
Intensive Working Memory Training Produces Functional
Changes in Large-scale Frontoparietal Networks

The MIT Faculty has made this article openly available. Please share 
how this access benefits you. Your story matters.

Citation Thompson, Todd W. et al. “Intensive Working Memory Training
Produces Functional Changes in Large-Scale Frontoparietal
Networks.” Journal of Cognitive Neuroscience 28, 4 (April 2016):
575–588 © 2016 Massachusetts Institute of Technology

As Published http://dx.doi.org/10.1162/JOCN_A_00916

Publisher MIT Press

Version Final published version

Citable link http://hdl.handle.net/1721.1/112145

Terms of Use Article is made available in accordance with the publisher's
policy and may be subject to US copyright law. Please refer to the
publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/112145


Intensive Working Memory Training Produces Functional
Changes in Large-scale Frontoparietal Networks

Todd W. Thompson1,2*, Michael L. Waskom1,3*, and John D. E. Gabrieli1

Abstract

■ Working memory is central to human cognition, and inten-

sive cognitive training has been shown to expand working

memory capacity in a given domain. It remains unknown, how-

ever, how the neural systems that support working memory are

altered through intensive training to enable the expansion of

working memory capacity. We used fMRI to measure plasticity

in activations associated with complex working memory before

and after 20 days of training. Healthy young adults were ran-

domly assigned to train on either a dual n-back working mem-

ory task or a demanding visuospatial attention task. Training

resulted in substantial and task-specific expansion of dual

n-back abilities accompanied by changes in the relationship be-

tween working memory load and activation. Training differ-

entially affected activations in two large-scale frontoparietal

networks thought to underlie working memory: the executive

control network and the dorsal attention network. Activations

in both networks linearly scaled with working memory load

before training, but training dissociated the role of the two

networks and eliminated this relationship in the executive con-

trol network. Load-dependent functional connectivity both

within and between these two networks increased following

training, and the magnitudes of increased connectivity were

positively correlated with improvements in task performance.

These results provide insight into the adaptive neural systems

that underlie large gains in working memory capacity through

training. ■

INTRODUCTION

Effectively using working memory (WM) allows humans

to maintain and manipulate goal-relevant information in

the face of interference (Baddeley, 1992). WM capacity

(WMC), the amount of information that an individual

can hold in WM, is associated with performance on a

wide range of cognitive tasks, including reasoning, prob-

lem solving, and reading comprehension (Engle, Tuholski,

Laughlin, & Conway, 1999; Daneman & Carpenter, 1980),

as well as academic performance (e.g., Finn et al., 2014;

Gathercole, Pickering, Knight, & Stegmann, 2004). Although

WMC has traditionally been conceptualized as a trait fixed

before young adulthood, there is evidence that WMC can

be increased in young adults who undergo adaptive WM

training (reviewed in Klingberg, 2010). Furthermore, it

has been suggested that gains inWM trainingmight transfer

to gains in broader reasoning abilities (Schweizer, Grahn,

Hampshire, Mobbs, & Dalgleish, 2013; Jaeggi, Buschkuehl,

Jonides, & Perrig, 2008). Although evidence for such “far

transfer” after WM training is mixed (Redick et al., 2013;

Thompson et al., 2013), participants consistently display

impressive gains on the training task itself, typically dou-

bling or tripling pretraining levels of performance (Kundu,

Sutterer, Emrich, & Postle, 2013; Redick et al., 2013;

Thompson et al., 2013; Jaeggi et al., 2008). Furthermore,

these gains are largely sustained over 6 months without

further training (Thompson et al., 2013). Despite these

observations, the functional brain plasticity that supports

such large and enduring task-specific improvements follow-

ing intensive long-term training remains poorly understood.

Although cognitive training has provoked substantial

interest, previous fMRI studies of brain plasticity asso-

ciated with WM training have been limited in two impor-

tant ways: absence of an active control condition and a

precise definition of which neural systems exhibit func-

tional plasticity associated with expanded WM. Some

studies have shown that short-term practice (Landau,

Garavan, Schumacher, &D’Esposito, 2007; Kelly &Garavan,

2005; Landau, Schumacher,Garavan,Druzgal, &D’Esposito,

2004) or longer-term practice with a nonadaptive task

(Hempel et al., 2004) can modify the relationship between

WM demands and frontoparietal activation. Short-term

nonadaptive training, however, does not produce large

or enduring growth in WMC (Klingberg, 2010). Longer-

term and adaptive WM training studies have reported dis-

parate results after training. An early finding reported that

increased WMC was associated with increased fronto-

parietal activation (Olesen, Westerberg, & Klingberg,

2004), whereas most subsequent training studies have

observed decreased frontoparietal activation (Schweizer

et al., 2013; Schneiders et al., 2012; Schneiders, Opitz,

Krick, & Mecklinger, 2011).
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Critically, none of these fMRI studies included an active

control condition in which a control group performed an

alternative adaptive cognitive training, so it is unknown

whether previously reported training effects were specific

to WM training or if the neural changes would have been

seen with any intensive training task, regardless of cogni-

tive domain. EEG studies with active control conditions

have found electrophysiological changes in electrodes

over frontoparietal regions after WM training, including

increased network connectivity and increased power in

theta bands during encoding (Kundu et al., 2013; Langer,

von Bastian, Wirz, Oberauer, & Jäncke, 2013), but relative

to fMRI, these EEG measures offer limited neuroanatom-

ical specificity regarding the location of those changes.

Indeed, little is known about the mapping between the

activation changes that accompany WMC expansion and

the specific neural systems that support WM. Substantial

neuroimaging evidence indicates that both dorsolateral

pFC and posterior parietal cortex support WM through

mechanisms of persistent activation (Curtis & D’Esposito,

2003; Cohen et al., 1997; Smith & Jonides, 1997). Activa-

tion in these regions parametrically scales with WM load

or the amount of information that must be maintained

(Braver et al., 1997; reviewed in Owen, McMillan, Laird, &

Bullmore, 2005; Wager & Smith, 2003). Load-dependent

activation further correlates with individual differences

in WMC (McNab & Klingberg, 2008).

WM load-dependent effects on the brain are, however,

spatially expansive and likely engage multiple component

subsystems (Schweizer et al., 2013; Owen et al., 2005).

In particular, frontoparietal association cortex contains

two distinct large-scale networks associated with WM:

the “executive control network” (ECN; identified as the

“frontoparietal network” in Yeo et al., 2011, but renamed

here for clarity), comprising dorsolateral and dorsomedial

frontal nodes and a parietal node centered around the

intraparietal sulcus, and the “dorsal attention network”

(DAN), comprising the human FEFs and topographically

mapped areas in the superior parietal lobe (Power et al.,

2011; Yeo et al., 2011; Vincent, Kahn, Snyder, Raichle, &

Buckner, 2008; Corbetta & Shulman, 2002). It is unknown

as to whether training-related plasticity specifically occurs

in one or both of these frontoparietal systems.

Here, we examined changes in neural function associ-

ated with large, enduring, and specific expansions of

WMC in a randomized controlled trial. Two groups of

young adults, matched for age, IQ, and gender, were ran-

domly assigned to one of two adaptive training programs

for 4 weeks (20 sessions). One group performed WM

training on a dual n-back task (Jaeggi et al., 2008) and

the other group (serving as an active control) performed

a similarly intensive visuospatial training task involving

multiple object tracking (MOT; Pylyshyn & Storm, 1988).

A third group (serving as a passive control) performed

the n-back task with the same pre–post interval, but

without any training. Both training groups exhibited large

and enduring task-specific gains that did not transfer be-

tween the two training tasks, whereas the passive group

showed no improvement on either task (Thompson

et al., 2013).

We examined the functional changes that were asso-

ciated with the improvement in WM performance, mea-

sured both across the whole brain and specifically

within the two major frontoparietal networks. Our an-

alyses considered changes in both the magnitude of

activation associated with WM as well as changes in func-

tional connectivity within and between the two large-

scale cortical networks. Finally, we assessed how the

observed neural changes correlated with changes in task

performance.

METHODS

Participants, Recruitment, and Group Assignment

Participants were recruited through web advertisements,

physical flyers, and e-mail to the Northeastern University

and Tufts University mailing lists. They were required to

be adults between the ages of 18 and 45 years, right-

handed, in good health, and not taking psychoactive

medication. All participants provided informed written

consent before participation. This study was approved

by the Massachusetts Institute of Technology institutional

review board (PI: Leigh Firn).

After recruitment, participants underwent pretrain-

ing behavioral testing to determine group assignment.

Participants were initially sorted into one of two active

training groups. Each participant was paired with another

participant based on age, sex, and score on a preselected

set of 18 of the 36 problems in the Raven’s Advanced Pro-

gressive Matrices (RAPM; Raven, Court, & Raven, 1998), as

described in Thompson et al. (2013). Each member of that

pair was then randomly assigned to either the n-back or

the MOT training group. MOT training was selected be-

cause the intensity and magnitude of task-specific learning

were comparable to n-back training in a pilot study

(Thompson, Gabrieli, & Alvarez, 2010), but gains in MOT

performance did not transfer to other WM or executive

function measures.

To control for performance improvements because of

simple test–retest practice, we recruited a third matched

passive control group that was examined twice with

the same behavioral and neuroimaging measures and

with the same interval between sessions as the train-

ing groups, but without any training. This group was

recruited separately, but in the same fashion, and

matched to a training pair by sex and initial RAPM score.

Here, we use this passive control group to define inde-

pendent ROIs for functional connectivity analyses, de-

scribed below. The three groups did not differ significantly

by gender [χ2 (1,n=37)= .21, p> .65], RAPM scores [t(1,

37) < 1, p> .48], or on the full IQ score from theWechsler

Abbreviated Scale of Intelligence (Wechsler, 1999), ad-

ministered as part of the pretraining battery [t(1, 37) < 1,
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p > .97]. The passive control group averaged 1.8 years

older than the two active training groups [F(2, 55) =

3.37, p < .05] (Table 1).

The training-based analyses reported here come from

the 39 active training participants. Of those additionally

recruited, 19 participants were assigned to the passive

control group, and 14 potential participants either

dropped out of the study or were excluded after initial

scanning was completed. Two participants assigned to

the dual n-back condition voluntarily withdrew (one after

5 days of training, the other after 9 days); no other par-

ticipant had begun training when they were excluded or

withdrew. The remaining potential participants were

excluded for various logistical reasons, including difficul-

ties aligning schedules with the experimenters, claustro-

phobia or excessive movement in fMRI scanning sessions,

or repeatedly skipping pretraining appointments.

Participants were paid $20 per training session, with an

additional weekly $20 bonus for completing all five train-

ing sessions in that week. Participants were paid $20 per

hour for the initial and final behavioral testing sessions

(approximately 3 hr each) and $30 per hour for neuro-

imaging sessions (2 hr pre- and posttraining of fMRI,

1 hr of electroencephalography). Total compensation for

each participant completing the experiment was approxi-

mately $900.

Overall Experiment Design

After recruitment, participants completed baseline behav-

ioral testing (described in Thompson et al., 2013) and a

pretraining imaging session that included structural

scans for anatomical registration and four runs of the

dual n-back task described below. They then completed

20 sessions of adaptive training on either the n-back or

MOT task while at the Massachusetts Institute of Tech-

nology campus. In the dual n-back task, successful perfor-

mance increased the “n” in the n-back, whereas successful

performance in the MOT training task increased the

speed of the tracked objects but did not affect the number

of objects to be tracked. After training was completed,

behavioral testing and posttraining imaging were adminis-

tered as quickly as possible. The average number of days

between the last training session and posttraining testing

was 4.3 days, with a minimum of 0 days and maximum of

14 days. This time was not significantly different between

the two training groups [t(37) = 0.2, p > .8]).

Dual n-back Functional Imaging Task Description

Implementation of the adaptive dual n-back training task

followed Jaeggi et al. (2008). An auditory letter and a

visual square were simultaneously presented for 500 msec,

followed by a 2500-msec response period. Letters were

chosen from the consonants B, F, H, J, M, Q, R, and W

to maximize auditory discriminability between letters.

Squares were presented at one of eight positions evenly

spaced around the periphery of the screen. Participants

responded when one or both of the current stimuli matched

a stimulus presented n trials ago. In the “0-back” condition,

participants were instructed to respond to a spatial target

in the top right corner as a visual match or to the letter

“Q” as an auditory match. To ensure that each participant

fully understood the task, at least one block of each diffi-

culty level was practiced outside the scanner, and partici-

pants were allowed to repeat this practice task as

necessary until they reported full understanding of the

instructions. In addition to the task practice before both

of the pre- and postscanning sessions, participants had

completed a behavioral dual n-back testing session in

the days prior to each scan, which lasted approximately

an hour, and measured baseline performance on dual

n-back loads of 1–6. This process familiarized participants

with the task before scanning and ensured that the MOT

group remained familiar with the task after the training

period.

Each block in the imaging version of the task pre-

sented 10 trials, containing two auditory targets and two

visual targets, with no trials where both auditory and

visual stimuli matched. To ensure a consistent level of

difficulty between blocks of a given load, trials that would

have matched either the n + 1 or n − 1 stimulus (“lure

trials”) were not included. During each block, the current

load was indicated at a central fixation point along with

additional text labels showing the mapping between the

two response buttons and “Audio” or “Video” match

types.

Responses were made using a scanner-compatible

button box that the participant held in the right hand.

A press of the first button, under the participant’s index

Table 1. Participant Demographics

Group Total n (No. of Women) Age,a yr IQa RAPMa

MOT 19 (11) 21.3 (2.3) 120.7 (7.0) 13.8 (2.3)

n-back 20 (13) 21.2 (2.0) 120.9 (10.8) 13.4 (2.1)

Passive control 19 (12) 23.1 (3.3) 117.6 (7.4) 13.3 (2.2)

IQ measure is the Full 4 IQ measure from the Wechsler Abbreviated Scale of Intelligence. RAPM measure reflects the number of problems solved on
half of the RAPM (see Thompson et al., 2013, for RAPM details).

aStandard deviation in brackets.
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finger, indicated auditory matches, and a press of the

second button, under the middle finger, indicated spatial

matches. No response was required on trials that did

not match the target. Participants were allowed the entire

3 sec following the onset of stimulus presentation to

make a response.

Each dual n-back run consisted of eight 30-sec blocks

of the dual n-back task, with two blocks of each load from

0-back to 3-back. The order of the blocks was counter-

balanced across the four total runs. Each block was pre-

ceded by a 3-sec instruction screen indicating the n-back

load for the upcoming block and was followed by 16 sec

of rest to let the hemodynamic response return to base-

line. The total acquisition time for each run was 6 min

and 36 sec. Each participant completed four runs of the

dual n-back task before and after training. In summary,

there were 10 trials per block and eight blocks for each

load, equating to 80 total stimulus presentations at each

load. In four cases, scanning delays prevented acquisition

of the last run. This occurred once in a pretraining n-back

participant, twice in pretraining MOT participants, and

once in a posttraining MOT participant.

MRI Data Acquisition

Whole-brain imaging was performed on a 3T Siemens

Tim Trio MRI system using a 32-channel head coil. Func-

tional images were obtained using a standard T2*-weighted

echo-planar pulse sequence (repetition time = 2 sec,

echo time = 30 msec, flip angle = 90°, 32 slices, 3.0 ×

3.0 × 3.1 mm voxels, 20% slice gap, axial interleaved ac-

quisition). Prospective adaptive motion correction was

employed to minimize the effects of participant motion.

For steady state magnetization, 8 sec of dummy scans were

collected at the beginning of each run, before the experi-

mental paradigm began. Additionally, a whole-brain high-

resolution T1-weighted multiecho MP-RAGE anatomical

volume was acquired for purposes of cortical surface

modeling, registration to common anatomical space, and

across-run alignment (repetition time = 2.5 sec, echo

time=1.64, 3.5, 5.36, and 7.22msec, 176 slices, 2×GRAPPA

acceleration, field of view = 256 mm). Visual stimuli were

projected onto a screen at the back of the scanner and

viewed through a mirror attached to the head coil.

Data Analysis

In-scanner dual n-back performance. To control for

response biases between participants, performance was

characterized as hit rate − false alarm rate within each

level from 0-back to 3-back. Repeated-measures ANOVAs

were evaluated on this dependent variable with Training

group as a between-subject factor and Task load and Ses-

sion (pre- or posttraining) as within-subject factors.

Functional imaging analysis procedure. Functional

imaging data were processed with a workflow of FSL

(Smith et al., 2004) and Freesurfer tools (Dale, Fischl,

& Sereno, 1999) implemented in Nipype (Gorgolewski

et al., 2011). Each time series was first realigned to its

middle volume using normalized correlation optimization

and cubic spline interpolation. Next, a mask of brain voxels

was estimated to constrain later procedures. Images with

artifacts were automatically identified as those frames on

which total displacement relative to the previous frame

exceeded 1 mm or where the average intensity within

the brain mask deviated from the runmean by greater than

three standard deviations. The functional data were spa-

tially smoothed with a 6-mm FWHM kernel using the

SUSAN algorithm from FSL, which restricts smoothing to

voxels of similar intensity (Smith & Brady, 1997). Finally,

the time series data were high-pass filtered by fitting and

removing Gaussian-weighted running lines with an effec-

tive cycle cutoff of 160 sec.

Separately, the T1-weighted anatomical volume was

processed using Freesurfer to segment the gray–white

matter boundary and construct tessellated meshes repre-

senting the cortical surface (Dale et al., 1999). Functional

data from each run were then registered to the anatom-

ical volume with a six-degree-of-freedom rigid alignment

optimizing a boundary-based cost function (Greve &

Fischl, 2009). The anatomical image was separately nor-

malized to MNI152 space using FSL’s nonlinear registration

algorithm (Jenkinson, Beckmann, Behrens, Woolrich, &

Smith, 2012). Following these steps, the linear functional-

to-anatomical transformation matrix was combined with

the nonlinear anatomical normalization parameters to

derive a single transformation from native run space to

MNI152 space.

Parametric load analysis. A linear model was fit sepa-

rately to each functional time series using Gaussian

least squares with local correction for temporal auto-

correlation (Woolrich, Ripley, Brady, & Smith, 2001). A

single task regressor with boxcar functions indicated

the task load, with 0-back, 1-back, 2-back, and 3-back

blocks modeled with a −3, −1, 1, and 3 weights, respec-

tively. A separate column of 1 sec modeled the main

effect of Task. Additionally, the instruction period before

each block was modeled with a separate regressor.

These regressors were then convolved with the canonical

difference-of-gammas hemodynamic response function

from the FSL software package (Jenkinson et al., 2012).

In addition to the artifact indicator vectors described

above, we included regressors for the six realignment

parameters used during motion correction (i.e., trans-

lations along and rotations around the three main axes

in native participant space) to account for residual noise

variance introduced by participant motion. Following

model fitting, the contrast effect size and standard error

images were normalized to group space using the trans-

formation described above and resampled with trilinear

interpolation. Contrast effects were then combined

across runs using a subject-level fixed effects model.
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Mixed-effects higher-level analyses were used to model

the parametric effect of load within the MOT and dual

n-back groups independently for the pre- and posttraining

scans. The resulting contrast estimates were then entered

into a higher-level random effects model to determine

both the longitudinal effect of training within each group

and the Group by Time interaction. Correction for multi-

ple comparisons was accomplished by first thresholding

resulting whole-brain maps at a z-score of 2.3 and then

cluster-correcting to control the family-wise error rate at

p < .05.

Analysis of independent load contrasts. This model

was identical to the parametric model described above

but replaced the single parametric task regressor with

four independent regressors, one for each of the n-back

difficulty levels, with boxcar functions indicating the task

blocks.

Regions/networks of interest analysis. In addition to

the whole-brain univariate approach, we also performed

focused analyses within the ECN and DAN ROIs derived

from a population atlas of task-independent cortical

networks (Yeo et al., 2011). As this atlas is defined in

Freesurfer’s common surface space, region labels were

first warped back to the individual participant surfaces

by inverting the spherical normalization parameters ob-

tained during cortical reconstruction. Vertex coordinates

within each of these labels were then transformed into the

native functional space by inverting the linear functional-to-

anatomical transformation for the first run. Finally, voxels

were identified for inclusion within each region’s ROI

mask by projecting half the distance of the cortical thick-

ness at each vertex and labeling the intersected voxels. This

method produced ROIs that reflected the underlying two-

dimensional topology of the cortex and minimized the

inclusion of voxels lying outside gray matter.

Performance-weighted load analysis. We further ex-

plored how BOLD activation within the ECN and DAN

related to WM load using a performance-weighted analy-

sis. In this analysis, we regressed mean BOLD activation

at each n-back level against a weighted n-back variable

formed by multiplying the “n” of the current level by

each participant’s behavioral performance (hit rate −

false alarm rate) at that level, thus scaling “n” to an esti-

mate of the actual WM load. As in the parametric analysis

described above, the resulting regression coefficient

describes the relationship between WM load and BOLD

activation. To test whether training influenced this rela-

tionship and whether that influence differed in the two

large-scale networks, we applied linear mixed effects

models using the R package nlme (Pinheiro, Bates,

DebRoy, Sarkar, & R Core Team, 2015).

Functional connectivity analysis. Functional connec-

tivity within task-activated (task-positive) regions was

assessed using seed-based time series correlations.

Connectivity analyses can be particularly sensitive to mis-

specification of nodes (Smith et al., 2011) so we con-

strained analyses to regions that were reliably active

before training. We used data from the passive control

group’s first scanning session, which allowed us to define

regions that were statistically independent from the main

analysis and to avoid the concern that the selected ROIs

might be biased toward one training group’s pretraining

activations. Because the greatest training-related activa-

tion changes occurred in the 2-back condition (reported

below), the passive control group’s 2-back versus base-

line contrast was used to obtain functional connectivity

seeds. The positive activations from this contrast were

thresholded at p < .001, then cluster-corrected at p <

.05. The resulting clusters were then intersected with

an anatomical mask from the Harvard–Oxford atlas that

included lateral prefrontal and parietal cortex. This

approach yielded four ROIs: one prefrontal ROI and

one parietal ROI in both the right and the left hemisphere.

Each ROI was then reverse-normalized into native space

using the surface-based approach described above and

intersected with the subject-specific DAN and ECN

masks, thus yielding 12 ROIs in total per participant (four

whole cluster ROIs, four DAN ROIs, and four ECN ROIs).

For each prefrontal ROI in each participant, the exper-

imental time course was extracted using the mean activity

of all voxels within the ROI at each time point. For a given

n-back level, the portions of the time course correspond-

ing to seconds 8–30 of each n-back block were preserved

(the first 3 volumes were omitted to avoid artifactual

correlations emerging from the rising hemodynamic re-

sponse), whereas the remainder of the time course was

set to 0.

A general linear model was then created for each ROI

using its specific n-back time course as the regressor of

interest and including traditional block regressors for the

other three conditions, along with the artifact indicator

vectors and motion parameter nuisance regressors de-

scribed above. Finally, six additional nuisance regressors

were included representing the first six principal compo-

nents of the white matter and CSF time course, which

were extracted using the subject-specific Freesurfer mask

of white matter and CSF. Before extraction, this mask was

eroded by two voxels to avoid contamination from partial

voluming with gray matter voxels.

These models were then processed as described above

through the fixed effects analysis for each subject, using

FSL. Finally, for each of the prefrontal ROI models, the

mean parameter estimate was extracted to measure func-

tional connectivity between that prefrontal ROI and each

of the parietal ROIs. Higher-level analyses were per-

formed on these parameter estimates using a Group ×

Session mixed-effects ANOVA separately for the 1-back,

2-back, and 3-back levels. We specifically examined con-

nectivity between the whole-cluster ROIs and, separately,

connectivity both within and between the DAN and ECN

Thompson, Waskom, and Gabrieli 579



ROIs. Analyses were corrected for multiple comparisons

using Bonferroni adjustments across pairs of ROIs and,

where applicable, n-back levels.

Connectivity/behavioral correlations. After observing

training-related changes in network connectivity, we

assessed the relationship between those changes and

training-related changes in performance on the in-scanner

dual n-back task by calculating the Pearson correlation

between the change in functional connectivity and the

change in behavioral performance across participants.

RESULTS

Behavioral Results

Baseline Performance

Before training, increasing dual n-back loads resulted in

significantly decreasing accuracy (measured as hit rate −

false alarm rate) [one-way ANOVA F(3, 114) = 108.3, p <

.001] and increasing RT [F(3, 114) = 125.1, p < .001]

(Figure 1). There were no significant baseline differences

between the two training groups on either accuracy ( ps >

.11) or RT ( ps > .14).

Changes in Performance after Training

Four weeks of adaptive dual n-back training selectively

improved performance on the dual n-back task in the

scanner (Figure 1A). A mixed-design ANOVA examining

Session × n-back load × Group for accuracy revealed

that there were significant main effects of Load [F(3,

137) = 85.9, p < .001], Session [F(1, 37) = 30.9, p <

.001], and Group [F(1, 37) = 5.84, p = .021], and signif-

icant interactions of Group × Load [F(3, 111) = 6.22, p<

.001], Group × Session [F(1, 37) = 11.8, p = .002], Load

× Session [F(3, 111) = 24.4, p < .001], and Group ×

Load × Session [F(3, 111) = 21.3, p < .0001]. Thus, per-

formance decreased as load increased, improved after

training, and was better in the n-back group than in the

MOT group. Critically, the improvements across sessions

were specific to n-back training. In mixed Session × Load

analyses within each training group, the n-back group

performed significantly better after training [main effect

of session F(1, 19) = 32.8, p < .001], whereas the MOT

group did not improve significantly after training [main

effect of Session F(1, 18) = 2.7, p > .11].

To better understand the results from the omnibus

ANOVA, Session × Group ANOVAs were performed

separately for each load. Mixed-design ANOVAs showed

that the omnibus interaction was driven by significant

Group × Session interactions only at the dual 2- and

3-back loads in which the n-back group became more

accurate after training than did the MOT training group

[0-back F(1, 37) = 2.2, p = .14; 1-back F(1, 37) = 1.6,

p = .21; 2-back F(1, 37) = 5.8, p = .02; 3-back F(1, 37) =

28.7, p < .001].

Analyses of RTs revealed a similar pattern to that seen

with accuracies. After training, the n-back group re-

sponded significantly faster than they had before training

(Figure 1B) and improved their response times more

than did the MOT group. A mixed-design ANOVA exam-

ining Session × Load × Group showed significant main

effects of Load [F(3, 137) = 101.8, p < .001] and Session

[F(1, 37)=44.3,p<.001] but nomain effect ofGroup [F(1,

37) = 0.02, p = .88]. However, there were significant in-

teractions of Group × Load [F(3, 111) = 5.33, p= .002],

Group × Session [F(1, 37) = 21.3, p < .001], Load ×

Session [F(3, 111) = 30.7, p < .001], and Group × Load ×

Session [F(3, 111)=20.4,p<.0001]. InmixedSession×Load

analyses within each training group, both the n-back

group [main effect of Session F(1, 19) = 39.0, p < .001]

and the MOT group [main effect of Session F(1, 18) =

5.5, p = .03] responded significantly faster after training,

although the gain in speed was significantly greater in the

n-back group than the MOT group as reflected in the

Group × Session interaction.

The omnibus interaction was most influenced by faster

RTs in the n-back group after training at the more diffi-

cult loads. Specifically, mixed-effects Group × Session

ANOVAs run at each n-back load independently showed

that the Group × Session × Load interaction was driven

by changes in RT at the dual 2-back and 3-back loads

[0-back F(1, 37) = 1.1, p = .30; 1-back F(1, 37) = 1.15,

p= .29; 2-back F(1, 37) = 16.7, p< .001; 3-back F(1, 37) =

48.8, p < .001].

Figure 1. Adaptive dual n-back training selectively facilitates

performance on the n-back task. (A) Corrected hit rates for in-scanner

n-back performance for each training group. (B) In-scanner reaction

times for each training group. Error bars represent SEM.
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Load-dependent Activations before Training

Across both training groups, activations increased as a

function of WM load in many regions, including lateral

and medial prefrontal regions, parietal regions, anterior

insula, and subcortical regions in the BG and thalamus

(Figure 2 and Table 2). These load-dependent activations

occurred bilaterally in both the ECN and DAN (Figure 3)

as characterized by a group atlas of resting-state networks

(Yeo et al., 2011).

Univariate Imaging Results

Training-related Changes in Load-dependent Activation

Regions exhibiting training-dependent changes in activa-

tion were identified in a repeated-measures model using

the Session × Group interaction. The n-back group

Figure 2. Brain regions exhibiting significant increases in activation

as a function of WM load in all participants (n= 39). Statistical inferences

derived from volume-based analysis but projected onto Freesurfer

average cortical surface mesh for visualization.

Table 2. Regions Parametrically Activated by Dual n-back Load

Cluster Peak Z-value X Y Z Region

Anterior 9.76 32 22 2 Insular cortex

9.59 −32 24 2 Insular cortex

8.81 30 10 60 Middle frontal gyrus

8.78 0 14 54 Superior frontal gyrus

8.69 −46 24 30 Middle frontal gyrus

8.61 44 34 28 Middle frontal gyrus

Posterior 10.00 44 −42 48 Posterior supramarginal gyrus

9.76 −38 −48 42 Posterior supramarginal gyrus

8.53 −10 −68 60 Superior lateral occipital cortex

8.16 32 −70 52 Superior lateral occipital cortex

3.28 20 −56 24 Precuneus cortex

2.42 −30 −84 6 Inferior lateral occipital cortex

Local maxima for the linear effect of WM load, collapsing across training groups at the pretraining scan (n = 39). Statistical thresholding identified
two major clusters of activation; local maxima are reported for peaks within these clusters separated by a minimum distance of 30 mm. Coordinates
are reported in the FSL MNI152 space.

Figure 3. Baseline load-dependent WM activation occurs in ECN

and DAN. ECN (orange) and DAN (green) defined anatomically and

independently from resting-state networks (Yeo et al., 2011). Regions

of load-dependent activation are outlined in black and substantially

overlap ECN and DAN networks bilaterally.
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exhibited significantly reduced load-dependent re-

sponses after training in prefrontal, parietal, and insular

cortical regions (Figure 4). Training-induced changes in

BOLD activation were primarily observed at 2-back and

3-back loads and were most pronounced for the 2-back

load (Figure 5).

Relation of Training-related Reductions of

Activation to ECN and DAN

ROI analyses confirmed that the n-back group exhibited a

greater reduction of the relationship between WM load

and activation in the ECN than in the DAN (Figure 6).

We extracted activation coefficients for each n-back load

from the independently defined ECN and DAN (Yeo

et al., 2011). A mixed-effect ANOVA on these values re-

vealed a significant four-way Load × Network × Session ×

Group interaction [F(3, 111) = 9.14, p = .003]. Before

training, activation in both networks increased as a func-

tion of WM load. Dual n-back training-induced activation

changes in the ECN were significantly greater than those

in the DAN as measured by a Load × Network × Session

interaction [F(3, 57) = 25.9, p < .001], with the ECN dis-

playing substantially reduced activations at the 2-back and

3-back loads. Consistent with the prior analyses, there was

no significant change in activation in either network for

the MOT training group.

Performance-weighted Analyses of the

Relationship with WM Load

An alternate approach to identifying regions responsible

for task performance directly includes participant perfor-

mance in the model. These results are largely consistent

Figure 4. Dual n-back training reduces load-dependent activation.

Results are shown for a Group × Time interaction analysis on the

parametric effect of WM load. Black outlines indicate the extent of

load-modulated regions in the pretraining analysis (Figure 2). Image

presentation is otherwise identical to Figure 2.

Figure 5. Only the n-back

group exhibited reductions of

activation after training in the

2-back and 3-back conditions.

(A) Mean BOLD signal, relative

to baseline. (B) The mean

difference between pre- and

posttraining BOLD signal

(changes from implicit baseline)

is shown for each n-back level

for n-back group (top row)

and MOT group (bottom row).

In both panels, the outlines

correspond to the extent of

activations identified using a

parametric analysis as shown

in Figure 3.
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with the previous load-dependent analysis but reveal

additional nuances of the training-related changes

(Figure 7). BOLD responses in both the ECN [F(1, 59) =

101.5, p< .001] and DAN [F(1, 59) = 70.7, p< .001] were

significantly and positively related to participant perfor-

mance at a given load before training. In both the ECN

and DAN, training reduced the relationship between activa-

tion and load [ECN Load × Session interaction F(1, 137) =

41.8, p< .001; DAN Load× Session interaction F(1, 137) =

13.3, p < .001], but the reduction of that relationship was

significantly greater in the ECN [Load× Session×Network

interaction F(1, 239) = 9.7, p = .002]. DAN activation,

unlike ECN activation, remained significantly related to

WM load in the posttraining session [main effect of Load

in DAN F(1, 59) = 24.2, p < .001; main effect of Load for

ECN F(1, 59) = .16, p > .68].

Frontoparietal Functional Connectivity

Changes with Training

We examined training-related changes in functional con-

nectivity (BOLD time series correlations) during task per-

formance between left and right prefrontal and parietal

ROIs defined using pretraining activations in the passive

control group. For each pair of ROIs in the dual 1-, 2-,

and 3-back conditions, a Session × Group interaction

measure was calculated from a mixed-effects ANOVA.

Significant n-back training-induced increases in func-

tional connectivity were observed for all four pairings of

prefrontal and parietal ROIs in the 2-back condition ( p <

.05, Bonferroni-corrected across load and connection),

but no changes were observed in the 1- or 3-back condi-

tions (Figure 8A). We then divided each ROI into ECN

and DAN components using the Yeo network ROIs. In

contrast to the asymmetric findings of the univariate

analysis, in which the ECN exhibited substantively larger

changes than did the DAN, this analysis revealed signifi-

cantly increased connectivity between nodes of the ECN,

between nodes of the DAN, and also for between-network

Figure 6. n-back training

dissociates the contribution

of ECN and DAN to WM.

Mean activation coefficients

for each n-back load relative

to rest blocks were extracted

from the ECN and DAN and

plotted separately for each

session and training group.

Error bars represent SEM.

Figure 7. Performance-weighted analysis of relationship between

WM load and BOLD activation. Black circles show mean BOLD signal,

along with standard errors, as in Figure 6. Gray squares show the

predictions of a performance-weighted model fit to the BOLD data

from before training. Gray Xs show the predictions of a performance-

weighted model fit to the BOLD data after training. Results are shown

only for the n-back training group.
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connections ( p < .05, Bonferroni-corrected across con-

nection; Figure 8B, C).

Correlations between Connectivity Changes and

In-scanner Performance

Pre–post training accuracy improvements among par-

ticipants in the n-back group in the dual 2-back scanner

task were positively correlated with their increases in

functional connectivity within the four frontoparietal pair-

ings displayed in Figure 8A (r = .50, p = .03; Figure 8D).

These correlations were not driven by any specific node

to node (Figure 8E). Connectivity increases were not sig-

nificantly correlated with changes in RTs (r = .20, p >

.39). There were no significant correlations between accu-

racy improvements and univariate activation changes.

DISCUSSION

Functional brain plasticity associated with a large increase

in dual n-back performance was characterized as highly

specific in multiple ways. First, learning occurred selec-

tively in the n-back training group, who displayed

marked gains on the trained task (Thompson et al.,

2013), and not in the MOT training group, who showed

neither behavioral improvements nor brain plasticity as-

sociated with the dual n-back task. This is the first fMRI

evidence that such plasticity is specific to WM training

Figure 8. Training increased

frontoparietal functional

connectivity in n-back group.

(A) Group by session

interaction measures, showing

group differences in the change

of functional connectivity

strength. Positive values

indicate greater connectivity

after training for the n-back

group relative to the MOT

group. Each bar shows the

change in connectivity for a

pair of frontal and parietal

ROIs (collapsed across ECN and

DAN networks). (B) Group by

session interaction measures

during 2-back blocks for

ROIs defined using functional

activations within and between

resting-state networks. Error

bars in (A) and (B) represent

SEM. (C) Change in functional

connectivity strength for

each pair of ROIs, as shown

in (B). The weight of

the edge indicates the

Bonferroni-corrected p value

for the group by session

interaction. (D) Scatterplot

showing the relationship

between the change in

behavioral performance and

the change in functional

connectivity in 2-back blocks.

The functional connectivity

measure is averaged across

the four edges shown in

(A). (E) Scatterplot showing

the correlation of each

node-to-node connectivity

change with the change in

behavioral performance.
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and not a consequence of any intensive and adaptive

training program. Second, the n-back training group

showed both behavioral gains and reduced activation

selectively for the WM-demanding 2-back and 3-back con-

ditions. Third, although both the ECN and DAN fronto-

parietal networks demonstrated load-dependent activation

before training, training produced a dissociation between

these networks and eliminated the relationship with

WM load selectively within the ECN. Fourth, the ECN and

DAN both exhibited training-selective increases in func-

tional connectivity, which were correlated with cor-

responding improvements in behavioral performance.

This finding indicates that brain plasticity resulting from

intensive WM training occurs not only in terms of activa-

tion magnitudes, but also in relation to altered network

functional connectivity.

Pretraining Activation in Dual n-back Task

The pattern of load-dependent activation at pretraining

was generally consistent with prior neuroimaging studies,

which have typically reported activations in dorsolateral

and ventrolateral pFC, frontal poles, lateral and medial

premotor cortex, dorsal cingulate, and medial and lateral

posterior parietal cortex (Owen et al., 2005). Specific pat-

terns of activation have varied in relation to stimulus and

task dimensions, and only three fMRI studies have exam-

ined the functional activations associated with a simul-

taneous visual–spatial and auditory–verbal dual-back

task (Buschkuehl, Hernandez-Garcia, Jaeggi, Bernard, &

Jonides, 2014; Jaeggi et al., 2007; Yoo, Paralkar, & Panych,

2004). The pattern of load-dependent activation ob-

served here, including frontal, parietal, temporal, and

subcortical activations, resembles those reported in the

prior dual n-back studies.

Training-related Activations in Dual n-back Task

Functional brain changes mirrored behavioral changes

in performance after training. The MOT group exhibited

no improvement in dual n-back capacity despite great

improvement on the MOT task (Thompson et al., 2013)

and also exhibited no difference across sessions in func-

tional activation. The n-back group showed no gain in

performance for the 0-back and 1-back conditions, pre-

sumably performing at ceiling from the outset, and exhib-

ited no difference across sessions in functional activation

at those loads. The training did, however, substantially

improve performance in the more demanding 2-back

and 3-back conditions, which the n-back group per-

formed with the same ease (measured by accuracy and

RT) as the 0-back and 1-back conditions after training.

Correspondingly, there were significant and widespread

reductions in activation, most notably in bilateral inferior

and middle frontal gyri, insular cortex, and intraparietal

sulci.

Frontal and parietal regions were divided into two inde-

pendent systems, the ECN and the DAN, based on a group

atlas of resting-state networks (Yeo et al., 2011). Activation

in both networks exhibited a strong relationship with WM

load in the initial session, but training produced a dis-

sociation between the two networks. After training, acti-

vation in the DAN remained significantly related to WM

load but was no longer related to WM load in the ECN. This

dissociation provides a novel perspective on the distinct

roles of those frontoparietal systems. Although both net-

works are thought to play a role in exerting top–down

control on cognitive processing, they have been associated

with different functional roles. Regions within the ECN are

characterized by the flexibility of their representational

content (Duncan, 2010) and ability to sustain distractor–

resistant representations of information relevant for goal-

directed processing (Waskom, Kumaran,Gordon, Rissman,

& Wagner, 2014; Miller, Erickson, & Desimone, 1996).

Dorsal attention regions, in contrast, appear to contain

prioritized topographical maps of visual space (Silver &

Kastner, 2009) that are used for internally directed visual

attention (Corbetta & Shulman, 2002), a possible mecha-

nism of visual WM maintenance (Sreenivasan, Curtis, &

D’Esposito, 2014). Our results thus suggest that training

reduces the demand on higher levels of a hierarchical

system that supports the maintenance and updating of

active WM traces.

WM training studies have reported multiple patterns of

functional plasticity associated with gains in WM perfor-

mance, including increased activations or decreased acti-

vations. The variety of changes in activation may reflect

not only the variety of tasks but also the duration of train-

ing (ranging from a single session of training to our study

of a month of intensive training) and the initial and final

levels of performance. In our study, participants were

considerably above chance in all conditions at the outset,

improved their performance substantially in the more dif-

ficult conditions (which were far below their dual n-back

capacity from the month of intensive training), and ex-

hibited large reductions of activation in the more de-

manding conditions.

Training-related Changes in

Functional Connectivity

WM training also increased frontoparietal functional con-

nectivity during task performance, although these changes

were observed only in the dual 2-back condition. In con-

trast to the changes in univariate activation, changes in

within-network functional connectivity did not significantly

differ between the ECN and DAN and between-network

connectivity also increased. Furthermore, connectivity in-

creases correlated with improvements in behavioral perfor-

mance. It is unclear why connectivity (and activation)

changes were modest in the 3-back condition given the

robust behavioral improvements in that condition for the

n-back group, though prior work suggests that encoding
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strategies for difficult WM tasks can vary across participant’s

ability levels (Cusack, Lehmann, Veldsman, & Mitchell,

2009). This could have especially affected connectivity

measurements at the pretraining dual 3-back level, when

the task was quite challenging for many participants. The

training-induced relations between brain plasticity as

measured by connectivity and gains in WM performance

are consistent with EEG studies examining the WM bene-

fits of visual–perceptual (Mishra, Rolle, & Gazzaley, 2015;

Berry et al., 2010) and distractor training (Mishra, de Villers-

Sidani, Merzenich, & Gazzaley, 2014).

Conclusions

Interest in the dual n-back task arises from at least two

sources. First, scientifically, the task is a complex WM task

that exercises each of the putative constructs in the suite of

“executive functions” (Miyake et al., 2000)—monitoring

and maintenance in the encoding of incoming stimuli,

inhibition in the avoidance of lure trials, and switching in

the requirement of encoding stimuli from two domains

simultaneously. Second, perhaps owing to the many WM

processes engaged by this task, there has been some

evidence that training on the dual n-back task transfers

to other cognitive domains (Au et al., 2015; Kundu et al.,

2013; Jaeggi et al., 2008). This transfer could have been

the result of training-induced plasticity in a common neural

substrate relevant to multiple cognitive domains (Dahlin,

Neely, Larsson, Bäckman, & Nyberg, 2008; Jonides,

2004). Indeed, in this study there were large and specific

functional changes in both activation and connectivity of

the dorsolateral pFC and parietal brain regions known to

be associated with human intelligence ( Jung & Haier,

2007). Nevertheless, the robust training-induced plasticity

did not support transfer to any other domain of cognition

(Thompson et al., 2013).

Dual n-back training did, however, enable remarkable

learning on the trained task itself, with some participants

becoming able to perform a dual 9-back after 20 sessions

of training. By the end of training, participants could per-

form the originally highly demanding 2-back and 3-back

conditions with same ease (measured by speed and accu-

racy) as the minimally demanding 0-back and 1-back con-

ditions. This was accompanied by large reductions of

activation, specifically in the frontoparietal ECN, that

were, by the end of training, no greater for the originally

highly demanding 2-back and 3-back conditions than

the minimally demanding 0-back and 1-back conditions.

Furthermore, the task-specific growth of dual n-back

WMC was associated with increased functional connec-

tivity within and between the ECN and DAN. These

findings, in the context of an active control training con-

dition, reveal the anatomically specific nature of func-

tional brain plasticity associated with the expansion of

task-specific WMC. Although these particular gains did

not enable far transfer to untrained measures, they do

serve as a valuable exemplar of the plastic capacity of

the human brain as it develops a remarkable mastery of

a quite complicated and challenging task.
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