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Autonomous vehicles need to perform social accepted behaviors in complex urban scenarios including human-driven vehicles
with uncertain intentions. 	is leads to many di
cult decision-making problems, such as deciding a lane change maneuver
and generating policies to pass through intersections. In this paper, we propose an intention-aware decision-making algorithm
to solve this challenging problem in an uncontrolled intersection scenario. In order to consider uncertain intentions, we �rst
develop a continuous hidden Markov model to predict both the high-level motion intention (e.g., turn right, turn le�, and go
straight) and the low level interaction intentions (e.g., yield status for related vehicles).	en a partially observable Markov decision
process (POMDP) is built to model the general decision-making framework. Due to the di
culty in solving POMDP, we use
proper assumptions and approximations to simplify this problem. A human-like policy generation mechanism is used to generate
the possible candidates. Human-driven vehicles’ future motion model is proposed to be applied in state transition process and
the intention is updated during each prediction time step. 	e reward function, which considers the driving safety, tra
c laws,
time e
ciency, and so forth, is designed to calculate the optimal policy. Finally, our method is evaluated in simulation with
PreScan so�ware and a driving simulator. 	e experiments show that our method could lead autonomous vehicle to pass through
uncontrolled intersections safely and e
ciently.

1. Introduction

Autonomous driving technology has developed rapidly in the
last decade. In DARPA Urban Challenge [1], autonomous
vehicles showed their abilities for interacting in some typical
scenarios such as Tee intersections and lane driving. In
2011, Google released its autonomous driving platforms.
Over 10,000 miles of autonomous driving for each vehicle
was completed under various tra
c conditions [2]. Besides,
many big automobile companies also plan to launch their
autonomous driving product in the next several years. With
these signi�cant progresses, autonomous vehicles have shown
their potential to reduce the number of tra
c accidents and
solve the problem of tra
c congestions.

One key challenge for autonomous vehicles driven in the
real world is how to deal with the uncertainties, such as inac-
curacy perception and unclear motion intentions. With the
development of intelligent transportation system (ITS), the

perception uncertainty could be solved through the vehicle2X
technology and the interactions between autonomous vehi-
cles can be solved by centralized or decentralized cooperative
control algorithms. However, human-driven vehicles will still
be predominance in a short time and the uncertainties of
their driving intentions will still be retained due to the lack
of “intention sensor.” Human drivers anticipate potential
conicts, continuously make decisions, and adjust their
driving behaviors which are o�en not rational. 	erefore,
autonomous vehicles need to understand human drivers’
driving intentions and choose proper actions to behave
cooperatively.

In this paper, we focus on solving this problem in an
uncontrolled intersection scenario. 	e uncontrolled inter-
section is a complex scenario with high accident rate. In US,
stop signs can be used to normalize the vehicles’ passing
sequence. However, this kind of signs is rarely used in China
and the right �rst tra
c laws are o�en broken by some
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Figure 1: Amotivation example. Autonomous vehicle B is going straight, while human-driven vehicle A has three potential driving directions:
going straight, turning right, or turning le�. If vehicle A turns right, it will not a�ect the normal driving of autonomous vehicle B. But the
other maneuvers including turning le� and going straight will lead to a passing sequence problem. Besides, if they have potential conict,
autonomous vehicle B will simulate the trajectories of vehicle A in a prediction horizon and gives the best actions in the current scenario.	e
vehicles drawn by dash lines are the future prediction positions. 	e red dash lines are the virtual lane assumption used in this paper, which
means that the vehicles are considered to be driven inside the lane. 	e dark blue area is the potential collision region for these two cars.

aggressive drivers. Perception failures, misunderstandings,
and wrong decisions are likely to be performed by human
drivers. In such cases, even with stop signs, the “�rst come,
�rst served” rule is likely to be broken. Besides, human
driving behaviors are likely to change as time goes on. With
these uncertain situations, speci�c layout, and the tra
c
rules, when autonomous vehicles approach an intersection,
they should have potential ability to recognize the behavior
of other vehicles and give a suitable corresponding behavior
considering future evolution of the tra
c scenario (see
Figure 1).

With these requirements, we propose an intention-aware
decision-making algorithm for autonomous driving in an
uncontrolled intersection in this paper. Speci�cally, we �rst
use easily observed features (e.g., velocity and position) and
continuous hidden Markov model (HMM) [3] to build the
intention prediction model, which outputs the lateral inten-
tions (e.g., turn right, turn le�, and go straight) for human-
driven vehicles and longitudinal behavior (e.g., the yield-
ing status) for related vehicles. 	en, a generative partially
observable Markov decision process (POMDP) framework
is built to model the autonomous driving decision-making
process. 	is framework is able to deal with the uncertain-
ties in the environment, including human-driven vehicles’
driving intentions. However, it is intractable to compute the
optimal policy for general POMDP due to its complexity.
We make reasonable approximations and assumptions to
solve this problem in a low computational way. A human-
like policy generation mechanism is used to compute the
potential policy set. A scenario predictionmechanism is used
to simulate the future actions of human-driven vehicles based
on their lateral and longitudinal intentions and the proper
reward functions are designed to evaluate each strategy.
Tra
c time, safety, and laws are all considered to get the
�nal reward equations. 	e proposed method has been well

evaluated during simulation. 	e main contributions of this
paper are as follows:

(i) Modeling a generative autonomous driving decision-
making framework considering uncertainties (e.g.,
human driver’s intention) in the environment.

(ii) Building intention prediction model using easily
observed parameters (e.g., velocity and position)
for recognizing the realistic lateral and longitudinal
behaviors of human-driven vehicles.

(iii) Using reasonable approximations and assumption to
build an e
cient solver based on the speci�c layout in
an uncontrolled intersection area.

	e structure of this paper is as follows. Section 2 reviews
the related work and two-layer HMM-based intention pre-
diction algorithm is discussed in Section 3. Section 4 models
general autonomous driving decision-making process in a
POMDP, while the approximations and the simpli�ed solver
are described in Section 5. In Section 6, we evaluate our
algorithm in a simulated uncontrolled intersection scenario
with PreScan so�ware and a driver simulator. Finally, the
conclusion and future work are discussed in Section 7.

2. Related Work

	e decision-making module is one of the most impor-
tant components of autonomous vehicles, connecting envi-
ronment perception and vehicle control. 	us, numerous
research works are performed to handle autonomous driv-
ing decision-making problem in the last decade. 	e most
common method is to manually de�ne speci�c driving
rules corresponding to situations. Both �nite state machines
(FSMs) and hierarchical state machines (HSMs) are used
to evaluate situations and decide in their framework [4–
6]. In DARPA Urban Challenge (DUC), the winner Boss
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used a rule-based behavior generation mechanism to obey
the prede�ned driving rules based on the obstacle vehicles’
metrics [1, 6]. Boss was able to check vehicle’s acceleration
abilities and the spaces to decide whether merging into a new
lane or passing intersections is safe. Similarly, the decision-
making system of “Junior” [7], ranking second in DUC, was
based on a HSM with manually de�ned 13 states. Due to the
advantages including implementing simply and traceability,
this framework is widely used in many autonomous driving
platforms. However, these approaches always use constant
velocity assumptions and lack considering surrounding vehi-
cles future reactions to host vehicle’s actions. Without this
ability, the driving decisions could have potential risks [8].

In order to consider the evolution of future scenario, the
planning and utility-based approaches have been proposed
for decision-making. Bahram et al. proposed a prediction
based reactive strategy to generate autonomous driving
strategies [9]. A Bayesian classi�er is used to predict the
future motion of obstacle vehicles and a tree-based searching
mechanism is designed to �nd the optimal driving strategy
using multilevel cost functions. However, the surrounding
vehicles’ reactions to autonomous vehicles’ actions are not
considered in their framework.Wei et al. proposed a compre-
hensive approach for autonomous driver model by emulating
human driving behavior [10]. 	e human-driven vehicles are
assumed to follow a proper social behavior model and the
best velocity pro�les are generated in autonomous freeway
driving applications. Nonetheless, their method does not
consider the motion intention of human-driven vehicles and
only targets in-lane driving. In their subsequent work, Wei
et al. modeled tra
c interactions and realized autonomous
vehicle social behavior in highway entrance ramp [11]. 	e
human-driven vehicles’ motion intentions are modeled by
a Bayesian model and the human-driven vehicles’ future
reactions are introduced, which is based on the yielding/not-
yielding intentions at the �rst prediction step. Autonomous
vehicles could perform social cooperative behavior using
their framework.However, they do not consider the intention
uncertainty over prediction time step.

POMDPs provide a mathematical framework for solv-
ing the decision-making problem with uncertainties. Bai et
al. proposed an intention-aware approach for autonomous
driving in scenarios with many pedestrians (e.g., in campus)
[12]. In their framework, the hybrid �∗ algorithm is used
to generate global path, while a POMDP planner is used
to control the velocity of the autonomous vehicle solving
by an online POMDP solver DESPOT [13]. Brechtel et al.
presented a probabilistic decision-making algorithm using
continuous POMDP [14]. 	ey focus on dealing with the
uncertainties of incomplete and inaccurate perception in the
intersection area, while our goal is to deal with the uncertain
intentions of human-driven vehicles. However, the online
POMDP solver always needs large computation resource and
consumes much time [15, 16], which limits its use in real
world autonomous driving platform. Ulbrich and Maurer
designed a two-step decision-making algorithm to reduce
the complexity of the POMDP in lane change scenario [17].
Eight POMDP states are manually de�ned to simplify the
problem in their framework. Cunningham et al. proposed a

multipolicy decision-making method in lane changing and
merging scenarios [18]. POMDPs are used to model the
decision-making problem in their paper, while multivehicle
simulation mechanism is used to generate the optimal high-
level policy for autonomous vehicle to execute. However, the
motion intentions are not considered.

Overall, the autonomous driving decision-making prob-
lem with uncertain driving intention is still a challenging
problem. It is necessary to build an e�ective behavior predic-
tion model for human-driven vehicles. Besides, it is essential
to incorporate human-driven vehicles’ intentions and behav-
iors into autonomous vehicle decision-making system and
generate suitable actions to ensure autonomous vehicles drive
safely and e
ciently. 	is work addresses this problem by
�rst building aHMM-based intention predictionmodel, then
modeling human-driven vehicle’s intentions in a POMDP
framework, and �nally solving it in an approximate method.

3. HMM-Based Intention Prediction

In order to pass through an uncontrolled intersection,
autonomous vehicles should have the ability to predict the
driving intentions of human-driven vehicles. Estimating
driver’s behavior is very di
cult, because the state of a vehicle
driver is in some high-dimensional feature space. Instead of
using driver related features (e.g., gas pedal, brake pedal, and
drivers’ vision), easily observed parameters are used to build
the intention prediction model in this paper.

	e vehicle motion intention � considered in this
paper is divided into two aspects, lateral intention �lat ∈{�TR, �TL, �GS, �S} (i.e., turn right, turn le�, go straight, and
stop) and longitudinal intention �lon ∈ {�Yield, ��Yield}. 	e
lateral intention is a high-level driving maneuver, which is
determined by human drivers’ long term decision-making
process. 	is intention is not always changed in the driving
process and determines the future trajectory of human-
driven vehicles. In particular, the intention of stop is treated
as a lateral intention in our model because it can be predicted
only using data from human-driven vehicle itself. However,
the longitudinal intention is a cooperative behavior only
occurring when it interacts with other vehicles. We will
�rst describe the HMM and then formulize our intention
prediction model in this section.

3.1. HMM. A HMM consists of a set of � �nite “hidden”
states and a set of� observable symbols per state. 	e state
transition probabilities are de�ned as Α = {���}, where

��� = � [
�+1 = � | 
� = �] , 1 ≤ �, � ≤ �. (1)

	e initial state distribution is denoted as � = {��}, where
�� = � [
1 = �] , 1 ≤ � ≤ �. (2)

Because the observation symbols are continuous param-
eters, we use Gaussian Mixture Model (GMM) [19] to
represent their probability distribution functions (pdf):

�� (o) =
�∑
�=1
���N (o | ���, Σ��) , 1 ≤ � ≤ �, (3)
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where ��� represents the mixture coe
cient in the �th state
for the �th mixture. N is the pdf of a Gaussian distribution
with mean � and covariance Σmeasured from observation o.
Mixture coe
cient � satis�es the following constraints:

�∑
�=1
��� = 1, (4)

where ��� > 0, 1 ≤ � ≤ �, 1 ≤ � ≤ �.
And

∫+∞
−∞

�� (o) �o = 1, 1 ≤ � ≤ �. (5)

	en a HMM could be completely de�ned by hidden
states� and the probability tuples � = (�, �, �, �, Σ).

In the training process, we use the Baum-Welch method
[20] to estimate model parameters for di�erent driver inten-
tion �. Once themodel parameters corresponding to di�erent
driver intention have been trained, we can perform the
driver’s intention estimation in the recognition process. 	e
prediction process for lateral intentions can be seen in
Figure 2.

3.2. HMM-Based Intention Prediction Process. Given a con-
tinuous HMM, the intention prediction process is divided
into two steps. 	e �rst step focused on the lateral intention.
	e training inputs of each vehicle’s lateral intention model
in time � are de�ned as �lateral = {�, V, �, yaw}, where � is
the distance to the intersection, V is the longitudinal velocity,� is the longitudinal acceleration, and yaw is the yaw rate,
while the output of this model is the motion intentions �lat ∈{�TR, �TL, �GS, �S}. 	e corresponding HMMs can be trained,
including �TR, �TL, �GS, and �
.

	e next step is about longitudinal intention. 	is prob-
ability could be decomposed based on the total probability
formula:

� (�Yield | �) = ∑� (�Yield | �lat, �) � (�lat | �)
= � (�Yield | �TR, �) � (�TR | �)
+ � (�Yield | �TL, �) � (�TL)
+ � (�Yield | �GS, �) � (�GS | �)
+ � (�Yield | �S, �) � (�S | �) ,

(6)

where � is the behavior data including �lateral and �lon.
In this process, we assume that the lateral behavior �lat is

predicted correctly by a deterministic HMM in the �rst step,
and therefore �lat is determined by the lateral prediction result�latPredict, where �(�lat | �, �lat = �latPredict) = 1 and �(�lat | �,�lat! = �latPredict) = 0. And (6) is reformulated by

� (�Yield | �) = � (�Yield | �, �latPredict) � (�latPredict | �)
= � (�Yield | �, �latPredict) . (7)

	e problem is changed to model �(�Yield | �, �latPredict).
	e features used in longitudinal intention prediction are

�lon = {ΔV, Δ�, ΔDTC}, where ΔV = Vsocial − Vhost, Δ� =�social − �host, and ΔDTC = DTCsocial −DTChost. DTC means
the distance to the potential collision area. 	e output of
the longitudinal intention prediction model is longitudinal
motion intention �lon ∈ {�Yield, ��Yield}.

Instead of building a generative model, we use a deter-
ministic approach to restrict �(�Yield | �, �latPredict) as 0 or
1. 	us, two types of HMMs named ��,�lat , ��,�lat are trained
where �lat ∈ {�TR, �TL, �GS, �S}. Two test examples for lateral
and longitudinal intention prediction are shown in Figures
3 and 4. 	rough these two �gures, we can �nd that our
approach can recognize human-driven vehicle’s lateral and
longitudinal intention successfully.

4. Modeling Autonomous Driving
Decision-Making in a POMDP Framework

For the decision-making process, the key problem is how
to design a policy to perform the optimal actions with
uncertainties. 	is needs to not only obtain tra
c laws
but also consider the driving uncertainties of human-driven
vehicles. Facing potential conicts, human-driven vehicles
have uncertain probabilities to yield autonomous vehicles and
some aggressive drivers may violate the tra
c laws. Such
elements should be implemented into a powerful decision-
making framework. As a result, we model autonomous
driving decision-making problem in a general POMDP
framework in this section.

4.1. POMDP Preliminaries. A POMDP model can be for-
mulized as a tuple{S,A, ",Z, #, $, %}, where S is a set
of states, A is the action space, and Z denotes a set of
observations. 	e conditional function "(&, �, &) = Pr(& |&, �) models transition probabilities to state & ∈ S, when
the system takes an action � ∈ A in the state & ∈ S. 	e
observation function #(', &, �) = Pr(' | &, �) models the
probability of observing ' ∈ Z, when an action � ∈ A is
taken and the end state is & ∈ S. 	e reward function $(&, �)
calculates an immediate reward when taking an action � in
state &. % ∈ [0, 1] is the discount factor in order to balance the
immediate and the future rewards.

Because the system contains partially observed state such
as intentions, a belief � ∈ B is maintained. A belief update
function * is de�ned as � = *(�, �, '). If the agent takes action� and gets observation ', the new belief � is obtained through
the Bayes’ rule:

� (&) = -# (&, �, ')∑
�∈

" (&, �, &) � (&) , (8)

where - = 1/∑��∈
#(&, �, ')∑�∈
 "(&, �, &)�(&) is a normal-
izing constant.

A key concept in POMDP planning is a policy, a mapping� that speci�es the action � = �(�) at belief �. To solve
the POMDP, an optimal policy �∗ should be designed to
maximize the total reward:

�∗ = argmax
�

(4(∞∑
�=0
%�$ (&�, � (��)) | �0, �)) , (9)

where �0 is marked as the initial belief.
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Figure 2: Prediction process for HMM.	e observed sequence will be evaluated by four HMMs. Forward algorithm is used to calculate the
conditional probabilities and the intention corresponding to the largest value will be considered as the vehicle’s intention.
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Figure 3: Lateral intention prediction example. 	e true intention of human-driven vehicle is to turn le� in this scenario. In the �rst �gure,
the value 1 of the 6 label means turn le�, 2 means turn right, 3 represents go straight, and 4 corresponds to stop.

4.2. State Space. Because of the Markov property, su
cient
information should be contained in the state space S for
decision-making process [14]. 	e state space includes the
vehicle pose [7, 6, 8], velocity V, the average yaw rate yawave,
and acceleration �ave in the last planning period for all
the vehicles. For the human-driven vehicles, the lateral and
longitudinal intentions [�lat, �lon] also need to be contained
for state transition modeling. However, the road context
knowledge is static reference information so that it will be not
added to the state space.

	e joint state & ∈ S could be denoted as & = [&host, &1,&2, . . . , &�]�, where &host is the state of host vehicle (auto-
nomous vehicle), &�, � ∈ {1, 2, 3, . . . , �}, is the state of
human-driven vehicles, and � is the number of human-
driven vehicles involved. Let us de�ne metric state 7 =

[7, 6, 8, V, �ave, yawave]�, including the vehicle position, head-
ing, velocity, acceleration, and yaw rate.	us, the state of host
vehicle can be de�ned as &host = 7host, while the human-

driven vehicle state &� is &� = [7�, �lat,�, �lon,�]�. With the
advanced perception system and V2V communication tech-
nology, we assume that the metric state 7 could be observed.
Because the sensor noise is small and hardly a�ects decision-
making process, we do not model observation noise for the
metric state. However, the intention state cannot be directly
observed, so it is the partially observable variables in our
paper. 	e intention state should be inferred from obser-
vation data and predictive model over time.

4.3. Action Space. In our autonomous vehicle system, the
decision-making system is used to select the suitable tactical
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Figure 4: One example of predicting longitudinal intentions. 	is example is based on the scenario of Figure 1 and two vehicles both go
straight.	e value 1 of 6-axis in the �rst �gure denotes the intention of yielding, while 2 represents not yielding. In the �rst 2.8 s, the intention
is yielding. A�er that, due to the acceleration action and less relative DTC, autonomous vehicle could understand human-driven vehicle’s
not-yielding intention.

maneuvers. Speci�cally, in the intersection area autonomous
vehicles should follow a global reference path generated by
path planning module. 	e decision-making module only
needs to generate acceleration/deceleration commands to the
control layer. As the reference path may not be straight, the
steering control module can adjust the front wheel angle
to follow the reference path. 	erefore, the action space A

could be de�ned as a discrete set A = [acc, dec, con], which
contains commands including acceleration, deceleration, and
maintaining current velocity.

4.4. Observation Space. Similar to the joint state space, the

observation ' is denoted as ' = ['host, '1, '2, . . . , '�]�, where'host and '� are the host vehicle and human-driven vehicle’s
observations, respectively. 	e acceleration and yaw rate can
be approximately calculated by speed and heading in the
consecutive states.

4.5. State Transition Model. In state transition process, we
need to model transition probability Pr(& | &, �). 	is
probability is determined by each targeted element in the
scenario. So the transition model can be calculated by the
following probabilistic equation:

Pr (& | &, �) = Pr (&host | &host, �host)
�∏
�=1

Pr (&� | &�) . (10)

In the decision-making layer, we do not need to consider
complex vehicle dynamic model. 	us, the host vehicle’s
motion Pr(&host | &host, �host) can be simply represented by the
following equations given action �:

7 = 7 + (V + �Δ�2 )Δ� cos (8 + Δ8) ,
6 = 6 + (V + �Δ�2 )Δ� sin (8 + Δ8) ,

8 = 8 + Δ8,
V
 = V + �Δ�,

yawave = Δ8
Δ� ,

�ave = �.
(11)

	us, the key problem is converted to compute Pr(&� |&�), the state transition probability of human-driven vehicles.
Based on the total probability formula, this probability can be
factorized as a sum in whole action space:

Pr (&� | &�) = ∑
��
Pr (&� | &�, ��)Pr (�� | &�) . (12)

With this equation, we only need to calculate the state
transition probability Pr(&� | &�, ��) given a speci�c action ��
and the probability of selecting this action Pr(�� | &�) under
current state &�.

Because the human-driven vehicles’ state &� = [7�, ��], the
probability Pr(&� | &�, ��) can be calculated as

Pr (&� | &�, ��) = Pr (7� , �� | 7�, ��, ��)
= Pr (7� | 7�, ��, ��)Pr (�� | 7� , 7�, ��, ��) .

(13)

With a certain action ��, Pr(7� | 7�, ��, ��) is equal to Pr(7� |7�, �lat,�, ��).	e lateral behavior �lat,� is considered to be a goal-
directed driving intention which will not be changed in the
driving process. So Pr(7� | 7�, �lat,�, ��) is equal to Pr(7� | 7�, ��)
given a reference path corresponding to the intention of �lat,�.
Using (11), Pr(7� | 7�, ��) can be well solved.

	e remaining problem for calculating Pr(&� | &�, ��) is
to deal with Pr(�� | 7� , 7�, ��, ��). 	e lateral intention �lat,�
is assumed stable through the above explanation. And the
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longitudinal intention �lon,� is assumed to be not updated
in this process. But it will be updated with new inputs in
observation space.

Now Pr(&� | &�, ��) is well modeled and the remaining
problem is to compute the probabilities Pr(�� | &�) of human-
driven vehicles’ future actions:

Pr (�� | &�) = Pr (�� | 7�, ��)
= ∑
��
host

Pr (�� | 7host, 7�, ��)Pr (7host | 7�, ��) . (14)

Because 7host is determined by the designed policy,

Pr(7host | 7�, ��) could be calculated by (11) given an action

�host. 	e probability Pr(�� | 7host, 7�, ��) means the distribu-
tion of human-driven vehicles’ actions given the new state7host of host vehicle, the current state of itself, and its
intentions. Instead of building a complex probability model,
we designed a deterministic mechanism to calculate themost
possible action �� given 7host, 7�, and ��.

In this prediction process, the host vehicle is assumed to
be maintaining the current actions in the next time step and
the action �� will be leading human-driven vehicle passing
through the potential collision area either in advance of host
vehicle under the intention ��Yield or behind the host vehicle
under the intention �Yield to keep a safe distance �safe. In the
case with the intention of ��Yield, we can calculate the low
boundary ��,low of �� through the above process anddetermine
the upper one using the largest comfort value ��,comfort. If��,comfort < ��,low, ��,low will be used as the human-driven
vehicle’s action. If not, we consider the targeted �� following
a normal distribution with mean value ��� between ��,low and��,comfort. To simplify our model, we use the mean value of
these two boundaries to represent human-driven vehicle’s
action ��. Similarly, the case with the intention of �Yield can
be analyzed in the same process.

A�er these steps, the transition probability Pr(& | &, �)
is well formulized and the autonomous vehicle could have
the ability to understand the future motion of the scenario
through this model.

4.6. Observation Model. 	e observation model is built to
simulate the measurement process. 	e motion intention
is updated in this process. 	e measurements of human-
driven vehicles are modeled with conditional independent
assumption. 	us, the observation model can be calculated
as

Pr (' | �, &) = Pr ('host | &host)
�∏
�=1

Pr ('� | &�) . (15)

	e host vehicle’s observation function is denoted as

Pr ('host | &host) ∼N ('host | 7host, Σ�host) . (16)

But in this paper, due to the use of V2V communication
sensor, the observation error almost does not a�ect the deci-
sion-making result. 	e variance matrix is set as zero.

	e human-driven vehicle’s observation will follow the
vehicle’s motion intentions. Because we do not consider

the observation error, the value in metric state will be the
same as the state transition results. But the longitudinal
intention of human-driven vehicles in the state space will be
updated using the new observations andHMMmentioned in
Section 3. 	e new observation space will be con�rmed with
the above step.

4.7. Reward Function. 	e candidate policies have to satisfy
several evaluation criterions. Autonomous vehicles should be
driven safely and comfortably. At the same time, they should
follow the tra
c rules and reach the destination as soon as
possible. As a result, we design objective function (17) consid-
ering three aspects including safety, time e
ciency, and tra
c
laws, where �1, �2, and �3 are the weight coe
cient:

$ (&, �) = �1$safety (&, �) + �2$time (&, �)
+ �3$law (&, �) .

(17)

	e detailed information will be discussed in the follow-
ing subsections. In addition, the factor of comfort will be con-
sidered and discussed in policy generation part (Section 5.1).

4.7.1. Safety Reward. 	e safety reward function $safety(&, �)
is based on the potential conict status. In our strategy,
safety reward is de�ned as a penalty. If there are no potential
conicts, the safety rewardwill be set as 0. A large penalty will
be assigned due to the risk of collision status.

In an uncontrolled intersection, the four approaching
directions are de�ned as � � ∈ {1, 2, 3, 4} (Figure 5). 	e
driver’s lateral intentions are de�ned as �lat ∈ {�TR, �TL, �GS,�S}. So the driving trajectory for each vehicle in the inter-
section can be generally represented by � � and �lat,�, and we
marked it as "�� ,�lat,� , 1 ≤ � ≤ 4, 1 ≤ � ≤ 4. 	e function C is

used to judge the potential collision status, which is denoted
as

C ("�, "�) = {{{
1, if potential conict,

0, otherwise, (18)

where "� and "� are vehicles’ maneuver "�� ,�lat,� .C(7, 6) can be calculated through relative direction
between two cars, which is shown in Table 1.

	e safety reward is based on the following items:

(i) If C(7, 6) is equal to 0, then the safety reward is equal
to 0 due to the noncollision status.

(ii) If potential collision occurs, there will be a large
penalty.

(iii) If |TTC� − TTChost| < �threshod, there is a penalty
depending on |TTC� − TTChost| and TTChost.

4.7.2. Tra�c Law Reward. Autonomous vehicles should fol-
low tra
c laws to interactwith human-driven vehicles. Tra
c
law is modeled as a function Law(7, 6) for each two vehicles7 and 6

Law ("�, "�) = {{{
1, if 7 is prior,
0, otherwise, (19)
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Human-driven vehicle

Autonomous 
vehicle

1

4

3

2

Figure 5: One typical scenario for calculating safety reward.

Table 1: Safe condition judgments in the intersection.

Human-driven vehicle Le� side Right side Opposite side Same side

Driving direction TL LK TR S TL LK TR S TL LK TR S TL LK TR S

Turn le� ‰ ‰ I I ‰ ‰ I I ‰ ‰ ‰ I I I I I

Lane keeping ‰ ‰ I I ‰ ‰ ‰ I ‰ I I I I I I I

Turn right I ‰ I I I I I I ‰ I I I I I I I

Stop I I I I I I I I I I I I I I I I

‰ indicates potential collision. I indicates no potential collision.

where "� and "� are vehicles’ maneuver "�� ,
� . 	is function

Law("�, "�) is formulized as shown in Algorithm 1.
If the behavior will break the law, a large penalty is applied

and the behavior of obeying tra
c laws will get a zero reward.

4.7.3. Time Reward. 	e time cost is based on the time to the
destination for the targeted vehicles in the intersection area:

Costtime = DTG

Vhost

. (20)

DTG is the distance to the driving goal. In addition, we
also need to consider the speed limit, which is discussed in
policy generation part in Section 5.

5. Approximations on Solving
POMDP Problem

Solving POMDP is quite di
cult. 	e complexity of search-

ing total brief space is O(|A|�|Z|�) [12], where G is the
prediction horizon. In this paper, we model the intention
recognition process as a deterministic model and use com-
munication sensors to ignore the perception error, and thus
the size of |Z| is reduced to 1 in the simpli�ed problem. To
solve this problem, we �rst generate the suitable potential
policies according to the property of driving tasks and then

select the reasonable total predicting interval time and total
horizon. A�er that, the approximate optimal policy can
be calculated through searching all possible policies with
maximum total reward.	e policy selection process is shown
in Algorithm 2 and some detailed explanations are discussed
in the subsections.

5.1. Policy Generation. For autonomous driving near inter-
section, the desired velocity curves need to satisfy several
constraints. Firstly, except for emergency braking, the accel-
eration constraints are applied to ensure comfort. Secondly,
the speed limit constraints should be used in this process. We
aim to avoid the acceleration commands when autonomous
vehicle is reaching maximum speed limit. 	irdly, for the
comfort purpose, the acceleration command should not be
always changed. In otherwords, we need tominimize the jerk.

Similar to [11], the candidate policies are divided into
three time segments. 	e �rst two segments are like “keep
constant acceleration/deceleration actions,” while keeping
constant velocity in the third segment. We use �1, �2, and �3
to represent the time periods of these three segments. To
guarantee comfort, the acceleration is limited to the range

from −4m/s2 to 2m/s2 and we discrete acceleration action
into a multiple of [−0.5, 0.5, 0]. 	en, the action space can be
represented by a discretizing acceleration set.	en,we can set



Mathematical Problems in Engineering 9

Law("�, "�) ← 0
�� ← ��2�/V��� ← ��2�/V�
if �� < �� − Δ�, then
Law("�, "�) ← 1

else if |�� − ��| < Δ�, then
status← C("�, "�)
if status = 1, then
if �lat,� = lanekeeping and �lat,� <> lanekeeping, then

Law("�, "�) ← 1
else if �lat,�, �lat,� = lanekeeping and �� − �� = 1 or −3, then
Law("�, "�) ← 1

else if �lat,� = turnleft and �lat,� = turnright, then

Law("�, "�) ← 1
end if

end if

end if

return Law("�, "�)

Algorithm 1: Tra
c law formulization.

Input:
Predict horizonG, time step Δ�,
Current states: &host = 7host, &human = [7human, �human]

(1) � ← genenratepolicyset()
(2) for each �� ∈ �, do
(3) for � = 1 toG/Δ�, do
(4) �host ← ��(�)
(5) &host ← updatestate(&host, �host)
(6) �human ← predictactions(&host, &human, �human)
(7) 7human ← updatestate(7human, �human)
(8) �human ← updateintention(&host, 7human)
(9) &human ← [7human, �human]
(10) $(�) = calculatereward(&host, &human)
(11) &host ← &host
(12) &human ← &human

(13) end

(14) $total
� ← ∑� sum($(�))

(15) end
(16) �∗ ← argmax�($total

� )
(17) �∗ ← ��∗
(18) return �∗

Algorithm 2: Policy selection process.

the value of �1, �2, and �3 and the prediction period of single
step. An example of policy generation is shown in Figure 6.

5.2. Planning Horizon Selection. A�er building policy gener-
ation model, the next problem is to select a suitable planning
horizon. Longer horizon can lead to a better solution but con-
suming more computing resources. However, as our purpose

is to deal with the interaction problem in the uncontrolled
intersection, we only need to consider the situation before
autonomous vehicle gets through. In our algorithm,we set the
prediction horizon as 8 seconds. In addition, in the process of
updating the future state of each vehicle using each policy, the
car following mode is used a�er autonomous vehicle passes
through the intersection area.
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Figure 6: An example of policy generation process. (a) is the generated policies and (b) is the corresponding speed pro�les. 	e interval of
each prediction step is 0.5 s, current speed is 12m/s2, and the speed limit is 20m/s2. 	e bold black line is one policy. In the �rst 3 seconds,
autonomous vehicles decelerate in −3.5m/s2, then accelerate at 2m/s2 for 4 seconds, and �nally stop in the last one second. In this case, 109
policies were generated, which is suitable for replanning fast.

A
B

Figure 7: Testing scenario. Autonomous vehicle B and human-driven vehicle A are both approaching the uncontrolled intersection. To go
across the intersection successfully, autonomous vehicle should interact with human-driven vehicle.

5.3. Time Step Selection. Another problem is the predic-
tion time step. 	e intention prediction algorithm and the
POMDP are computed in each step. If the time step is �step,
the total computation timeswill beG/�step.	us, smaller time
step leads to more computation time. To solve this problem,
we use a simple adaptive time step calculation mechanism to
give a �nal value. 	e time step is selected based on the TTC
of autonomous vehicle. If the host vehicle is far away from the
intersection, we can use a very large time step. But if the TTC
is quite small, the low �step is applied to ensure safety.

6. Experiment and Results

6.1. Settings. In this paper, we evaluate our approach through
PreScan 7.1.0 [21], a simulation tool for autonomous driving
and connected vehicles. Using this so�ware, we can build the
testing scenarios (Figure 7) and add vehicles with dynamic
model. In order to get a similar scenario considering social

interaction, the driver simulator is added in our experiment
(Figure 8). 	e human-driven vehicle is driven by several
people during the experiment and the autonomous vehicle
makes decisions based on the human-driven vehicle’s driving
behavior. 	e reference trajectory for autonomous vehicle
is generated from path planning module and the human-
driven vehicle’s data (e.g., position, velocity, and heading)
are transferred through V2V communication sensor. 	e
decision-making module sends desired velocity command to
the PID controlled to follow the reference path. All policies in
the experiment part use a planning horizonG = 8 s, which is
discretized into the time step of 0.5 s.

6.2. Results. It is di
cult to compare di�erent approaches
in the same scenario because the environment is dynamic
and not exactly the same. However, we select two typical
situations and special settings to make it possible. 	e same
initial conditions including position, orientation, and velocity
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Figure 8: Logitech G27 driving simulator.

T = 0, 1, 2, . . . , 6 s T = 5 s
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(a)

T = 0, 1, 2, . . . , 9 s
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T = 6 s
T = 7 s
T = 8 s

T = 9 s

T = 3 s

T = 2 s

T = 1 s

T = 0 s

(b)

Figure 9: 	e visualized passing sequence. (a) is the result of our approach and (b) represents the result of reactive approach without
considering intention. 	e black vehicle is an autonomous vehicle, while the red car is the human-driven vehicle. Each vehicle represents
the position in a speci�c time " with an interval of 1 second.

for each vehicle are used in di�erent tests. Besides, two
typical situations, including human-driven vehicle getting
through before or a�er autonomous vehicle, are compared
in this section. With the same initial state, di�erent reac-
tions will occur based on various methods. We compare
our approach and reactive-based method [6] in this sec-
tion. 	e key di�erence for these two methods is that our
approach considers human-driven vehicle’s driving inten-
tion.

	e �rst experiment is that human-driven vehicle tries
to yield autonomous vehicle in the interaction process. 	e
results are shown in Figures 9 and 10. Firstly, Figure 9 gives
us a visual comparison of the di�erent approaches. From
almost the same initial state (e.g., position and velocity), our
approach could lead to autonomous vehicle passing through
the intersection more quickly and reasonable.

	en, let us look at Figure 10 for detailed explanation.
In the �rst 1.2 s in Figures 10(a) and 10(c), autonomous
vehicle maintains speed and understands that human-driven
vehicle will not perform yielding actions. 	en, autonomous
vehicle gets yielding intention of human-driven vehicle and
understands that human-driven vehicle’s lateral intention
is to go straight. Based on candidate policies, autonomous
vehicle selects acceleration strategy with maximum reward
and �nally crosses the intersection. In this process, we can
obviously �nd that autonomous vehicle understands human-
driven vehicle’s yielding intention. Figure 10(c) is an example
of understand human-driven vehicle’s behavior based on ego
vehicle’s future actions in a speci�c time. Our strategy pre-
dicts the future actions of human-driven vehicle. Although
the velocity curves a�er 1 s do not correspond, it does not
a�ect the performance of our methods. 	e reason is that
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Figure 10: Case test 1. In this case, human-driven vehicle passes through intersection a�er autonomous vehicle. (a), (c), and (e) are the
performance of our method, while (b), (d), and (f) are from the strategy without considering the driving intention. (a) and (b) are the velocity
pro�les and the corresponding driving intention. For longitudinal intention, label 1 means yielding and label 2 means not yielding. In lateral
intention, 1 means turning le�, 2 means turning right, 3 means going straight, and 4 means stop. 	e intentions in (b) are not used in that
method but for detailed analysis. (c) and (d) are the distance to collision area for autonomous vehicle and human-driven vehicle, respectively.
(e) and (f) are the prediction and true motions of human-driven vehicles in time 1.5 s with a prediction length of 8 s. 	e red curves in these
sub�gures are from autonomous vehicle while blue lines are from human-driven vehicle. 	e green lines in (e) and (f) are the prediction
velocity curves of human-driven vehicle.
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Figure 11: 	e visualized passing sequence for the case of human-driven vehicle �rst getting through. (a) is the result of our approach and
(b) is the reactive-based approach.

we use a deterministic model in the prediction process and
the prediction value is inside two boundaries to ensure safety.
Besides, the whole actions of autonomous vehicle in this
process could also help human-driven vehicle to understand
not-yielding intention of autonomous vehicles. In this case,
cooperative driving behaviors are performed by both vehi-
cles.

However, if the intention is not considered in this process,
we can �nd the results in Figures 10(b), 10(d), and 10(f).
A�er 2 s in Figure 10(b), while the human-driven vehicle
gives a yielding intention, autonomous vehicle could not
understand and they �nd a potential collision based on the
constant velocity assumptions. 	en, it decreases the speed
but the human-driven vehicle also slows down. 	e puzzled
behavior leads both vehicles to slow down near intersection.
Finally, human-driven vehicle stops at the stop line and then
autonomous vehicle could pass the intersection. In this strat-
egy, the human-driven vehicle’s future motion is assumed to
be constant (Figure 10(f)).Without understanding of human-
driven vehicle’s intentions, this strategy can increase conges-
tion problem.

Another experiment is that human-driven vehicle tries to
get through the intersection �rst. 	e results are shown in
Figures 11 and 12.	is case is quite typical because many traf-
�c accidents in real world are happening in this situation. In
detail, if one vehicle tries to cross an intersection while violat-
ing the law, another vehicle will be in great danger if it does
not understand its behavior. From the visualized perform-
ance in Figure 11, our method is a little more safe than other
approaches as there is nearly collision situation in Figure
11(b). In detail, we can see from Figure 12(a) that our strategy
could perform deceleration actions a�er we understand the
not-yielding intention in 0.8 s.However, without understand-
ing human-driven vehicle’s motion intention, the response
time has a 1-second delay which may be quite dangerous.

In addition, it is shown that good performance is in the
predictions of human-driven vehicle’s future motion in our
methods (Figure 12(e)).

	e results of these two cases demonstrate that our algo-
rithm could deal with typical scenarios and have better per-
formance than traditional reactive controller. Autonomous
vehicle could be driven more safely, fast, and comfortably
through our strategy.

7. Conclusion and Future Work

In this paper, we proposed an autonomous driving decision-
making algorithm considering human-driven vehicle’s uncer-
tain intentions in an uncontrolled intersection. 	e lat-
eral and longitudinal intentions are recognized by a con-
tinuous HMM. Based on HMM and POMDP, we model
general decision-making process and then use an approxi-
mate approach to solve this complex problem. Finally, we
use PreScan so�ware and a driving simulator to emulate
social interaction process. 	e experiment results show that
autonomous vehicles with our approach can pass through
uncontrolled intersections more safely and e
ciently than
using the strategy without considering human-driven vehi-
cles’ driving intentions.

In the near future, we aim to implement our approach into
a real autonomous vehicle and perform real world experi-
ments. In addition,more precious intention recognition algo-
rithm aims to be �gured out. Somemethods like probabilistic
graphic model can be used to get a distribution of each inten-
tion. Finally, designing online POMDP planning algorithms
is also valuable.
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Figure 12: Case test 2. In this case, human-driven vehicle passes through intersection before autonomous vehicle through di�erent strategies.
	e de�nition of each sub�gure is the same as in Figure 10.
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