints

(z,¢j) == (z,apPlej+ (1 — ax)N, 'Pleg,) <Up, V;€Vg, (24)

(z,c5) = (z, Pte;) > L, VjelVr.

Similar as in the continuous problem (7), a discrete least common tolerance
value s is obtained from

s — Min subject to (25)
Fk(I) < S, ke{T7R1a"'7RK}
r >

Here, the optimal value sT depends on the choice of the discretization. The
relative deviation Fj in problem (25)is defined by replacing EUDy and ming
in (5) by their discretized counterparts (23). Finally, the discrete planning
domain is defined by

PD(S):={z>0:  Fy(z)  <sp k=T, Ri,... R} (26)
={z>0: EUDy(D(z)) <Ug(l+sg), k=Ry,...Ry,
minyD(z) > L(1 —s7)},

where S := (s;) with s := st + Asy, k € {T,Ry,..., Rk}, Asg > 0. Due
to the convexity of the constraints, PD(S) is a convex set. Discrete settings
of problems (11), (12) and (15) are defined in a similar way.

4.3 Large-scale strategies using redundancy tests and clus-
tering techniques

Obviously, the large number of constraints of type (24) makes the resulting
linear programs large scale and the computational complexity intractable.
Fortunately, the physical background of the problem provides some scope
for decisive reduction. In a first stage we are going to detect redundant,
unnecessary constraints, which will be kicked out from the problem descrip-
tion. In a second stage we fuse similar constraints successively to clusters in
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such a way that the resulting reduced optimization problems serve as good
approximation of the original one. Finally we find the optimal solution of
the original problem with a local refinement procedure.

Redundancy of constraints: We observe that neighboring voxels Vj,, Vj, in
an organ are irradiated by the same bixels with quite similar dose deposits in
general. Hence, the corresponding normal vectors c;,, ¢;, of the constraints
in (24) do not differ too much. Since the right hand sides of these con-
straints, i.e. the upper and lower bounds for the dose values, are constant
for each entity, the similarities of the left hand sides cause a quite large
percentage of redundancy. The simplest form of redundancy is a one-to-one
domination of constraints, i.e. a constraint is dominated by a single other
constraint. This occurs especially in the penumbra of the target:

Let e.g. V;,Vj, € Vg, and U > 0 be some upper bound in Vg, , then for
any feasible x > 0 we have

(Ia Cj1>7 (Ia Cj2> <U. (27)
If now ¢;j, < ¢;, holds componentwise this implies
(,¢j,) < (2,¢5,) < U. (28)

Thus, the constraint corresponding to voxel V}, is dominated by the con-
straint associated to voxel Vj,. Such simple forms of redundancy can be
efficiently detected and eliminated, what results in a significant reduction of
the problem size. From now on, we restrict ourselves to the remaining (not
found redundant) voxels, but for the sake of simplicity denote them as ”all
voxels” and transfer the original notations like e.g. V and Vg, to them.

A recent survey on redundancy detection in linear programming can be
found e.g. in [1].

Similarity of constraints and clustering: Beyond elimination of redundan-
cies there is still substantial potential for reduction of the problem size.
An immediate idea to exploit similarity of constraints is to fuse only slightly
different constraints belonging to neighboring voxels of an organ in represen-
tative constraints. More precisely, let V,, « € J, denote the set of remaining
voxels of an entity V' with their corresponding constraint vectors ¢,. Assume
that

Vit eZ), Jcd (29)

is a family of voxels with almost identical associated counstraints. We fuse
the voxels of this family to a vozel cluster

vi=|JWV (30)
€T
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and form a normal vector c;- representing the constraint vectors {¢, : ¢ €
J;}, which implies a feasible constraint. This means, that the inequalities
(x,c,) < U are replaced by the valid inequality (z,c.) < U. We get a

g
cluster (V]' , cg) If we apply this method to the relevant volume we obtain a
clustering
C:={(Vj.d): jeT}, U Ji=J. (31)
jeJ’

We now apply this clustering procedure in order to replace the original
problem description with voxel oriented constraints of type (24) by cluster
oriented constraints. Clustering will perturbe the original planning domain
PD(S) from (26) and the evaluation functions Fj slightly. Hence, a cluster-
ing procedure will replace the original optimization problems by approxima-
tions.

Using clusterings, the computational expense necessary to find optimal dose
distributions can be significantly reduced: a fine resolution (the finest avail-
able is given by the natural voxel and bixel sizes defined above) is only used
in some critical volume parts, in which the requirements are rather difficult
to fulfill, e.g. the seam of the target. A much coarser resolution can be used
in all minor critical volume parts, e.g. in volumes farther away from the
focus of the radiation beams.

As it is hard to decide beforehand, which parts of the relevant volume will be
critical, a clustering strategy must provide the possibility for a future local
approximation. This requires the availability of a hierarchy of clusterings
with different resolution. In order to construct such a hierarchy we use the
subsequent algorithmic scheme:

Starting off with the trivial clustering C(°) based on the original non-redundant
voxels and constraints, i.e. Vj(o) =V, 0

S =Cj and J(O) = J, we construct
step-by-step a hierarchy of clusterings

Dy ® Oy, e U _
W= (v, jegVy 1=01,. lna (32)

(1-1) (0

by fusion of clusters Vi and aggregation of constraints c;’ based on
reasonable partitions of the index sets under consideration

J g =g, (33)
jeg
cf. Figures (5,6).
In order to define a hierarchy of clusterings we use a clustering strategy
that is guided by the following principles: different entities have different

clustering hierarchies adapted to the sensitivity of radiation of the organ
under consideration. Clusters close to the focus of the radiation beams will
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Figure 6: Approximation of the planning domain

in general be finer than those farther away. Altogether we obtain a collection
of clusterings

D 1=0,... les(k), k=T,Ri,... R \. (34)
k

Mathematically, a clustering strategy is determined by appropriately chosen
organ dependent sequences of tolerance levels

0< 519) < 6,&2) <...< 6,(6“””). (35)

We put together clusters vy ¢ Vg, and form a cluster (Vj(l),cg-l)) with
o _ U AT

max A(c, gl)) < 5,(!). (36)
v.cv

Thus, we fuse voxels and constraint vectors to clusters in level [, if the
distances between the constraint vectors of the voxels and the aggregated
constraint vector in an appropriately chosen metric A do not exceed the tol-

(0)

erance level 6,”. As mentioned above, clustering will affect the evaluation
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functions Fj. We therefore introduce evaluation functions Fk(l) correspond-
ing to level [. The errors between these level evaluation functions Fk(l) and

the original function Fj, = FISO) restricted to a voxel-cluster Vj(l) (what is
denoted as F| o)) fulfill
i

(F;El) - Fip)l, 0 (@)
J

(37)

IN

[ [
lzlly - Ca -8 =: el

with some metric dependent constant Ca. The clustering and the local re-
finement procedure in the optimization algorithm will be controlled with

(0)

tolerance levels ¢, in the objective space.

Local refinement using a cutting plane strategy: After having coarsened the
problem in total by clustering, we now will find a solution of the original
problem by a local approrimation scheme that refines the problem descrip-
tion close to the optimal solution. The concept is heavily related to cut-
ting plane approximates schemes known from discrete optimization where
the discrete polyhedron is approximated with successively constructed real
polyhedra starting with a continuous relaxation of the original problem.
For the sake of simplicity of notation, we will explain the basic ideas in case
of the solution of least common tolerance (7), i.e.

s — Min subject to (38)
LP: Fi(z) < s, ke{T,Ry,...,Rx},
z > 0.

that will be denoted in the sequel by LP. The corresponding set of optimal
solutions - in general the solution of (38) will not be uniquely determined -
is denoted by X. An extension to problems (11), (12) or (15) is straightfor-
ward.

We construct a series of approximations of (LP) based on sets A(t) defined
by

A c U U ¢’ t=o01,.., (39)

k=T,R1,...Rx 1=0,....lmaz (k;)

that consist of previously constructed clusters. More precisely

U w= U Va (40)

k=T,R1,...Rx (Vasca )EA(L)
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Figure 7: Local refinement of the clustering

i.e. the sets in A(t) form a partition of the relevant body volume like the
clustering. With increasing ¢ the resolution of A(t) will become higher. This
means in particular, we call A(t9) finer as A(ty),

.A(tg) < .A(tl), t1 < tg, (41)

if for all (V(*2), c(2)) € A(ty) there exists a (V1) (")) € A(t;) such that
Vvit2) € V() and |A(t2)] > |A(t)], cf. Figure (7). The approximation
scheme {A(t)} starts off with

A(0) = U Clg;lmaz(k))7 (42)

k:T,R]_,...,RK

which corresponds to the coarsest clustering of each organ of interest. In
case of the other problems (11), (12) or (15), one takes the final approxima-
tion corresponding to the previously solved problem.

Each approximation \A(t) yields an approximate formulation

s — Min subject to (43)
S, k‘E{T,Rl,...,RK},

IV IA

of problem (38). The objective functions #, k(A(t)) are adapted to the approx-

imation and are analogously defined as the level-based ones in (37). The

22



associated set of optimal solutions of LP(t) is denoted by X (t).

The refinement step going from A(t) to A(t + 1) is done in the following
way:

If we detect an active or almost active constraint associated to some clus-
ter(s) of A(t) for an optimal solution Z(t) € X (t) of LP(t), these active or
almost active clusters will be replaced by a finer partition in the cluster hi-
erarchy. Geometrically, when going from ¢ to ¢+ 1 and so on, we successively
cut off parts from the feasibility region of LP(t) in a neighbourhood of X,
cf. Figure 8. Henceforth, by going down in the cluster hierarchy we locally
approximate the set of feasible solutions of LP close to X. In terms of the
objective functions this means

Fo(X(t)) = F(X) for t— o0, k=T,Ry,...,Rx. (44)

Moreover, all constraints defining the boundary of the domain of LP close
to X, are gradually detected and added to LP(t).

Due to the finite description of the clustering hierarchy the refinement pro-
cess will stop after a finite number of steps with A(¢,0p). This final approx-
imation gives an approximation LP () of LP with X (tstop) = X.

The described process of local approximation close to X of LP provides
will solve the original problem X exactly, but with a significantly reduced
expected computational expense.

To describe precisely the refinement step, let us assume that Z(t) almost
exactly fulfills the associated constraint to some voxel-cluster Vj(H_l) C Vg,

in A(%), i.e.

si—ey T < FY 0 (E(1) < s (45)
J

with some upper bound s; > 0. This might - according to (37) - result in
sk < Fily,, (Z(t)) in some voxel V,» C Vle) C Vj(lH).

We replace c§-l+1) by tighter constraints CEZ) corresponding to subclusters and

hereby introduce hyperplanes that cut off some volume part of the feasible
domain of LP(t). As the feasible domain of LP is always a subset of the
domain of LP(t) we improve the approximation of the domain of LP, cf.
Figure (8).
If
sh—eg ) < FO| o (B(1) < sk — ey < s, (46)
J

holds, no further refinement will be needed, since then
Fiely, (2(t)) < sk (47)
for all v, € V'Y,

For related literature on the general concept of cluster analysis the interested
reader is referred to [6]. For the more specific case of large-scale handling in
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Figure 8: Improving the approximation quality

optimization problems using aggregation and disaggregation techniques an
extensive survey can be found in [4].
4.3.1 The local approximation algorithm

The following formal description gives a survey on the aggregation and dis-
aggregation processes designed for solving the optimization problems from
Section 3.

LOCALAPPROX
LP of form (38)
Phase I
Loop over all organs.
Detect and eliminate redundant constraints in the current organ.
Phase II:

Loop over all organs.

a) [+ 0.

b) If I > lqs stop.

c) Cluster the elements on level /.
d) I+ I1+1.

e) Goto (b).

Intermediate Output:
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Hierarchy of clusterings for the relevant volume parts in each organ.

Phase III (integrated in the computation of one solution):

a) t < 0. Initialize A(t).

b) Compute an optimal solution Z(t) for A(t).

)
)
c) If there are no (almost) active clusters, & < Z(t) and stop.
d) Split up (almost) active clusters. t < ¢+ 1.

)

e) Goto (b).

5 The data base of representative solutions in the
planning domain

A major advantage of the multi-criteria approach to radiation therapy plan-
ning is the variety of solutions provided to the decision maker. Algorithm
PARETOPLAN, cf. Section 3, will calculate in batch mode a number, typi-
cally around 1000, of Pareto-optimal solutions in the planning domain that
will serve as data stack for the decision process. Of course a clinical decision
maker cannot check all information provided without the support of an ap-
propriate navigation tool, that enables a fair and fast comparison between
different radiation therapy plans. In order to define such a navigation tool
data must be structured.

5.1 Structure of the data base

Each patient to be treated will be associated a data base of personal treat-
ment information that contains the following information sections:

- General:
Name, age, anamnesis etc.

- Geometric:
CT-, MRI-, Ultrasound-Images etc. with organ segmentation.

- Dose:
Dose distribution matrix for the relevant body volume, dose-volume-
histograms, EUD-levels.

- Setup:
Irradiation geometry, intensity maps, MLC sequencing.
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Figure 9: Structure of the database

The first sections, general and geometric information, are static and inde-
pendent from the choice of a particular treatment plan, whereas the last
sections, dose and setup information, are dynamic and dependent from the
treatment plan. The treatment plans in the data base will be assessed and
compared with regard to their dose information. The generation of the data
base in algorithm PARETOPLAN was controlled by choices of meaningful
EUD-levels. Therefore it is natural that the information in the data base is
ordered by use of these EUD-levels. In Section 2, we associated each plan a
vector of EUD-levels or F-vectors that characterizes the dose distribution.
The plans in the data base are ordered with respect to ascending EUD-levels
Fy for all k € {T,Ry,...,Ri}, cf. Figure 9. So, for each specific solution,
the k-neighbors, i.e. solutions with neighboring Fj levels, are known. This
knowledge will be exploited for the design of a navigation tool.

5.2 Data visualization and navigation

The planning screen provided to the decision maker, cf. Figure 10, reflects
the structure of the data base. It consists of three major frames, the first
frame on the upper right shows general patient information, the second
frame on the lower right shows the EUD-navigator, while the third frame
visualizes the dose distribution. The solution under consideration is shown
by a hierarchy of dose information: coarsest information is given by the
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Figure 10: The planning screen

EUD-levels in the navigation frame, cf. Figure 11, that provides some organ
structure dependent average dose values (EUDs) for each entity of interest.
The particular EUD-levels for the current solution represented as vertices
of the navigation polygon in the navigation frame. All vertices lie on a star
coordinate system, cf. [10], that represents the objective space. The shaded
area in the navigation window visualizes the variety of solutions stored in the
data base and gives the EUD-levels that are covered by the planning domain
explored by PARETOPLAN. Finer information is given by the dose volume
histogram that relates dose levels to those volume shares where these doses
will be achieved. Finest information is provided by 2D(3D)-visualizations
of the dose distributions by use of color wash dose distributions or a bunch
of isodose curves.

Planning details will be explained by a typical navigation session:

The medical decision maker starts the program, identifies the patient and
obtains a planning screen, cf. Figure 10, that shows as starting proposal a
solution of least common tolerance (7).

Now, navigation in the data base will consist of two phases: in a first phase
the clinician will find acceptable EUD-levels within the planning domain
visualized by the navigation frame. This will end in a preset solution, that
is found by use of EUD-levels alone. In a second phase the clinician will
find the final radiation therapy plan with the aid of a fine-tuning process
supported by dose volume histograms and visualizations of isodose curves.

27



The preset solution: EUD-levels of the current solution are detected as ver-
tices of the navigation polygon in the navigation frame. These vertices serve
as handles for navigation in the planning domain. If the clinician is not sat-
isfied with the EUD-configuration of the current solution he will move the
handle belonging to a non-satisfying EUD towards a more promising area
of the planning domain. During this process he will observe the move of
the other vertices of the navigation polygon. At least one EUD-level will be
worsened, as all solutions in the data base are Pareto. This means: there
is no improvement for one EUD-level without worsening some other. The
search process is facilitated by a lock function. Locking a specific EUD-level,
for organ k say, means that the clinician does not want to see solution whose
EUD-values with respect to organ k are worse than the currently observed
level. When locking EUD-values all solutions in the data base with worse
EUD-levels become inactive. In the navigation frame the area corresponding
to plans with worse k-th EUD-levels is shaded. This means, by using locks
the decision maker will focus his attention more and more to the interesting
parts of the planning domain. Nevertheless, locks might be released in the
future planning progress in order to reactive solutions of the already locked
planning domain and thus enabling different compromises, if necessary. The
complete process for finding a preset solution will consist of a sequence of
moving, lock or unlock functions until a compromise of interest has been
found. In practice, this preset procedure will typically take no more than
five minutes. Additional storing and monitoring functions enable the ad-
ministration of promising therapy plans.

The fine-tuning procedure: When having found an acceptable configuration
of EUDs in a preset solution, the specific local dose distribution can be
assessed by use of dose volume histograms and isodose curves. If the clin-
ician is not satisfied with some histogram function or some isodose curve
he might draw borderlines or dose volume wedges in the dose volume his-
togram or might highlight areas of discontent in some isodose visualization,
cf. Figure 10. When clicking on these indicators, borderlines, wedges or
highlighted areas, the system will search in the neighborhood of the cur-
rently proposed plan in order to improve the situation as well as possible
without a significant change of the current EUD-configuration. Discussion of
stored preset solutions and fine-tuning process will take between 15 and 30
minutes depending on the complexity of the specific case and the expertise
of the planning clinician.

6 Numerical experience and concluding remarks

The authors are running projects funded by Deutsche Krebshilfe and the
German Federal Ministry for Education and Science.
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A 3D-prototype software for the multi-criteria based planning of radiother-
apy using the algorithms proposed in this paper has been implemented and
was applied to real clinical data. According to the discretization from Sec-
tion 4.1, the size of these problems ranged from 300000 to 450000 voxels and
from 400 to 1900 bixels. Elimination of all voxels found redundant resulted
in a remaining original problem with a size reduction between 10 and 40
percent and the organ specific clustering hierarchies consisted of 3 to 5 lev-
els, cf. Section 4.3. The size of the approximate problem formulation based
on the clusters of highest level was less than 10 percent of the size of the
remaining original problem.

In the case of the calculation of the solution of least common tolerance, cf.
Section 2.2, the approximation scheme from Section 4.3 required between
10 and 20 steps of local refinement and resulted in an approximate problem
formulation with 10 to 15 percent of the size of the remaining original prob-
lem. For the computation of each of the extreme solutions, cf. Section 3.1,
the approximation scheme required between 0 and 7 further refinement steps
when starting off with the approximation of the precedingly calculated solu-
tion. Although already refined cluster structures are kept even when getting
uncritical, the size of the finally resulting approximate problem formulation
changed only moderately and did not exceed 20 percent of the size of the
remaining problem. The computation of all other solutions, cf. Section 3.2,
required only few further refinements, thus increasing the problem size only
slightly.

The computation was done using the commercial solver ILOG CPLEX 7.5
under Linux on a 2.0 GHz Pentium IV platform with 2GB RAM. The com-
puting time for the definition of the data base ranged between 2 and 5 hours
CPU-time.

A commercial release of the software is planned and will be published with a
German industrial partner tentatively in dawn 2003. For the functionality of
the navigation tool described in Section 5, an international patent is pending.
Further information, e.g. a movie showing an example of a planning session,
can be found on the project page http://www.itwm.thg.de/radioplan.
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1. D. Hietel, K. Steiner, J. Struckmeier
A Finite - Volume Particle Method for
Compressible Flows

We derive a new class of particle methods for con-
servation laws, which are based on numerical flux
functions to model the interactions between moving
particles. The derivation is similar to that of classical
Finite-Volume methods; except that the fixed grid
structure in the Finite-Volume method is substituted
by so-called mass packets of particles. We give some
numerical results on a shock wave solution for Burgers
equation as well as the well-known one-dimensional
shock tube problem.

(19 pages, 1998)

2. M. Feldmann, S. Seibold

Damage Diagnosis of Rotors: Application
of Hilbert Transform and Multi-Hypothe-
sis Testing

In this paper, a combined approach to damage diag-
nosis of rotors is proposed. The intention is to employ
signal-based as well as model-based procedures for an
improved detection of size and location of the damage.
In a first step, Hilbert transform signal processing tech-
niques allow for a computation of the signal envelope
and the instantaneous frequency, so that various types
of non-linearities due to a damage may be identified
and classified based on measured response data. In a
second step, a multi-hypothesis bank of Kalman Filters
is employed for the detection of the size and location
of the damage based on the information of the type
of damage provided by the results of the Hilbert trans-
form.

Keywords: Hilbert transform, damage diagnosis, Kal-
man filtering, non-linear dynamics

(23 pages, 1998)

3. Y. Ben-Haim, S. Seibold

Robust Reliability of Diagnostic Multi-
Hypothesis Algorithms: Application to
Rotating Machinery

Damage diagnosis based on a bank of Kalman fil-

ters, each one conditioned on a specific hypothesized
system condition, is a well recognized and powerful
diagnostic tool. This multi-hypothesis approach can

be applied to a wide range of damage conditions. In
this paper, we will focus on the diagnosis of cracks in
rotating machinery. The question we address is: how to
optimize the multi-hypothesis algorithm with respect
to the uncertainty of the spatial form and location of
cracks and their resulting dynamic effects. First, we
formulate a measure of the reliability of the diagnos-
tic algorithm, and then we discuss modifications of

the diagnostic algorithm for the maximization of the
reliability. The reliability of a diagnostic algorithm is
measured by the amount of uncertainty consistent with
no-failure of the diagnosis. Uncertainty is quantitatively
represented with convex models.

Keywords: Robust reliability, convex models, Kalman
filtering, multi-hypothesis diagnosis, rotating machinery,
crack diagnosis

(24 pages, 1998)

4. F.-Th. Lentes, N. Siedow
Three-dimensional Radiative Heat Transfer
in Glass Cooling Processes

For the numerical simulation of 3D radiative heat trans-
fer in glasses and glass melts, practically applicable
mathematical methods are needed to handle such
problems optimal using workstation class computers.
Since the exact solution would require super-computer
capabilities we concentrate on approximate solu-

tions with a high degree of accuracy. The following
approaches are studied: 3D diffusion approximations
and 3D ray-tracing methods.

(23 pages, 1998)

5. A.Klar, R. Wegener

A hierarchy of models for multilane
vehicular traffic

Part I: Modeling

In the present paper multilane models for vehicular
traffic are considered. A microscopic multilane model
based on reaction thresholds is developed. Based on
this model an Enskog like kinetic model is developed.
In particular, care is taken to incorporate the correla-
tions between the vehicles. From the kinetic model a
fluid dynamic model is derived. The macroscopic coef-
ficients are deduced from the underlying kinetic model.
Numerical simulations are presented for all three levels
of description in [10]. Moreover, a comparison of the
results is given there.

(23 pages, 1998)

Part II: Numerical and stochastic
investigations

In this paper the work presented in [6] is continued.
The present paper contains detailed numerical inves-
tigations of the models developed there. A numerical
method to treat the kinetic equations obtained in [6]
are presented and results of the simulations are shown.
Moreover, the stochastic correlation model used in [6]
is described and investigated in more detail.

(17 pages, 1998)

6. A.Klar, N. Siedow

Boundary Layers and Domain Decompos-
ition for Radiative Heat Transfer and Diffu-
sion Equations: Applications to Glass Manu-
facturing Processes

In this paper domain decomposition methods for
radiative transfer problems including conductive heat
transfer are treated. The paper focuses on semi-trans-
parent materials, like glass, and the associated condi-
tions at the interface between the materials. Using
asymptotic analysis we derive conditions for the cou-
pling of the radiative transfer equations and a diffusion
approximation. Several test cases are treated and a
problem appearing in glass manufacturing processes is
computed. The results clearly show the advantages of a
domain decomposition approach. Accuracy equivalent
to the solution of the global radiative transfer solu-
tion is achieved, whereas computation time is strongly
reduced.

(24 pages, 1998)

7. 1. Choquet

Heterogeneous catalysis modelling and
numerical simulation in rarified gas flows
Part I: Coverage locally at equilibrium

A new approach is proposed to model and simulate
numerically heterogeneous catalysis in rarefied gas
flows. It is developed to satisfy all together the follow-
ing points:

1) describe the gas phase at the microscopic scale, as
required in rarefied flows,

2) describe the wall at the macroscopic scale, to avoid
prohibitive computational costs and consider not only
crystalline but also amorphous surfaces,

3) reproduce on average macroscopic laws correlated
with experimental results and

4) derive analytic models in a systematic and exact
way. The problem is stated in the general framework
of a non static flow in the vicinity of a catalytic and
non porous surface (without aging). It is shown that
the exact and systematic resolution method based

on the Laplace transform, introduced previously by
the author to model collisions in the gas phase, can
be extended to the present problem. The proposed
approach is applied to the modelling of the EleyRideal
and LangmuirHinshelwood recombinations, assuming
that the coverage is locally at equilibrium. The models
are developed considering one atomic species and
extended to the general case of several atomic species.
Numerical calculations show that the models derived in
this way reproduce with accuracy behaviors observed
experimentally.

(24 pages, 1998)

8. J. Ohser, B. Steinbach, C. Lang
Efficient Texture Analysis of Binary Images

A new method of determining some characteristics

of binary images is proposed based on a special linear
filtering. This technique enables the estimation of the
area fraction, the specific line length, and the specific
integral of curvature. Furthermore, the specific length
of the total projection is obtained, which gives detailed
information about the texture of the image. The
influence of lateral and directional resolution depend-
ing on the size of the applied filter mask is discussed in
detail. The technique includes a method of increasing
directional resolution for texture analysis while keeping
lateral resolution as high as possible.

(17 pages, 1998)

9. J. Orlik

Homogenization for viscoelasticity of the
integral type with aging and shrinkage

A multiphase composite with periodic distributed
inclusions with a smooth boundary is considered in this
contribution. The composite component materials are
supposed to be linear viscoelastic and aging (of the
nonconvolution integral type, for which the Laplace
transform with respect to time is not effectively appli-
cable) and are subjected to isotropic shrinkage. The
free shrinkage deformation can be considered as a ficti-
tious temperature deformation in the behavior law. The
procedure presented in this paper proposes a way to
determine average (effective homogenized) viscoelastic
and shrinkage (temperature) composite properties and
the homogenized stressfield from known properties

of the components. This is done by the extension of
the asymptotic homogenization technique known for
pure elastic nonhomogeneous bodies to the nonhomo-
geneous thermoviscoelasticity of the integral noncon-



volution type. Up to now, the homogenization theory
has not covered viscoelasticity of the integral type.
SanchezPalencia (1980), Francfort & Suquet (1987) (see
[2], [9]) have considered homogenization for viscoelas-
ticity of the differential form and only up to the first
derivative order. The integralmodeled viscoelasticity

is more general then the differential one and includes
almost all known differential models. The homogeni-
zation procedure is based on the construction of an
asymptotic solution with respect to a period of the
composite structure. This reduces the original problem
to some auxiliary boundary value problems of elastic-
ity and viscoelasticity on the unit periodic cell, of the
same type as the original non-homogeneous problem.
The existence and uniqueness results for such problems
were obtained for kernels satisfying some constrain
conditions. This is done by the extension of the Volterra
integral operator theory to the Volterra operators with
respect to the time, whose 1 kernels are space linear
operators for any fixed time variables. Some ideas of
such approach were proposed in [11] and [12], where
the Volterra operators with kernels depending addi-
tionally on parameter were considered. This manuscript
delivers results of the same nature for the case of the
spaceoperator kernels.

(20 pages, 1998)

10. J. Mohring
Helmholtz Resonators with Large Aperture

The lowest resonant frequency of a cavity resona-

tor is usually approximated by the classical Helmholtz
formula. However, if the opening is rather large and
the front wall is narrow this formula is no longer valid.
Here we present a correction which is of third order

in the ratio of the diameters of aperture and cavity. In
addition to the high accuracy it allows to estimate the
damping due to radiation. The result is found by apply-
ing the method of matched asymptotic expansions. The
correction contains form factors describing the shapes
of opening and cavity. They are computed for a num-
ber of standard geometries. Results are compared with
numerical computations.

(21 pages, 1998)

11. H. W. Hamacher, A. Schobel
On Center Cycles in Grid Graphs

Finding “good” cycles in graphs is a problem of great
interest in graph theory as well as in locational analy-
sis. We show that the center and median problems are
NP hard in general graphs. This result holds both for
the variable cardinality case (i.e. all cycles of the graph
are considered) and the fixed cardinality case (i.e. only
cycles with a given cardinality p are feasible). Hence
itis of interest to investigate special cases where the
problem is solvable in polynomial time. In grid graphs,
the variable cardinality case is, for instance, trivially
solvable if the shape of the cycle can be chosen freely.
If the shape is fixed to be a rectangle one can ana-
lyze rectangles in grid graphs with, in sequence, fixed
dimension, fixed cardinality, and variable cardinality.
In all cases a complete characterization of the optimal
cycles and closed form expressions of the optimal
objective values are given, yielding polynomial time
algorithms for all cases of center rectangle problems.
Finally, it is shown that center cycles can be chosen as
rectangles for small cardinalities such that the center
cycle problem in grid graphs is in these cases com-
pletely solved.

(15 pages, 1998)

12. H. W. Hamacher, K.-H. Kufer
Inverse radiation therapy planning -
a multiple objective optimisation approach

For some decades radiation therapy has been proved
successful in cancer treatment. It is the major task of
clinical radiation treatment planning to realize on the
one hand a high level dose of radiation in the cancer
tissue in order to obtain maximum tumor control. On
the other hand it is obvious that it is absolutely neces-
sary to keep in the tissue outside the tumor, particularly
in organs at risk, the unavoidable radiation as low as
possible.

No doubt, these two objectives of treatment planning
- high level dose in the tumor, low radiation outside the
tumor - have a basically contradictory nature. Therefore,
it is no surprise that inverse mathematical models with
dose distribution bounds tend to be infeasible in most
cases. Thus, there is need for approximations com-
promising between overdosing the organs at risk and
underdosing the target volume.

Differing from the currently used time consuming
iterative approach, which measures deviation from an
ideal (non-achievable) treatment plan using recursively
trial-and-error weights for the organs of interest, we
go a new way trying to avoid a priori weight choices
and consider the treatment planning problem as a mul-
tiple objective linear programming problem: with each
organ of interest, target tissue as well as organs at risk,
we associate an objective function measuring the maxi-
mal deviation from the prescribed doses.

We build up a data base of relatively few efficient
solutions representing and approximating the variety
of Pareto solutions of the multiple objective linear
programming problem. This data base can be easily
scanned by physicians looking for an adequate treat-
ment plan with the aid of an appropriate online tool.
(14 pages, 1999)

13. C. Lang, J. Ohser, R. Hilfer
On the Analysis of Spatial Binary Images

This paper deals with the characterization of micro-
scopically heterogeneous, but macroscopically homo-
geneous spatial structures. A new method is presented
which is strictly based on integral-geometric formulae
such as Crofton’s intersection formulae and Hadwiger's
recursive definition of the Euler number. The corre-
sponding algorithms have clear advantages over other
techniques. As an example of application we consider
the analysis of spatial digital images produced by
means of Computer Assisted Tomography.

(20 pages, 1999)

14. M. Junk

On the Construction of Discrete Equilibrium
Distributions for Kinetic Schemes

A general approach to the construction of discrete
equilibrium distributions is presented. Such distribution
functions can be used to set up Kinetic Schemes as
well as Lattice Boltzmann methods. The general prin-
ciples are also applied to the construction of Chapman
Enskog distributions which are used in Kinetic Schemes
for compressible Navier-Stokes equations.

(24 pages, 1999)

15. M. Junk, S. V. Raghurame Rao
A new discrete velocity method for Navier-
Stokes equations

The relation between the Lattice Boltzmann Method,
which has recently become popular, and the Kinetic
Schemes, which are routinely used in Computational
Fluid Dynamics, is explored. A new discrete veloc-

ity model for the numerical solution of Navier-Stokes
equations for incompressible fluid flow is presented by
combining both the approaches. The new scheme can
be interpreted as a pseudo-compressibility method and,
for a particular choice of parameters, this interpretation
carries over to the Lattice Boltzmann Method.

(20 pages, 1999)

16. H. Neunzert
Mathematics as a Key to Key Technologies

The main part of this paper will consist of examples,
how mathematics really helps to solve industrial prob-
lems; these examples are taken from our Institute for
Industrial Mathematics, from research in the Techno-
mathematics group at my university, but also from
ECMI groups and a company called TecMath, which
originated 10 years ago from my university group and
has already a very successful history.

(39 pages (4 PDF-Files), 1999)

17. ). Ohser, K. Sandau

Considerations about the Estimation of the
Size Distribution in Wicksell’s Corpuscle
Problem

Wicksell’s corpuscle problem deals with the estima-
tion of the size distribution of a population of particles,
all having the same shape, using a lower dimensional
sampling probe. This problem was originary formulated
for particle systems occurring in life sciences but its
solution is of actual and increasing interest in materials
science. From a mathematical point of view, Wicksell's
problem is an inverse problem where the interest-

ing size distribution is the unknown part of a Volterra
equation. The problem is often regarded ill-posed,
because the structure of the integrand implies unstable
numerical solutions. The accuracy of the numerical
solutions is considered here using the condition num-
ber, which allows to compare different numerical meth-
ods with different (equidistant) class sizes and which
indicates, as one result, that a finite section thickness
of the probe reduces the numerical problems. Fur-
thermore, the relative error of estimation is computed
which can be split into two parts. One part consists

of the relative discretization error that increases for
increasing class size, and the second part is related

to the relative statistical error which increases with
decreasing class size. For both parts, upper bounds

can be given and the sum of them indicates an optimal
class width depending on some specific constants.

(18 pages, 1999)

18. E. Carrizosa, H. W. Hamacher, R. Klein,
S. Nickel

Solving nonconvex planar location prob-
lems by finite dominating sets

It is well-known that some of the classical location
problems with polyhedral gauges can be solved in
polynomial time by finding a finite dominating set, i.e.
a finite set of candidates guaranteed to contain at least
one optimal location.

In this paper it is first established that this result holds



for a much larger class of problems than currently con-
sidered in the literature. The model for which this result
can be proven includes, for instance, location problems
with attraction and repulsion, and location-allocation
problems.

Next, it is shown that the approximation of general
gauges by polyhedral ones in the objective function of
our general model can be analyzed with regard to the
subsequent error in the optimal objective value. For
the approximation problem two different approaches
are described, the sandwich procedure and the greedy
algorithm. Both of these approaches lead - for fixed
epsilon - to polynomial approximation algorithms with
accuracy epsilon for solving the general model con-
sidered in this paper.

Keywords: Continuous Location, Polyhedral Gauges,
Finite Dominating Sets, Approximation, Sandwich Algo-
rithm, Greedy Algorithm

(19 pages, 2000)

19. A. Becker
A Review on Image Distortion Measures

Within this paper we review image distortion measures.
A distortion measure is a criterion that assigns a “qual-
ity number” to an image. We distinguish between
mathematical distortion measures and those distortion
measures in-cooperating a priori knowledge about
the imaging devices ( e.g. satellite images), image pro-
cessing algorithms or the human physiology. We will
consider representative examples of different kinds of
distortion measures and are going to discuss them.
Keywords: Distortion measure, human visual system
(26 pages, 2000)

20. H. W. Hamacher, M. Labbé, S. Nickel,
T. Sonneborn

Polyhedral Properties of the Uncapacitated
Multiple Allocation Hub Location Problem

We examine the feasibility polyhedron of the unca-
pacitated hub location problem (UHL) with multiple
allocation, which has applications in the fields of air
passenger and cargo transportation, telecommuni-
cation and postal delivery services. In particular we
determine the dimension and derive some classes of
facets of this polyhedron. We develop some general
rules about lifting facets from the uncapacitated facility
location (UFL) for UHL and projecting facets from UHL
to UFL. By applying these rules we get a new class of
facets for UHL which dominates the inequalities in the
original formulation. Thus we get a new formulation of
UHL whose constraints are all facet-defining. We show
its superior computational performance by benchmark-
ing it on a well known data set.

Keywords: integer programming, hub location, facility
location, valid inequalities, facets, branch and cut

(21 pages, 2000)

21. H. W. Hamacher, A. Schobel

Design of Zone Tariff Systems in Public
Transportation

Given a public transportation system represented by its
stops and direct connections between stops, we con-
sider two problems dealing with the prices for the cus-
tomers: The fare problem in which subsets of stops are
already aggregated to zones and “good” tariffs have
to be found in the existing zone system. Closed form
solutions for the fare problem are presented for three
objective functions. In the zone problem the design

of the zones is part of the problem. This problem is NP

hard and we therefore propose three heuristics which
prove to be very successful in the redesign of one of
Germany's transportation systems.

(30 pages, 2001)

22. D. Hietel, M. Junk, R. Keck, D. Teleaga:
The Finite-Volume-Particle Method for
Conservation Laws

In the Finite-Volume-Particle Method (FVPM), the weak
formulation of a hyperbolic conservation law is discretized
by restricting it to a discrete set of test functions. In
contrast to the usual Finite-Volume approach, the test
functions are not taken as characteristic functions of the
control volumes in a spatial grid, but are chosen from a
partition of unity with smooth and overlapping partition
functions (the particles), which can even move along
pre- scribed velocity fields. The information exchange
between particles is based on standard numerical flux
functions. Geometrical information, similar to the sur-
face area of the cell faces in the Finite-Volume Method
and the corresponding normal directions are given as
integral quantities of the partition functions. After a
brief derivation of the Finite-Volume-Particle Method,
this work focuses on the role of the geometric coeffi-
cients in the scheme.

(16 pages, 2001)

23. T. Bender, H. Hennes, J. Kalcsics,
M. T. Melo, S. Nickel

Location Software and Interface with GIS
and Supply Chain Management

The objective of this paper is to bridge the gap
between location theory and practice. To meet this
objective focus is given to the development of soft-
ware capable of addressing the different needs of a
wide group of users. There is a very active commu-
nity on location theory encompassing many research
fields such as operations research, computer science,
mathematics, engineering, geography, economics and
marketing. As a result, people working on facility loca-
tion problems have a very diverse background and also
different needs regarding the software to solve these
problems. For those interested in non-commercial
applications (e. g. students and researchers), the library
of location algorithms (LoLA can be of considerable
assistance. LoLA contains a collection of efficient algo-
rithms for solving planar, network and discrete facility
location problems. In this paper, a detailed description
of the functionality of LoLA is presented. In the fields
of geography and marketing, for instance, solving facil-
ity location problems requires using large amounts of
demographic data. Hence, members of these groups
(e. g. urban planners and sales managers) often work
with geographical information too s. To address the
specific needs of these users, LoLA was inked to a
geographical information system (GIS) and the details
of the combined functionality are described in the
paper. Finally, there is a wide group of practitioners
who need to solve large problems and require special
purpose software with a good data interface. Many of
such users can be found, for example, in the area of
supply chain management (SCM). Logistics activities
involved in strategic SCM include, among others, facil-
ity location planning. In this paper, the development of
a commercial location software tool is also described.
The too is embedded in the Advanced Planner and
Optimizer SCM software developed by SAP AG, Wall-
dorf, Germany. The paper ends with some conclusions
and an outlook to future activities.

Keywords: facility location, software development,

geographical information systems, supply chain man-
agement.
(48 pages, 2001)

24. H. W. Hamacher, S. A. Tjandra

Mathematical Modelling of Evacuation
Problems: A State of Art

This paper details models and algorithms which can

be applied to evacuation problems. While it concen-
trates on building evacuation many of the results are
applicable also to regional evacuation. All models
consider the time as main parameter, where the travel
time between components of the building is part of the
input and the overall evacuation time is the output. The
paper distinguishes between macroscopic and micro-
scopic evacuation models both of which are able to
capture the evacuees’ movement over time.
Macroscopic models are mainly used to produce good
lower bounds for the evacuation time and do not con-
sider any individual behavior during the emergency
situation. These bounds can be used to analyze exist-
ing buildings or help in the design phase of planning a
building. Macroscopic approaches which are based on
dynamic network flow models (minimum cost dynamic
flow, maximum dynamic flow, universal maximum
flow, quickest path and quickest flow) are described. A
special feature of the presented approach is the fact,
that travel times of evacuees are not restricted to be
constant, but may be density dependent. Using multi-
criteria optimization priority regions and blockage due
to fire or smoke may be considered. It is shown how
the modelling can be done using time parameter either
as discrete or continuous parameter.

Microscopic models are able to model the individual
evacuee's characteristics and the interaction among
evacuees which influence their movement. Due to the
corresponding huge amount of data one uses simu-
lation approaches. Some probabilistic laws for indi-
vidual evacuee’s movement are presented. Moreover
ideas to model the evacuee’s movement using cellular
automata (CA) and resulting software are presented.
In this paper we will focus on macroscopic models and
only summarize some of the results of the microscopic
approach. While most of the results are applicable to
general evacuation situations, we concentrate on build-
ing evacuation.

(44 pages, 2001)

25. J. Kuhnert, S. Tiwari

Grid free method for solving the Poisson
equation

A Grid free method for solving the Poisson equation

is presented. This is an iterative method. The method
is based on the weighted least squares approximation
in which the Poisson equation is enforced to be satis-
fied in every iterations. The boundary conditions can
also be enforced in the iteration process. This is a local
approximation procedure. The Dirichlet, Neumann and
mixed boundary value problems on a unit square are
presented and the analytical solutions are compared
with the exact solutions. Both solutions matched per-
fectly.

Keywords: Poisson equation, Least squares method,
Grid free method

(19 pages, 2001)



26. T. Gotz, H. Rave, D. Reinel-Bitzer,
K. Steiner, H. Tiemeier
Simulation of the fiber spinning process

To simulate the influence of process parameters to the
melt spinning process a fiber model is used and coupled
with CFD calculations of the quench air flow. In the fiber
model energy, momentum and mass balance are solved
for the polymer mass flow. To calculate the quench air
the Lattice Boltzmann method is used. Simulations and
experiments for different process parameters and hole
configurations are compared and show a good agree-
ment.

Keywords: Melt spinning, fiber model, Lattice
Boltzmann, CFD

(19 pages, 2001)

27. A. Zemitis

On interaction of a liquid film with an
obstacle

In this paper mathematical models for liquid films
generated by impinging jets are discussed. Attention

is stressed to the interaction of the liquid film with
some obstacle. S. G. Taylor [Proc. R. Soc. London Ser.
A 253, 313 (1959)] found that the liquid film gener-
ated by impinging jets is very sensitive to properties

of the wire which was used as an obstacle. The aim of
this presentation is to propose a modification of the
Taylor’'s model, which allows to simulate the film shape
in cases, when the angle between jets is different from
180°. Numerical results obtained by discussed models
give two different shapes of the liquid film similar as

in Taylors experiments. These two shapes depend on
the regime: either droplets are produced close to the
obstacle or not. The difference between two regimes
becomes larger if the angle between jets decreases.
Existence of such two regimes can be very essential for
some applications of impinging jets, if the generated
liquid film can have a contact with obstacles.
Keywords: impinging jets, liquid film, models, numeri-
cal solution, shape
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28. . Ginzburg, K. Steiner

Free surface lattice-Boltzmann method to
model the filling of expanding cavities by
Bingham Fluids

The filling process of viscoplastic metal alloys and plas-
tics in expanding cavities is modelled using the lattice
Boltzmann method in two and three dimensions. These
models combine the regularized Bingham model for
viscoplastic with a free-interface algorithm. The latter
is based on a modified immiscible lattice Boltzmann
model in which one species is the fluid and the other
one is considered as vacuum. The boundary conditions
at the curved liquid-vacuum interface are met without
any geometrical front reconstruction from a first-order
Chapman-Enskog expansion. The numerical results
obtained with these models are found in good agree-
ment with available theoretical and numerical analysis.
Keywords: Generalized LBE, free-surface phenomena,
interface boundary conditions, filling processes, Bing-
ham viscoplastic model, reqularized models

(22 pages, 2001)

29. H. Neunzert

»Denn nichts ist fiir den Menschen als Men-
schen etwas wert, was er nicht mit Leiden-
schaft tun kann«

Vortrag anlasslich der Verleihung des Akademie-
preises des Landes Rheinland-Pfalz am 21.11.2001

Was macht einen guten Hochschullehrer aus? Auf
diese Frage gibt es sicher viele verschiedene, fach-
bezogene Antworten, aber auch ein paar allgemeine
Gesichtspunkte: es bedarf der »Leidenschaft« far

die Forschung (Max Weber), aus der dann auch die
Begeisterung fur die Lehre erwachst. Forschung und
Lehre gehéren zusammen, um die Wissenschaft als
lebendiges Tun vermitteln zu kdnnen. Der Vortrag gibt
Beispiele daftr, wie in angewandter Mathematik Forsc-
hungsaufgaben aus praktischen Alltagsproblemstellun-
gen erwachsen, die in die Lehre auf verschiedenen
Stufen (Gymnasium bis Graduiertenkolleg) einflieBen;
er leitet damit auch zu einem aktuellen Forschungs-
gebiet, der Mehrskalenanalyse mit ihren vielfalti-

gen Anwendungen in Bildverarbeitung, Materialent-
wicklung und Strémungsmechanik tber, was aber nur
kurz gestreift wird. Mathematik erscheint hier als eine
moderne SchlUsseltechnologie, die aber auch enge
Beziehungen zu den Geistes- und Sozialwissenschaften
hat.

Keywords: Lehre, Forschung, angewandte Mathematik,
Mehrskalenanalyse, Strémungsmechanik

(18 pages, 2001)

30. J. Kuhnert, S. Tiwari

Finite pointset method based on the projec-
tion method for simulations of the incom-
pressible Navier-Stokes equations

A Lagrangian particle scheme is applied to the pro-
jection method for the incompressible Navier-Stokes
equations. The approximation of spatial derivatives is
obtained by the weighted least squares method. The
pressure Poisson equation is solved by a local iterative
procedure with the help of the least squares method.
Numerical tests are performed for two dimensional
cases. The Couette flow, Poiseuelle flow, decaying
shear flow and the driven cavity flow are presented.
The numerical solutions are obtained for stationary as
well as instationary cases and are compared with the
analytical solutions for channel flows. Finally, the driven
cavity in a unit square is considered and the stationary
solution obtained from this scheme is compared with
that from the finite element method.

Keywords: Incompressible Navier-Stokes equations,
Meshfree method, Projection method, Particle scheme,
Least squares approximation

AMS subject classification: 76D05, 76M28
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31. R. Korn, M. Krekel
Optimal Portfolios with Fixed Consumption
or Income Streams

We consider some portfolio optimisation problems
where either the investor has a desire for an a priori
specified consumption stream or/and follows a deter-
ministic pay in scheme while also trying to maximize
expected utility from final wealth. We derive explicit
closed form solutions for continuous and discrete mon-
etary streams. The mathematical method used is clas-
sical stochastic control theory.

Keywords: Portfolio optimisation, stochastic control,
HJB equation, discretisation of control problems.

(23 pages, 2002)

32. M. Krekel
Optimal portfolios with a loan dependent
credit spread

If an investor borrows money he generally has to pay
higher interest rates than he would have received, if he
had put his funds on a savings account. The classical
model of continuous time portfolio optimisation ignores
this effect. Since there is obviously a connection between
the default probability and the total percentage of wealth,
which the investor is in debt, we study portfolio optimisa-
tion with a control dependent interest rate. Assuming a
logarithmic and a power utility function, respectively, we
prove explicit formulae of the optimal control.

Keywords: Portfolio optimisation, stochastic control,
HJB equation, credit spread, log utility, power utility,
non-linear wealth dynamics

(25 pages, 2002)

33. J. Ohser, W. Nagel, K. Schladitz

The Euler number of discretized sets - on
the choice of adjacency in homogeneous
lattices

Two approaches for determining the Euler-Poincaré
characteristic of a set observed on lattice points are
considered in the context of image analysis { the inte-
gral geometric and the polyhedral approach. Informa-
tion about the set is assumed to be available on lattice
points only. In order to retain properties of the Euler
number and to provide a good approximation of the
true Euler number of the original set in the Euclidean
space, the appropriate choice of adjacency in the lat-
tice for the set and its background is crucial. Adjacen-
cies are defined using tessellations of the whole space
into polyhedrons. In R 3, two new 14 adjacencies

are introduced additionally to the well known 6 and
26 adjacencies. For the Euler number of a set and its
complement, a consistency relation holds. Each of the
pairs of adjacencies (14:1; 14:1), (14:2; 14:2), (6; 26),
and (26; 6) is shown to be a pair of complementary
adjacencies with respect to this relation. That is, the
approximations of the Euler numbers are consistent if
the set and its background (complement) are equipped
with this pair of adjacencies. Furthermore, sufficient
conditions for the correctness of the approximations
of the Euler number are given. The analysis of selected
microstructures and a simulation study illustrate how
the estimated Euler number depends on the chosen
adjacency. It also shows that there is not a uniquely
best pair of adjacencies with respect to the estimation
of the Euler number of a set in Euclidean space.
Keywords: image analysis, Euler number, neighborhod
relationships, cuboidal lattice

(32 pages, 2002)

34. 1. Ginzburg, K. Steiner

Lattice Boltzmann Model for Free-Surface
flow and Its Application to Filling Process in
Casting

A generalized lattice Boltzmann model to simulate free-
surface is constructed in both two and three dimen-
sions. The proposed model satisfies the interfacial
boundary conditions accurately. A distinctive feature
of the model is that the collision processes is carried
out only on the points occupied partially or fully by the
fluid. To maintain a sharp interfacial front, the method
includes an anti-diffusion algorithm. The unknown
distribution functions at the interfacial region are con-
structed according to the first order Chapman-Enskog
analysis. The interfacial boundary conditions are satis-



fied exactly by the coefficients in the Chapman-Enskog
expansion. The distribution functions are naturally
expressed in the local interfacial coordinates. The mac-
roscopic quantities at the interface are extracted from
the least-square solutions of a locally linearized system
obtained from the known distribution functions. The
proposed method does not require any geometric front
construction and is robust for any interfacial topology.
Simulation results of realistic filling process are pre-
sented: rectangular cavity in two dimensions and Ham-
mer box, Campbell box, Sheffield box, and Motorblock
in three dimensions. To enhance the stability at high
Reynolds numbers, various upwind-type schemes are
developed. Free-slip and no-slip boundary conditions
are also discussed.

Keywords: Lattice Boltzmann models, free-surface
phenomena; interface boundary conditions, filling
processes, injection molding; volume of fluid method;
interface boundary conditions; advection-schemes;
upwind-schemes
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35. M. Gunther, A. Klar, T. Materne,

R. Wegener
Multivalued fundamental diagrams and
stop and go waves for continuum traffic
equations

In the present paper a kinetic model for vehicular traf-
fic leading to multivalued fundamental diagrams is
developed and investigated in detail. For this model
phase transitions can appear depending on the local
density and velocity of the flow. A derivation of asso-
ciated macroscopic traffic equations from the kinetic
equation is given. Moreover, numerical experiments
show the appearance of stop and go waves for high-
way traffic with a bottleneck.

Keywords: traffic flow, macroscopic equations, kinetic
derivation, multivalued fundamental diagram, stop and
go waves, phase transitions

(25 pages, 2002)

36. S. Feldmann, P. Lang, D. Pratzel-Wolters

Parameter influence on the zeros of net-
work determinants

To a network N(q) with determinant D(s;q) depend-
ing on a parameter vector g | R' via identification of
some of its vertices, a network N (g) is assigned. The
paper deals with procedures to find N* (g), such that
its determinant D" (s;q) admits a factorization in the
determinants of appropriate subnetworks, and with
the estimation of the deviation of the zeros of D* from
the zeros of D. To solve the estimation problem state
space methods are applied.

Keywords: Networks, Equicofactor matrix polynomials,
Realization theory, Matrix perturbation theory

(30 pages, 2002)

37. K. Koch, J. Ohser, K. Schladitz

Spectral theory for random closed sets and
estimating the covariance via frequency
space

A spectral theory for stationary random closed sets

is developed and provided with a sound mathemati-
cal basis. Definition and proof of existence of the
Bartlett spectrum of a stationary random closed set as
well as the proof of a Wiener-Khintchine theorem for
the power spectrum are used to two ends: First, well
known second order characteristics like the covariance

can be estimated faster than usual via frequency space.
Second, the Bartlett spectrum and the power spectrum
can be used as second order characteristics in fre-
quency space. Examples show, that in some cases infor-
mation about the random closed set is easier to obtain
from these characteristics in frequency space than from
their real world counterparts.

Keywords: Random set, Bartlett spectrum, fast Fourier
transform, power spectrum
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38. D. d'Humiéres, I. Ginzburg

Multi-reflection boundary conditions for
lattice Boltzmann models

We present a unified approach of several boundary
conditions for lattice Boltzmann models. Its general
framework is a generalization of previously introduced
schemes such as the bounce-back rule, linear or qua-
dratic interpolations, etc. The objectives are two fold:
first to give theoretical tools to study the existing
boundary conditions and their corresponding accu-
racy; secondly to design formally third- order accurate
boundary conditions for general flows. Using these
boundary conditions, Couette and Poiseuille flows are
exact solution of the lattice Boltzmann models for a
Reynolds number Re = 0 (Stokes limit).

Numerical comparisons are given for Stokes flows in
periodic arrays of spheres and cylinders, linear peri-
odic array of cylinders between moving plates and for
Navier-Stokes flows in periodic arrays of cylinders for
Re < 200. These results show a significant improve-
ment of the overall accuracy when using the linear
interpolations instead of the bounce-back reflection
(up to an order of magnitude on the hydrodynam-

ics fields). Further improvement is achieved with the
new multi-reflection boundary conditions, reaching a
level of accuracy close to the quasi-analytical reference
solutions, even for rather modest grid resolutions and
few points in the narrowest channels. More important,
the pressure and velocity fields in the vicinity of the
obstacles are much smoother with multi-reflection
than with the other boundary conditions.

Finally the good stability of these schemes is high-
lighted by some simulations of moving obstacles: a cyl-
inder between flat walls and a sphere in a cylinder.
Keywords: lattice Boltzmann equation, boudary condlis-
tions, bounce-back rule, Navier-Stokes equation
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39. R. Korn
Elementare Finanzmathematik

Im Rahmen dieser Arbeit soll eine elementar gehaltene
Einfuhrung in die Aufgabenstellungen und Prinzipien
der modernen Finanzmathematik gegeben werden.
Insbesondere werden die Grundlagen der Modellierung
von Aktienkursen, der Bewertung von Optionen und
der Portfolio-Optimierung vorgestellt. Naturlich kénnen
die verwendeten Methoden und die entwickelte Theo-
rie nicht in voller Allgemeinheit fir den Schuluntericht
verwendet werden, doch sollen einzelne Prinzipien so
heraus gearbeitet werden, dass sie auch an einfachen
Beispielen verstanden werden kénnen.

Keywords: Finanzmathematik, Aktien, Optionen, Port-
folio-Optimierung, Bérse, Lehrerweiterbildung, Mathe-
matikunterricht

(98 pages, 2002)

40. J. Kallrath, M. C. Muller, S. Nickel
Batch Presorting Problems:
Models and Complexity Results

In this paper we consider short term storage sys-

tems. We analyze presorting strategies to improve the
effiency of these storage systems. The presorting task
is called Batch PreSorting Problem (BPSP). The BPSP is a
variation of an assigment problem, i.e., it has an assig-
ment problem kernel and some additional constraints.
We present different types of these presorting prob-
lems, introduce mathematical programming formula-
tions and prove the NP-completeness for one type

of the BPSP. Experiments are carried out in order to
compare the different model formulations and to inves-
tigate the behavior of these models.

Keywords: Complexity theory, Integer programming,
Assigment, Logistics
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41. J. Linn

On the frame-invariant description of the
phase space of the Folgar-Tucker equation

The Folgar-Tucker equation is used in flow simula-
tions of fiber suspensions to predict fiber orientation
depending on the local flow. In this paper, a complete,
frame-invariant description of the phase space of this
differential equation is presented for the first time.
Key words: fiber orientation, Folgar-Tucker equation,
injection molding
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42. T. Hanne, S. Nickel

A Multi-Objective Evolutionary Algorithm
for Scheduling and Inspection Planning in
Software Development Projects

In this article, we consider the problem of planning
inspections and other tasks within a software develop-
ment (SD) project with respect to the objectives quality
(no. of defects), project duration, and costs. Based on a
discrete-event simulation model of SD processes com-
prising the phases coding, inspection, test, and rework,
we present a simplified formulation of the problem as
a multiobjective optimization problem. For solving the
problem (i.e. finding an approximation of the efficient
set) we develop a multiobjective evolutionary algo-
rithm. Details of the algorithm are discussed as well as
results of its application to sample problems.

Key words: multiple objective programming, project
management and scheduling, software development,
evolutionary algorithms, efficient set

(29 pages, 2003)

43. T. Bortfeld , K.-H. Kufer, M. Monz,
A. Scherrer, C. Thieke, H. Trinkaus

Intensity-Modulated Radiotherapy - A
Large Scale Multi-Criteria Programming
Problem -

Radiation therapy planning is always a tight rope walk
between dangerous insufficient dose in the target
volume and life threatening overdosing of organs at
risk. Finding ideal balances between these inherently
contradictory goals challenges dosimetrists and physi-
cians in their daily practice. Today’s planning systems
are typically based on a single evaluation function that
measures the quality of a radiation treatment plan.
Unfortunately, such a one dimensional approach can-



not satisfactorily map the different backgrounds of
physicians and the patient dependent necessities. So,
too often a time consuming iteration process between
evaluation of dose distribution and redefinition of the
evaluation function is needed.

In this paper we propose a generic multi-criteria
approach based on Pareto’s solution concept. For

each entity of interest - target volume or organ at risk
a structure dependent evaluation function is defined
measuring deviations from ideal doses that are calcu-
lated from statistical functions. A reasonable bunch of
clinically meaningful Pareto optimal solutions are stored
in a data base, which can be interactively searched by
physicians. The system guarantees dynamical planning
as well as the discussion of tradeoffs between different
entities.

Mathematically, we model the upcoming inverse prob-
lem as a multi-criteria linear programming problem.
Because of the large scale nature of the problem it is
not possible to solve the problem in a 3D-setting with-
out adaptive reduction by appropriate approximation
schemes.

Our approach is twofold: First, the discretization of the
continuous problem is based on an adaptive hierarchi-
cal clustering process which is used for a local refine-
ment of constraints during the optimization procedure.
Second, the set of Pareto optimal solutions is approxi-
mated by an adaptive grid of representatives that are
found by a hybrid process of calculating extreme com-
promises and interpolation methods.

Keywords: multiple criteria optimization, representa-
tive systems of Pareto solutions, adaptive triangulation,
clustering and disaggregation techniques, visualization
of Pareto solutions, medical physics, external beam
radiotherapy planning, intensity modulated radio-
therapy
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