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INTRODUCTION

Herbivory is a profoundly important ecological
process that can limit the distribution and abundance
of plants, and that forms a major conduit for energy
transfer to higher trophic levels. Grazing — con-
sumption of growing plants — is a ubiquitous deter-
minant of plant abundance and distribution in ter-
restrial and marine ecosystems (see e.g. reviews by
Lubchenco & Gaines 1981, Huntly 1991). In marine
ecosystems, grazing by herbivores can suppress plants
and thereby modify ecosystems over vast areas, al-
though this phenomenon can be strongly influenced

by larval supply, predator activity, or presence of allo-
chthonous sources of food (e.g. Harrold & Reed 1985,
Sala et al. 1998).

One factor that can determine the influence of herbi-
vores is physical stress. In the ocean, a powerful type of
physical stress is caused by wave motion. Waves can
influence the intensity of grazing through a number of
mechanisms, including changing the behaviour of her-
bivores, affecting mortality of herbivores, influencing
settlement and recruitment of both herbivores and
algae, or influencing the type and availability of
allochthonous food sources. For example, foraging by
some species of sea urchins is reduced in conditions of
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high water movement (e.g. Lissner 1980, Kawamata
1998), and sea urchins can be dislodged by even mod-
erate water movement (e.g. Tuya et al. 2007). Spatial
variability in the influence of waves occurs due to depth
and geomorphologic features that attenuate waves.
Due to the ubiquitous influence of water motion, spatial
variability in exposure to water motion can lead to
spatial variability in the abundances and behaviour of
herbivores and, therefore, the intensity of herbivory
(e.g. Duggins et al. 2001, Schanz et al. 2002). Along
more than ~1000 km of the southwestern coast of Aus-
tralia, rocky reefs oriented parallel to the coast create
an onshore–offshore gradient in wave exposure. This
gradient is reflected by differences between exposed
(offshore) and sheltered (inshore) reefs in the species
composition of macroalgae (Phillips et al. 1997), and the
attachment strength and morphology of the small kelp
Ecklonia radiata (Thomsen et al. 2004, Wernberg &
Thomsen 2005). The first aim of the present study was
to compare rates of herbivory on offshore and inshore
reefs to test whether position along the exposure gradi-
ent affects the intensity of herbivory.

In marine ecosystems — at least in contemporary
ones — the intensity of grazing by herbivores is typi-
cally greatest by fishes on tropical coral reefs, sea
urchins on temperate rocky reefs, gastropod molluscs
on intertidal rock platforms, and fishes and sea urchins
in some seagrass ecosystems (Lawrence 1975,
Hawkins & Hartnoll 1983, Steneck 1988, Heck &
Valentine 2006). On temperate rocky reefs, intense
grazing by dense populations of sea urchins can be the
major determinant of the benthos over extensive areas
(e.g. Foreman 1977, Andrew & O’Neill 2000). Often,
where sea urchins are abundant, rock surfaces are
bare or are covered by encrusting algae. In contrast,
where sea urchins are sparse or absent, rock surfaces
host stands of erect macroalgae. Unlike coral reefs,
herbivory by fish in temperate seas is typically a minor
influence on the benthos, although there are examples
in which herbivory by fish can lead to changes in bio-
mass and composition of primary producers on reefs
(e.g. Andrew & Jones 1990, Sala & Boudouresque
1997) and in seagrass meadows (e.g. Tomas et al.
2005b, Prado et al. 2007). Studies that have partitioned
grazing by sea urchins and fish are rare (but see Hay
1984, Tomas et al. 2005a); therefore, the second aim of
the present study was to measure the relative impor-
tance of grazing by fish and sea urchins on temperate
rocky reefs in western Australia.

Grazing is only one form of herbivory, another is con-
sumption of plants dislodged from the place they were
growing — this behaviour is frequently called ‘drift-
feeding’ when applied to marine herbivores (e.g. Har-
rold & Reed 1985, Day & Branch 2002b). Locations that
receive a regular supply of dislodged algae (‘drift

algae’) can host dense populations of herbivores, even
where in situ productivity is low (e.g. Bustamante et al.
1995). In the ocean, the availability of drift algae allows
a feeding behaviour that enables herbivores to persist
in otherwise stressful environments. For example, sea
urchins that have an abundant supply of drift kelp can
stay within cryptic microhabitats, avoiding a mobile
foraging behaviour that might expose them to dis-
lodgement by waves or attacks by predators (e.g. Har-
rold & Reed 1985). In addition, the availability of drift
algae can be strongly influenced by waves. For
example, the physical ‘drag’ exerted by waves can
dislodge or prune macroalgae (Thomsen & Wernberg
2005). The third aim of the present study was to mea-
sure the relative importance of direct grazing and
‘drift-feeding’, and to assess how this varied between
reefs with different levels of wave exposure.

In the present study we compared rates of consump-
tion of the small kelp Ecklonia radiata in different
treatments designed to separate (1) grazing by fish,
(2) grazing by sea urchins, and (3) consumption of dis-
lodged kelp by sea urchins. E. radiata is the dominant
alga on subtidal rock surfaces in temperate western
Australia (Wernberg et al. 2003), and is an important
food source for many consumers (Vanderklift et al.
2006, Crawley & Hyndes 2007). We tested whether the
3 types of E. radiata consumption differed between
inshore (sheltered) and offshore (exposed) reefs on the
lower west coast of Australia. We also tested for differ-
ences in primary productivity of E. radiata between
inshore and offshore reefs, in order to assess whether
spatial patterns in herbivory might be related to spatial
patterns in primary productivity. We tested for the
generality of patterns by taking measurements from
6 reefs at each of 2 locations separated by ~200 km.

MATERIALS AND METHODS

Study area. This study focussed on 2 locations on the
lower west coast of Australia: Jurien Bay (30° 17.3 S,
115° 02.5 E) and Marmion Lagoon (31° 49.4 S,
115° 44.0 E). We took measurements at 3 reefs at each
of 2 positions relative to the shore (inshore and off-
shore) at both locations (Fig. 1). Maximum depth at the
surveyed reefs ranged from 5 to 8 m. The subtidal reefs
in these locations are typically dominated by a canopy
of large brown algae, usually the small (<2 m) kelp
Ecklonia radiata or the fucoids Sargassum spp., and a
diverse assemblage of associated foliose algae (Wern-
berg et al. 2003). The most abundant large herbivores
are sea urchins (Vanderklift & Kendrick 2004) and
some fishes (Hutchins 2001, Wernberg et al. 2006).
Intensively grazed barrens have not been recorded
from reefs on this coast.

204



Vanderklift et al.: Herbivory on kelp by fish and sea urchins

The region experiences frequent sea breezes in
summer and storms in winter. Storms generate heavy
seas and swell, with significant offshore wave heights
exceeding 4 m on average 30 times per year (Lemm et
al. 1999). The wave energy at the shore is typically
reduced by refraction and attenuation of waves by off-
shore reefs (Masselink & Pattiaratchi 2001). Coastal
waters in southwestern Australia typically contain low
concentrations of inorganic nutrients (Lourey et al.
2006).

Our measurements focussed on contrasting offshore
and inshore reefs in the 2 locations. Offshore reefs
were always several km from the shore (range = 2.4 to
6.4 km) and were exposed to oceanic swells, while
inshore reefs were typically <1 km from the shore
(range = 0.1 to 1.4 km). All measurements were taken
during the austral spring–summer (between October
2004 and January 2005).

Data collection. Productivity of Ecklonia radiata was
measured following a method described by Mann &
Kirkman (1981) adapted by Fairhead & Cheshire
(2004). We marked individual kelp by punching a hole

into the central lamina, 5 cm from the junction be-
tween the stipe and the lamina. We marked 10 individ-
uals in patches of dense kelp at each reef, and
collected them 20 to 22 d later. The distance of the hole
from the junction between stipe and lamina was then
measured in the laboratory (allowing the extension to
be calculated by subtraction), and the first 20 cm of the
thallus was then cut into 5 cm strips and weighed. The
strip with the maximum biomass was then used to
calculate biomass accumulation (BA; g–1 ind.–1 d–1) as
BA = xw/5d, where x is the thallus extension (cm), w is
the wet weight (g) of the heaviest strip, and d is the
number of days between punching the hole and
collecting the kelp. Tagged kelp at one reef (Escape
Island, Jurien Bay) could not be retrieved due to
consistently poor weather conditions.

Consumption of Ecklonia radiata was measured
following a method described by Vanderklift & Wern-
berg (2008). Uneroded laterals that were free of
epiphytes were collected, placed between 2 sheets of
acrylic glass (the top sheet clear and the bottom sheet
white), and photographed. Laterals were secured by a

clothes peg and assigned to one of
4 treatments: (1) caged, enclosed in a
cage of plastic mesh (Nylex Gutter
Guard: mesh size 3 × 3 mm) to exclude
all large herbivores; (2) drift, clothes
peg attached to a ~50 cm length of
monofilament fishing line; (3) under-
storey, clothes peg attached to a length
of chain placed on the reef surface; and
(4) canopy, clothes peg attached to a
float tied to a ~50 cm length of black
nylon cord. The drift treatment was
intended to mimic the action of de-
tached kelp and estimate consumption
by sedentary herbivores (sea urchins);
the understorey treatment was inten-
ded to mimic kelp at the level of the
understorey and estimate consumption
by all large mobile herbivores; and the
canopy treatment was intended to
mimic kelp at the level of the canopy
and estimate consumption by herbivo-
rous fish only. After 2 to 3 d, the laterals
were collected and rephotographed.
Photographs of each piece before and
after deployment were analysed using
image analysis software (ImageJ, rsb.
info.nih.gov/ij/) to calculate surface
area, and the consumption (% loss d–1)
of each lateral was then calculated. The
error in area measurements between
photographs was up to ±9% (verified
from repeat photographs of laterals

205

Fig. 1. Surveyed reefs in Jurien Bay and Marmion Lagoon, western Australia.
Offshore reefs: NT = North Tail, SL = Seaward Ledge, EI = Escape Island,
TR = Two Rocks, HR = Horseshoe Reef, LI = Little Island. Inshore reefs: BV =
Booka Valley, NH = North Head, WR = Wire Reef, CR = Cow Rocks, MR = Map

Reef, LU = Lumps
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with no grazing or erosion), so any change in area
<10% was considered to be 0%. A previous study in
which drift and understorey mimics were placed in
plots cleared of all herbivorous invertebrates revealed
little or no loss due to erosion (Vanderklift & Wernberg
2008).

Abundances of herbivorous invertebrates (focussing
mainly on the sea urchin Heliocidaris erythrogramma,
although other large sedentary invertebrates were also
included) were counted in five 5 × 1 m transects
per reef. Abundances of herbivorous fishes were
counted by SCUBA divers in three 25 × 5 m transects
per reef.

Statistical analyses. All data were intended to be
analysed using mixed model ANOVA. However, the
absence of measurements of Ecklonia radiata produc-
tivity for Escape Island meant that the full ANOVA
model could not be applied. Instead, data for Jurien
Bay and Marmion Lagoon were analysed separately.
In both cases, data were analysed using nested
ANOVA, with the factors Exposure (fixed, 2 levels: off-
shore and inshore) and Reef (random and nested in
Exposure, with 3 levels in each case except for offshore
reefs at Jurien Bay, for which there were 2 levels).
Because not all tagged kelp were relocated at each
reef, data were reduced to an equal number of individ-
uals (n = 5) by exclusion of randomly selected individ-
uals. Untransformed data were used after Cochran’s
tests confirmed that variances were approximately
equal.

Data for daily rates of consumption of tethered kelp
laterals contained many zeros, and so parametric sta-
tistics were unsuitable. Instead, these data were
analysed using permutational multivariate ANOVA
(PERMANOVA; Anderson 2001). This method is
based on distances, and the statistical significance
of factors is tested by permutation. Because some of
the replicate tethers were missing, the original data
were not balanced, so data were reduced to n = 5 by
exclusion of randomly selected tethers. A mixed
effects analysis was used, with the factors Treatment
(4 levels, fixed), Exposure (2 levels, fixed), Location
(2 levels, random), and Reef (random and nested in
the Exposure × Location interaction, with 3 reefs in
each combination). Euclidean distances were calcu-
lated from untransformed data, and the permutation
tests used 4999 permutations of residuals under a
reduced model.

Patterns in densities of invertebrates and fish were
analysed by mixed effects ANOVA with the factors
Exposure (2 levels, fixed), Location (2 levels, random),
and Reef (random and nested in the Exposure × Loca-
tion interaction, with 3 reefs in each combination).
Prior to analyses, data were transformed to conform to
assumptions of heteroscedasticity and normality.

RESULTS

Ecklonia radiata productivity

Primary productivity (measured as biomass accumula-
tion) of individual Ecklonia radiata was 0.12 to 4.12 g wet
weight (WW) ind.–1 d–1, with means of 1.1 ± 0.8 g WW
ind.–1 d–1 at Marmion Lagoon and 1.5 ± 1.0 g WW ind.–1

d–1 at Jurien Bay. At Jurien Bay, primary productivity of
individual E. radiata was 0.8 g WW ind.–1 d–1 higher on
offshore reefs than inshore reefs (95% CI = 0.13–1.52;
ANOVA: MS = 4.14, F = 144.6, p = 0.001) (Fig. 2). There
were no differences between inshore and offshore reefs
at Marmion Lagoon (MS = 0.41, F = 0.48, p = 0.53). There
was no significant variation among reefs within an expo-
sure level at either location (p > 0.3).

Ecklonia radiata consumption

Differences in the daily rate of consumption varied
inconsistently among treatments from inshore and off-
shore reefs (significant Treatment × Exposure inter-
action), and from different reefs within each position
(significant Treatment × Reef interaction) (Table 1).
Measurable consumption of Ecklonia radiata laterals
occurred at all 6 inshore reefs, but no measurable con-
sumption occurred at any of the 6 offshore reefs: visual
inspection of the laterals from offshore reefs confirmed
that consumption did not occur (Fig. 3). Of the 4 treat-
ments, only one (drift) was consumed at all 6 inshore
reefs (Fig. 3), and one (caged) never showed any evi-
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Fig. 2. Ecklonia radiata. Productivity of tagged E. radiata
(g–1 wet weight d–1; n = 5, ±SE) at inshore and offshore reefs in
Jurien Bay and Marmion Lagoon. Abbreviations as in Fig. 1
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dence of consumption. At inshore reefs, consumption
of drift kelp was significantly higher than consumption
of caged and understorey kelp (Monte Carlo pairwise
comparison: p ≤ 0.01) but not of canopy kelp (p = 0.09).
Grazing marks and field observations of consumption
indicated that consumption of drift kelp was exclu-
sively by sea urchins (10 of 30 inshore drift kelp
showed evidence of consumption by sea urchins). Only
one species, the purple sea urchin Heliocidaris
erythrogramma, was observed to consume the drift
pieces (M. A. Vanderklift pers. obs.), although other
species of sea urchin were present.

Consumption by herbivorous fish was predomi-
nantly recorded on canopy-level kelp at a single
inshore reef, where this consumption was higher than
all other treatments (Monte Carlo pairwise tests: all
p < 0.05). Field observations and the size of the bite
marks indicated that consumption was probably due to
silver drummer Kyphosus sydneyanus, a large (maxi-
mum length ~70 cm) kyphosid. Consumption of under-
storey kelp was uncommon, recorded on only 4 of
60 tethers; observations of grazing marks indicated
that grazing was probably due to fish (2 tethers) and
sea urchins (2 tethers).

Abundance of herbivores

The purple sea urchin Heliocidaris erythrogramma
was the most abundant sea urchin recorded in our
surveys, comprising 78% of all sea urchins. Densities of
H. erythrogramma did not vary significantly between
inshore and offshore reefs (Table 2, Fig. 4), but showed
significant spatial variation at the largest scale (signifi-
cant Location effect), being more abundant at Jurien
Bay than Marmion Lagoon (Table 2).

Four taxa of herbivorous fishes were recorded in our
surveys: Kyphosus sydneyanus, K. cornelii, Odax cya-
nomelas, and Parma spp. When combined, their densi-

ties did not vary consistently between in-
shore and offshore reefs (Table 3, Fig. 5),
and the only statistically significant source
of spatial variation was among reefs within
locations (Table 3). Silver drummer K. syd-
neyanus comprised 23% of the total her-
bivorous fish count, and reflected the same
patterns, with no consistent variation be-
tween inshore and offshore reefs, and sta-
tistically significant among-reef variability
(Table 3, Fig. 5). The reef that hosted the
highest densities of K. sydneyanus (Cow
Rocks in Marmion Lagoon) was the same
reef where substantial consumption of the
canopy tethers was recorded.

DISCUSSION

Rates of herbivory on Ecklonia radiata were overall
much greater at inshore (more sheltered) reefs, than at
offshore (more exposed) reefs; some consumption oc-
curred at all inshore reefs, but no consumption occurred
at any offshore reefs. However, there were no overall
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Table 1. Results of permutational multivariate ANOVA on daily rates of
consumption of Ecklonia radiata, testing for differences between treatments,
locations, exposure, and among reefs. Values in bold are significant at 

α = 0.05; p-value is derived by a permutation test

Source of variation df MS F p

Treatment 3 213.20 14.25 0.067
Exposure 1 670.00 24.63 0.424
Location 1 27.20 0.30 0.560
Reef (Exposure × Location) 8 89.76 3.64 0.001
Treatment × Exposure 3 213.20 14.25 0.031
Treatment × Location 3 14.96 0.15 0.925
Treatment × Reef (Exposure × Location) 24 97.24 3.94 <0.001
Exposure × Location 1 27.20 0.30 0.567
Treatment × Exposure × Location 3 14.96 0.15 0.931
Residual 192 24.69

Fig. 3. Ecklonia radiata. Consumption of tethered pieces of
kelp (±SE, n = 5) at inshore reefs in Jurien Bay and Marmion
Lagoon. Results for offshore reefs and for the caged treatment
are not shown because no consumption was recorded. 

Abbreviations as in Fig. 1



Mar Ecol Prog Ser 376: 203–211, 2009

differences in the densities of the main herbivores (sea
urchins and fishes), and consumption was not strongly
related to herbivore density. (There was a statistically
significant correlation between density of Kyphosus syd-
neyanus and consumption of ‘canopy’ tethers, but this
was due to high values of each at a single site.) Her-
bivory almost always occurred in the form of consump-
tion of drifting kelp. Productivity of kelp was higher on
offshore reefs at Jurien Bay, but not at Marmion Lagoon.

Low rates of grazing by fish and sea urchins

Results from the present study show that direct
grazing on kelp by herbivorous fish and sea urchins is
relatively minor on the lower west coast of Australia.
Unequivocal evidence of direct grazing on kelp by fish
(i.e. consumption of tethers available only to swimming
organisms) was substantial at only one reef (Cow
Rocks: 13% consumption d–1). This reef was also
characterised by relatively high abundance of the
herbivorous fish Kyphosus sydneyanus and low bio-
mass of kelp (see Wernberg et al. 2006, authors’
unpubl. data). High abundances of K. sydneyanus at
this reef have also been recorded during previous
surveys (Wernberg et al. 2006), suggesting high tem-
poral consistency. This result suggests that grazing on
kelp by herbivorous fish might be locally important at
some reefs in southwestern Australia. Although graz-
ing by fish is typically low on temperate reefs in the
region, localised areas of intense grazing by fish do
occur elsewhere (e.g. Andrew & Jones 1990, Sala &
Boudouresque 1997).

The low level of direct consumption of understorey
tethers by sea urchins (only 2 of 60 tethers showed
characteristic sea urchin bite marks) suggests that
grazing by sea urchins is generally low across the
region. The low rates of grazing contradict suggestions
of general patterns of intercontinental differences (e.g.
higher rates of grazing in Australasia than the north
Pacific; Steinberg et al. 1995), and contrast with the
higher rates of grazing recorded in New Zealand (5 to
7% d–1; Steinberg et al. 1995) and in New South Wales
(~25% d–1; Steinberg & van Altena 1992). This contrast
supports the conclusion that regional differences in the
intensity of grazing exist in temperate Australasia
(Connell 2007). Demonstrating the basis for these
broad differences remains a challenge for ecologists. It
is possible that the distribution range of a single spe-
cies, the sea urchin Centrostephanus rodgersii, could
explain the differences. C. rodgersii is a key grazer in
eastern Australia, where its grazing activities result in
large areas devoid of erect algae (e.g. Fletcher 1987,
Andrew & O’Neill 2000), but it is absent from the west
coast, and the congener C. tenuispinus does not
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Table 3. Results of mixed effects ANOVA on ln(x+1)-trans-
formed counts of herbivorous fish, testing for differences 
in location, exposure, and among reefs. Values in bold are

significant at α = 0.05

Source of variation df MS F p

All herbivorous fish
Exposure 1 0.23 8.8 0.207
Location 1 1.47 1.43 0.266
Location × Exposure 1 0.03 0.03 0.878
Reef (Location × Exposure) 8 1.03 2.65 0.030
Residual 24 0.39

Kyphosus sydneyanus
Exposure 1 0.23 1.94 0.396
Location 1 3.88 2.67 0.141
Location × Exposure 1 0.12 0.08 0.783
Reef (Location × Exposure) 8 1.45 4.60 0.002
Residual 24 0.32

Table 2. Results of mixed effects analyses of variance on
ln(x+1)-transformed counts of the purple sea urchin Helioci-
daria erythrogramma, testing for differences in location,
exposure, and among reefs. Values in bold are significant at 

α = 0.05

Source of variation df MS F p

Exposure 1 0.55 17.63 0.149
Location 1 8.17 12.85 0.007
Location × Exposure 1 0.03 0.05 0.830
Reef (Location × Exposure) 8 0.64 1.72 0.118
Residual 48 0.37

Fig. 4. Heliocidaris erythrogramma. Densities of the purple sea
urchin H. erythrogramma (±SE, n = 5) at inshore and offshore
reefs in Jurien Bay and Marmion Lagoon. Abbreviations as in

Fig. 1
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appear to have the same impact. Heliocidaris erythro-
gramma is another species with the capacity to cause
barrens in some areas of eastern Australia (Wright &
Steinberg 2001, Valentine & Johnson 2005), yet
although it is present on the west coast, it is not associ-
ated with barrens. Connell & Irving (2008) speculated
that this pattern could relate to feeding behaviour, in
which H. erythrogramma will adopt a drift-feeding
behaviour until their density exceeds that which can
be sustained by the drift available. The results of the
present study are consistent with this idea.

In general, the densities of sea urchins recorded in the
present study were low (<1 m–2), and low rates of grazing
might simply reflect these low densities. However, a
study at a nearby location also found low rates of graz-
ing, although densities of sea urchins were markedly
higher (5.8 m–2; Vanderklift & Wernberg 2008). There is
increasing evidence that, although grazing by sea
urchins undoubtedly modifies ecosystems at some
places, density of sea urchins alone does not lead to high
rates of grazing, as many species assume a drift-feeding
behaviour (Castilla & Moreno 1982, Harrold & Reed
1985, Day & Branch 2002a, Shears et al. 2008).

Most herbivory was drift-feeding by sea urchins

In the present study, most of the consumption mea-
sured was on drifting fragments of kelp, and this
consumption was typically by sea urchins: 10 of 30 drift

tethers inshore showed evidence of consumption by
urchins. This form of consumption was recorded at
each of the inshore reefs at both locations, indicating
that it is generally important along the coast. Con-
sumption of drifting fragments of algae is a common
behaviour among sea urchins (e.g. Castilla & Moreno
1982, Harrold & Reed 1985), and this behaviour might
be especially advantageous in situations in which a
mobile foraging behaviour might be hazardous — for
example, where wave motion can dislodge sea urchins
or where the risk of being eaten by predators is high.

Herbivory restricted to inshore reefs

Differences between inshore and offshore reefs (our
proxy for exposure to waves) existed for primary pro-
ductivity of Ecklonia radiata (but only at one location),
and were strong for consumption of tethered pieces of
kelp (no consumption was recorded offshore), but
were not detected for abundances of any of the groups
of herbivores we studied.

Based on a mean density of adult sporophytes of
Ecklonia radiata of 11 to 30 m–2 (Wernberg et al. 2005),
our estimates of productivity equate to 1–123 g WW
m–2 d–1. These estimates are comparable to Kirkman’s
(1984) estimates of daily productivity (17 to 120 g WW
m–2 d–1). Rates of productivity are lower in cooler win-
ter months, but nevertheless yearly rates of productiv-
ity are substantial (20.7 kg WW m–2; Kirkman 1984). As
little of the biomass produced is grazed directly at most
reefs, this creates a substantial potential supply of drift;
indeed, large volumes of drift kelp are conspicuous on
some beaches in the area (e.g. Ince et al. 2007).

The higher productivity at offshore reefs at Jurien Bay
might reflect greater water movement or clearer water,
both of which can enhance growth (Hurd 2000). The
findings with respect to productivity are consistent with
patterns of δ13C; offshore kelp at Jurien Bay, but not
Marmion Lagoon, has lower δ13C values than those of
inshore reefs (Babcock et al. 2006). Low δ13C is consistent
with discrimination against 13C, and may occur when the
diffusive boundary layer, which frequently limits carbon
diffusion to aquatic plants and algae (Hemminga &
Mateo 1996), is reduced. Algal productivity is known to
increase with increasing water velocity (see Hurd 2000),
partly through the breakdown of this diffusive boundary
layer. The pattern of higher productivity at offshore reefs
is therefore consistent with low δ13C values if offshore
wave energy is sufficient to break down diffusive bound-
ary layers. The absence of difference in productivity and
δ13C among reefs at Marmion Lagoon may reflect less
variation in current velocities at the site, though we do
not have data to test this. The patterns in δ13C suggest
that the spatial patterns in productivity we observed
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Fig. 5. Densities of herbivorous fish (± SE, n = 3) at inshore
and offshore reefs in Jurien Bay and Marmion Lagoon. Light
grey shading: abundance of Kyphosus sydneyanus; black:
abundance of all other herbivorous fishes. Abbreviations as 

in Fig. 1
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might be temporally consistent. If this is the case, it
further implies that offshore reefs at Jurien Bay yield a
higher productivity per unit area than inshore reefs. As
no herbivory was recorded offshore, a greater proportion
of offshore kelp productivity is potentially available for
export to adjacent habitats, further suggesting a spatial
differential in the significance of offshore and inshore
reefs as a source of drift kelp for herbivores in recipient
habitats.

The observed difference in consumption between in-
shore and offshore reefs at both locations suggests that
consumption is not limited by productivity, but by expo-
sure. Wave exposure can affect rates of herbivory by
influencing the abundance or behaviour of herbivores
(Duggins et al. 2001). The lack of differences in abun-
dances of herbivorous fish and sea urchins is inconsistent
with an influence of waves on abundance. Results from
the present study are more consistent with water move-
ment reducing foraging of herbivores offshore. This is
consistent with studies that have shown differences in
rates of herbivory at varying magnitudes of water motion
(e.g. Kawamata 1998, Schanz et al. 2002).

The absence of consumption of drift kelp at offshore
reefs does not seem consistent with expectations, as
reduced foraging might be expected to increase the
amount of time sea urchins spend in a sedentary ‘sit-and-
wait’ behaviour. In fact, Heliocidaris erythrogramma in
the study region typically occupies crevices or small hol-
lows in the reef, from which they move rarely or not at all
(M. A. Vanderklift pers. obs.); individuals from both ex-
posed and sheltered reefs are likely adopting this behav-
iour. However, this requires urchins to be able to en-
counter drifting material, and the lack of consumption at
offshore reefs might reflect more rapid movement of
drift, or perhaps some other mechanical inhibition of the
urchin’s ability locate and capture drift material.

Understanding the nature of the interactions
between wave exposure, primary productivity, and
rates of herbivory is important, especially in the con-
text of long-term changes in the processes that gener-
ate storms in southwestern Australia, which are occur-
ring due to atmospheric warming in the southern
hemisphere (Frederiksen & Frederiksen 2007). Storms
are a major source of mortality for kelp, and a major
agent for making kelp available as drift. Continued
reductions in the frequency and/or severity of storms
might therefore benefit grazers by reducing spatial
and temporal exposure to storm waves. However, such
reductions might also change the supply of drift kelp
by decreasing rates of dislodgement and transport, an
outcome that would disadvantage herbivores that rely
on drift kelp. Given the importance of trophic linkages
between inshore and offshore reefs (Vanderklift &
Wernberg 2008), our uncertainty about how sensitive
these linkages are to perturbations, and the need to

account for these linkages (e.g. Valentine & Heck
2005), an increased understanding of these interac-
tions is vital.
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