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ABSTRACT Understanding the user’s intention is an essential task for the spoken language understand-

ing (SLU) module in the dialogue system, which further illustrates vital information for managing and

generating future action and response. In this paper, we propose a triplet training framework based on the

multiclass classification approach to conduct the training for the intention detection task. Precisely, we utilize

a Siamese neural network architecture with metric learning to construct a robust and discriminative utterance

feature embedding model. We modified the RMCNN model and fine-tuned BERT model as Siamese

encoders to train utterance triplets from different semantic aspects. The triplet loss can effectively distinguish

the details of two input data by learning a mapping from sequence utterances to a compact Euclidean

space. After generating the mapping, the intention detection task can be easily implemented using standard

techniques with pre-trained embeddings as feature vectors. Besides, we use the fusion strategy to enhance

utterance feature representation in the downstream of intention detection task. We conduct experiments on

several benchmark datasets of intention detection task: Snips dataset, ATIS dataset, Facebook multilingual

task-oriented datasets, Daily Dialogue dataset, and MRDA dataset. The results illustrate that the proposed

method can effectively improve the recognition performance of these datasets and achieves new state-of-the-

art results on single-turn task-oriented datasets (Snips dataset, Facebook dataset), and a multi-turn dataset

(Daily Dialogue dataset).

INDEX TERMS Intention detection, BERT, RMCNN, triplet loss, fusion strategy.

I. INTRODUCTION

The dialogue systems are being integrated into various

devices and allow users to speak to the system directly to

perform the specific task efficiently, such as Google Home [1]

and Amazon Echo [2]. The spoken language understand-

ing (SLU) module is an indispensable component in the dia-

logue system. A typical SLUmodule is designed to transform

the spoken language into a specific semantic template that

human language can be well-understood by the dialogue sys-

tem. After that, the dialogue management module can facil-

itate future actions according to detection results in the SLU

module. The role of the intention detection task in SLU is to

discriminate the implicit intention by recognizing the intents

of received utterances. The intent tag is a semantic label

attached with each utterance in dialogue, which represents

the user’s intention and concise utterance interpretation [3].

Therefore, intention detection task is crucial to enhance the
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spoken language understanding performance in the dialogue

system.

In our research, we study spoken language as described in

written format. According to the real situation, it is challeng-

ing to study the spoken language because of some attributes

of natural language. Firstly, the sparsity of semantic informa-

tion and obscure slang in spoken language make the model

difficult to interpret thoroughly [4]. For instance, the aver-

age length of some utterances is no more than 20 words.

Secondly, the same underlying utterances have different tags

or multiple tags, which give rise to ambiguity in classifying

intention labels. We use the utterance ‘Yeah’ as an example

showed in Table 1 that the ‘Yeah’ has three tags, which are

‘Backchannel,’ ‘Agree,’ and ‘Yes/No Answer,’ respectively.

The prior works of multi-class classification of intention

detection exploit Softmax to train an encoder on labeled train-

ing data. The learned features are optimized under the super-

vision of Softmax, which cannot be sufficiently distinguished

because it does not consider the intra-class compactness of

features. The categories prediction was only focusing on

82242 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
VOLUME 8, 2020

https://orcid.org/0000-0003-4860-9184
https://orcid.org/0000-0002-6367-0955
https://orcid.org/0000-0003-2124-6803


F. Ren, S. Xue: Intention Detection Based on Siamese Neural Network With Triplet Loss

TABLE 1. A snippet of a dialogue sample. Each utterance corresponding
to an intent label and a speaker label.

finding a decision boundary, which results in poor generaliza-

tion capabilities. Inspired by these observations, we assume

that the intention recognition performance can benefit from

constructing the robust and discriminative feature representa-

tions of the short-length utterances. To this end, we improve

the conventional method by proposing a novel triplet training

framework based on multi-class classification learning.

Pre-trained language models have recently proved to be

very useful and efficient in learning general language rep-

resentations. For instance, the BERT model is conceptually

simple and empirically powerful in enormous natural lan-

guage processing tasks [5]. Inspired by the pre-trained lan-

guage model learning approach and transfer learning tech-

niques, we refer to the concept of unsupervised pre-training

method with triplet loss to learn a structured space of inter-

pretable utterance representations.

Specifically, we design a two-stage process for intent

classification, which includes feature embedding learning

and intention prediction. In the first stage, we develop the

RMCNN model and BERT model as Siamese encoder with

metric learning to obtain robust and discriminative fea-

ture embeddings by minimizing the intra-class differences.

In the second stage, we fuse the features from pre-trained

feature embedding models and add additional relevant infor-

mation as completed feature sets to predict intention labels in

the downstream task.

We summarize the contributions of this paper as follows:

(1) The proposed triplet training framework learns dis-

criminative utterance feature by using the same

weights on different inputs. The triplet loss function

infers a non-linear mapping in the resulting latent

space, and the inter-class sample distances are max-

imized based on a certain margin [6].

(2) We utilize CNN, RMCNN (Bi-GRU-MCNN), and

BERT as Siamese encoders to train the utterance

triplets. Precisely, the RMCNN model can gener-

ate structural information, in which the RNN model

can extract the global context, and a wide range of

kernels of CNN can capture the fine-grained local

components of utterance. Besides, we facilitate bidi-

rectional encoder representation from transformers

on enormous unlabeled data to obtain powerful

context-dependent utterance features.

(3) The triplet selection turns out to be crucial for model

convergency. By considering the strong correlations

between dialogue context, we propose a sequential

sampling strategy to keep the intention transition traits

into the triplet sampling process.

(4) In the downstream task, we predict the probability

distribution of each intent label based on multi-class

classification learning. We obtain utterance features

by fusing the features from different pre-trained fea-

ture embedding models. Besides, we extent features

with relevant information as external knowledge, such

as speaker information.

The rest of the paper is organized as follows: the

related research methods are introduced in Section II;

Section III introduces the model framework and method-

ology; Section IV conducts experiments on benchmark

dataset; Section V analysis the result from different aspects;

Section VI concludes the whole article and outlines the future

work.

II. RELATED WORK

A. INTENTION DETECTION TASK

The learning methods for the intention detection task are

divided into two categories: multi-class classification and

sequence labeling. The multi-class classification models are

SVM [7], Naive Bayes [8], and Maximum entropy [9] in

experiments. The sequence labeling methods are HMM [7]

and SVM-HMM [10]. Plenty of features had been exploited

in traditional models, including lexical, syntactic features,

prosodic cues, and dialogue structure. For example, the key-

words [11] and vocabulary pairs as lexical features [12] can

highlight the particularity of a sentence. Besides, the syntac-

tic features like utterance length [10] and word order [13]

had shown its utility for identifying intention tags. However,

the traditional approaches for intention detection relied on

hand-crafted features that were time-consuming and labor-

intensive.

The emergence of deep learningmethods effectively allevi-

ated the constraints of the traditional approaches and achieved

state-of-the-art results from natural language processing to

computer vision [14]. For example, Khanpour et al. [15] uti-

lized the pre-trained word embedding matrix and a modified

RNNmodel to represent the utterance features. Kim [16] used

CNN as an utterance encoder with pre-trained embedding that

performed well on this task. Lee and Dernoncourt [17] got

the cutting edge by investigating standard RNN and CNN

that incorporated preceding short texts as context to predict

dialogue act tags. Besides, some researches utilized the joint

learning approach to conduct the intention detection and slot

filling [48], [49]. In addition, some researchers considered the

contextual structure of the multi-turn dialogue, so the inten-

tion detection task also can be regarded as a sequence labeling

task. Kumar et al. [18] utilized hierarchical Bi-LSTM to
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FIGURE 1. The whole intention detection framework with pre-trained feature embedding models (RMCNN, BERT).

capture utterance granularity and inherent properties from

multi-levels of conversation and predicted sequential dia-

logue act with the CRF model. Tu et al. [19] build a hybrid

neural network-based ensemble model for Chinese hierar-

chy dialogue. Notably, this paper incorporated the speaker

changing as a feature to illustrate utterance peculiarity. Fur-

thermore, some other features were useful to generate more

discriminative predictions in detecting user’s intention. For

examples, the location of the comment in web forum [20],

speaking preference of users [20], dialogue topic context of

same user [21], emotion transition trait of user’s blog[22],

the rating and comments of products in shopping website

were treated as the weak label to learn the sentence repre-

sentation [34].

B. LANGUAGE REPRESENTATION MODEL

Recently, the language representationmodel improved signif-

icantly in manyNLP tasks, such as textual entailment, seman-

tic similarity, reading comprehension, and question answer-

ing [23]. The language representation models can provide

powerful context-dependent representations by pre-training

on a large scale unlabeled data, such as Contextualized

Word Representations (ELMo) [24], Generative Pre-trained

Transformer (GPT) [25] and Bidirectional Encoder Repre-

sentations from Transformers (BERT) [5]. Besides, these

models can be easily applied to different downstream tasks

with minimum parameters. Therefore, we exploit the concept

of pre-trained language model representation to construct a

novel utterance feature embedding model in this paper.

C. METRIC LEARNING

Utilizing the deep neural network with a distance metric to

learn the feature embedding had been successfully applied

to many tasks, such as face recognition [26], speech recog-

nition [27], [28] and speaker identification. For example,

FaceNet [26] of Google utilized a random semi-head triplet

mining approach to make up facial picture triplets, which

obtained excellent performance. He et al. [29] achieved out-

standing performance on 3D object retrieval by proposing

triplet loss and center loss. Huang et al. [30] applied triplet

loss in training to automatically recognize emotion state in

spoken language. To deal with the spoken language, Cam-

bria [31] presented a system that directly learned mapping

from speech features to a compact fixed-length speaker dis-

criminative embedding. The triplet loss function focuses on

fine-grained identification and adds the measurement of the

latent state, which can help model distinguish the details.

D. MULTI-SOURCE FUSION

Generally, the exceptional performance of the classifica-

tion model depended on sufficiently large training cor-

pora to a great extent. To comprehensively understand sen-

tences, the fusion strategy can aggregate multiple sources to

enriching the features and boost learning performance [31].

Majumder et al. [32] fused the multimodal resources like

audio, video, and text for sentiment analysis. Tay et al. [33]

generated sentence representations by using a gating mech-

anism to combine the sentence token features and sentiment
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lexicon features. Sun et al. [35] detected emotional elements

by using a mixed model to extract sentimental objects and

their tendencies from product reviews. Specifically, themulti-

stream architecture is prevalent in data fusion. For exam-

ple, Simonyan and Zisserman [36] designed a model with

two-stream ConvNet architecture to illustrate spatial feature

and temporal features, which can achieve significant perfor-

mance under the condition of limited training data by the

two-stream model. Inspired by these experiments, we use

the fusion strategy in the downstream task to enhance the

utterance feature representation.

III. PROPOSED METHOD

Before describing the proposed method in detail, we illus-

trate the mathematical notation for the intention detection

task. In this experiment, we deal with the intention detec-

tion task based on multi-class classification learning. Sup-

pose, we have the number of n utterance sequences X =
{x1, x2, . . . ,xn} with corresponding the sequences of intents

label Y = {y1, y2, . . . ,yn} . Each utterance xi of dialogue is

composed of a sequence of words xi = {w1,w2, . . . ,wj}. The
purpose of this paper is that given an unseen utterance xi,

we construct a model to learn the valid feature representation

better and accurately predict the corresponding intent label

yi. Besides, we evaluate the proposed model on single-turn

task-oriented dialogue and multi-turn conversation. It’s worth

noting that the multi-turn conversation contains the speaker’s

role information, so we supplement the role information as a

feature in the downstream task. Each utterance correspond

to a speaker tag C = {c1, c2, . . . , cn}.

A. THE WHOLE FRAMEWORK

This section mainly introduces the whole framework of the

proposed model. The entire structure consists of three parts,

which are triplet sample selection, triplet training section,

and the downstream task of intention classification. Firstly,

the system needs a sampling strategy to generate valid triplet

data (xai , x
p
i , x

n
i ) as training objects. One triplet sample con-

sists of an anchor sample xai , a positive sample x
p
i , and a

negative sample xni . Then, we input all the triplet samples into

the Siamese encoder and train the model with a triplet loss

function. The triplet training model uses the same weights

on different inputs to compute variables and accomplish a

better separation between two positive related samples of the

same class (xai , x
p
i ) and one negative sample

(

xni
)

. To avoid

meaningless calculation in the training process, we need

to verify whether triplet samples are valid by setting up a

particular margin parameter to observe Euclidean distance

between embedding triplets in the test section. After the train-

ing, we can obtain a robust pre-trained feature embedding

features, which can better reflect the specific characteristics

of utterance. Secondly, given the well-defined feature embed-

dingmodel with parameters, we exploit it mapping utterances

in the downstream task. The critical components for triplet

training are the Siamese model selection and triplet data

composition. Therefore, the related information of essential

components and modifications are illustrated in the following

subsections.

B. THE TRIPLET SIAMESE NEURAL NETWORK

1) TRIPLET LOSS TRAINING

Triplet loss function is calculated on the triplet data
(

xai , x
p
i , x

n
i

)

, where the
(

xai , x
p
i

)

are extracted from the same

intention category. We obtain the negative sample
(

xni
)

in

different intention category from the
(

xai , x
p
i

)

. We exploit

the feature embedding model fθ (x) ∈ R
d to map utterance

triplets to d-dimension Euclidean space, and the distances are

measured in resulting latent space.

Dap = ‖ fθ
(

xai
)

− fθ
(

x
p
i

)

‖2
2

(1)

Dan = ‖ fθ
(

xai
)

− fθ
(

xni
)

‖2
2

(2)

∀
(

fθ
(

xai
)

, fθ
(

x
p
i

)

, fθ
(

xni
))

∈ T (3)

The fθ (·) refers to the Siamese encoder. The

fθ
(

xai
)

, fθ
(

x
p
i

)

, fθ
(

xni
)

are outputs from the Siamese

encoder. T is the set of all possible triplets in the training set.

The triplet loss optimizes model by minimizing the distance

between fθ
(

xai
)

and fθ
(

x
p
i

)

andmaximizing distance between

fθ
(

xai
)

and fθ
(

xni
)

by at least amargin parameterα ∈ R
+. The

triplet loss Ltriplet is illustrated as follow:
N
∑

i

[

‖ fθ
(

xai
)

− fθ
(

x
p
i

)

‖2
2
− ‖ fθ

(

xai
)

− fθ
(

xni
)

‖2
2
+ α

]

+

(4)

where N stands for the number of triplets in the training

set, and i denotes the i-th triplet sample. During the triplet

training, generating all possible triplets can easily be satisfied

but results in slower convergence. Therefore, it is vital to

select valid triplet samples to improve training efficiency. The

following section is about triplet sampling strategies.

2) TRIPLET SAMPLING STRATEGY

It is crucial to comply with the triplet constraint to ensure fast

convergence. The constraint of triplet selection is illustrated

as follow:
‖ fθ

(

xai
)

− fθ
(

x
p
i

)

‖2
2
+ α < ‖ fθ

(

xai
)

− fθ
(

xni
)

‖2
2

(5)

Based on the constraint, we adopt two sampling strategies

to extract triplets, which are random sampling strategy and

sequential sampling strategy. The random sampling strategy

randomly composes triplets as a training object without order.

Initially, we design a generator to random sampling two

different intention categories from all intention candidates

N , which generates a total of N (N − 1)/2 anchor-positive

utterance pairs. For each selected anchor-positive utterance

pairs, we randomly choose one of it as a negative label and

another one as a positive label. Then, we randomly select an

utterance from the negative label and select two utterances

from the selected positive label. We combine three selected

utterances as one triplet data for training. After each epoch,

we repeat sampling the triplets based on batch size.
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Different from the random sampling strategy, we can find

that there are specific correlations among two adjacent utter-

ances and adjacent intents in the multi-turn dialogue dataset.

For example, the ‘Question’ tag followed by the ‘Affirmative’

tag is frequently appearing together, and the ‘Request’ tag

always connects with the ‘Repeat Response’ tag. However,

the disadvantage of the random sampling strategy is that it

composes triplets without order, so it cannot take the con-

text into triplet selection. Therefore, the encoder might learn

useless context information from random order utterances.

From this point of view, we keep the intention transition

traits into triplet selection. To this end, we keep the original

intent sequence order as anchor samples. Then we randomly

select other utterances the same as the intention category

of anchor samples as positive samples. We form negative

utterance sequences with intention category that are differ-

ent from the anchor utterances’ intention category. Then,

we input the triplets into Siamese encoders to train the feature

embedding models. Through the sequential sampling strat-

egy, the Siamese encoder can learn the valid context infor-

mation in training. The following sections are to illustrate the

Siamese neural network.

3) SIAMESE RMCNN NEURAL NETWORK

We modify the RMCNN model as a Siamese encoder to

train the utterance triplets and generate a fixed-dimension

representation. Firstly, we have the number of n utterances

X = {x1, x2, . . . ,xn} in the dialogue. Each utterance contains
variable-length word tokens xi =

{

w1,w2, . . . ,wj
}

. After

triplet sampling, we obtain utterance triplet samples. For

each utterance sample in triplet, we embed word tokens into

vector E = {e1, e2, . . . ,en} through a trainable embedding

matrix pre-trained on enormous unlabeled data. The bidi-

rectional GRU model encodes sequence token embedding to

produce sequences of corresponding hidden vectors H =
h1, h2, . . . , hi, which extracts the context information by

concatenating the hidden states from forward and backward

directions. The operation of bidirectional GRU is formulated

as follows:

h→t = fGRU (ht+1, et) (6)

h←t = fGRU (ht−1, et) (7)

ht =
[

h→t , h←t
]

(8)

in which ht maintains the sequence information of the utter-

ance. Then, we feed the output from Bi-GRU layer into the

CNN layer. The CNN model can capture fine-grained local

features inside a multi-dimensional filed. The convolutional

operation includes a filter Wc ∈ R, which is utilized to a

window of l continuousword vectors to produce a new feature

map. A scalar feature ci is generated from a window of words

hi:i+l by:

ci = f (Wc ◦ hi:i+l + bc) (9)

where the symbol ◦ indicates the dot product operation,

l refers to the width of the convolutional kernel, f is a

non-linear function (ReLU), Wc is the convolutional matrix,

and bc is a bias term. Each kernel corresponds to an utterance

detector to extract specific n-gram patterns at various granu-

larities. The kernel applied to each possible region matrix to

produce a valuable feature map:
C = [c1, c2, . . . , cm] (10)

in which m is the number of the channels. The pooling layer

can extract local dependencies in different regions to preserve

the most useful information. Then, we apply the pooling

layers to capture the most valuable feature from each feature

map, which includes the global maximum pooling layer and

global average pooling layer. The outputs from two pooling

layers are concatenated together as the local phrase feature of

dialogue:
ĉ = [gmp {ci} ,gap {ci}] (11)

where the ‘gmp’ indicates the global maximum pooling

layer and the ‘gap’ indicates the global average pooling

layer. Then, the outputs of the pooling layers with differ-

ent widths are concatenated. Finally, three fully connected

layers with ‘tanh’ activation are stacked together, and an

L2-normalization layer is followed behind to form final utter-

ance embedding. The Siamese RMCNN neural network opti-

mized by minimizing the triplet loss and Adam optimizer is

used during training.

4) SIAMESE BERT NEURAL NETWORK

Here is the process that we train utterance triplet samples

with the Siamese BERT model. In this section, we fine-tune

the pre-trained BERT model as Siamese encoder to train

utterance triplet samples. Given sequence utterances X =
{x1, x2, . . . ,xn}, and we sample valid triplets for training. For

each utterance sample in a triplet, BERT model construct

token embeddings of this utterance E = {e1, e2, . . . ,en}
by concatenating the word piece embeddings, the positional

embeddings, and the segment embeddings. Then, the token

vectors are feed into encoder block and are encoded by stack

layers. The encoder block includes multi-attention sublayers

and the position-wise fully connected sublayers. The input

data of the encoder block is a sequence hidden states H =
{h1, h2, . . . , hi} , so the output of encoder S = {s1, s2, . . . , si}
is illustrated as follows:

a
(k)
ij = Softmax

((

1√
d s

(

W
(k)
Q hi

)T (

W
(k)
K hj

)

))

(12)

s
(k)
i =

∑N

ν=1
a
(k)
i

(

w(k)
v hj̇

)

(13)

si = WO

[

s
(1)
i , s

(2)
i , . . . , s

(k)
i

]

(14)

in which k is the number of attention heads, h is the dimen-

sion of hidden states, and ds is the parameter of scale dot-

production. The WQ,WK ,Wv and WO indicate the model

parameters. The output of the residual connection and the nor-

malization module S̃ = {s̃1, s̃2, . . . ,s̃N} are denoted below:
S̃ = LayerNorm(H + S) (15)
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The output of the position-wise fully connected sublayer

O = {o1, o2, . . . , oN } is calculated as follows:

oi = W2ReLU (W1s̃i + b1)+ b2 (16)

in which W1,W2, b1 and b2 are the model parameters. The

residual connection layer and the normalization layer are fol-

lowed the encoder block. The final contextual representation

Õ = {õ1, õ2, . . . ,õN} is illustrated below.

Õ = LayerNorm(O+ S̃) (17)

We feed the final contextual representation into three

fully connected layers with ‘tanh’ activation and an

L2-normalization layer to get final utterance token embed-

ding. The Siamese BERT encoder is optimized by triplet loss

function by end-to-end propagation, and Adam optimizer is

utilized during training.

C. FEATURE FUSION IN DOWNSTREAM TASK

1) FEATURE-BASED STRATEGY

Fine-tuning the pre-trained language model can save expen-

sive pre-computing. The pre-trained feature representation

can be easily testified on many experiments with cheaper

models on top of this representation [37]. Therefore, there

is no need to train complex afterward. In this paper, we ver-

ify our pre-trained feature embedding model by utiliz-

ing the feature-based strategy for the downstream task.

Feature-based strategy collects utterance features from the

well-defined pre-trained language model to different down-

stream tasks.

The intention detection task in our experiment is based on

the multi-class classification learning method, which can be

seen in Fig. 2. The pre-trained feature embedding models

(fRMCNN , fBERT ) can form two robust utterance representa-

tions from different semantic aspects, which are denoted

below.

URMCNN = fRMCNN (xi) (18)

UBERT = fBERT (xi) (19)

Then, we feed the utterance feature UBERT and URMCNN
into the fully-connect layers, respectively. We use the Soft-

max classifier to predict the probability distribution of inten-

tion labels, which is defined as follows:

Q = tanh (WUU + bU ) (20)

ŷ = Softmax
(

WQQ+bQ
)

(21)

where WU , bU ,WQ, and bQ are model parameters. We take

cross-entropy as the loss function and Adam as an optimizer

during training. The end-to-end backpropagation is employed

in the training process.

2) MULTI-FEATURE FUSION STRATEGY

The multi-source fusion strategy can effectively improve the

performance of natural language learning by various rele-

vant resources [38]. Inspired by this conception, we employ

a fusion strategy to accumulate semantic information of

FIGURE 2. The feature-based strategy of downstream task.

FIGURE 3. The model of fusion strategy for downstream task.

utterance from several aspects, such as utterance granular-

ity, dialogue structure, and speaker information, which can

be seen in Fig. 3. The same sentence may express dif-

ferent aspects concerning different aspects. To be specific,

the RMCNN model can capture the global structural fea-

tures of the input sentence. The BERT model remedies the

limitation of the insufficient training corpora and provides

more external knowledge about common utterance words.

Otherwise, the participants have different roles and speaking

preferences in various domains in multi-turn conversation,

which also can be regarded as a distinctive feature to enhance

utterance differences. We indicate speaker information in

the model as ‘C ′. Specifically, we use numerical values to

represent different speakers.

We unified a two-stream fusion model to integrate the

utterance features from different models to show its different

aspects. Firstly, we set two pre-trained feature embedding

models as two streams to encode utterance from different

aspects. We feed the sequence word tokens into the models

independently and obtain the optimal parameters of each

model. In this section, we compose the utterance encoder

using two models with optimal settings. After the optimal

parameters are trained in each stream, the outputs from each

stream are concatenated together and then input to the classi-

fier. Then, we extend the utterance representation to Uall =
[

URMCNN ,UBERT ,USpeaker
]

. Precisely,URMCNN refers to the

structural feature learned from the Siamese RMCNN model,

UBERT refers to the fine-grained contextual feature learned

from the BERT triplet model and theUSpeaker as an additional

feature refers to the speaker’s role aligned with each utter-

ance. Then, all the features are concatenated together to be a
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comprehensive utterance representation. The Softmax func-

tion is connected to the encoders to calculate the probability

distribution, and the output is P = {p1, p2, . . . ,pn}, in which

n is the number of the intention labels, and pi is the predicted

probability that utterance belongs to the corresponding intent

tag i, and the final predicted tag: ŷ = argmax (P). The model

optimization is to minimize the cross-entropy loss, and Adam

optimizer is used during training.

IV. EXPERIMENT

A. DATASETS

We evaluate the proposed model on several benchmark

datasets. We find that the evaluation object of intention detec-

tion task includes not only task-oriented dialogues but also

multi-turn dialogues. In the previous studies [6], the intention

detection task of multi-turn conversation is regarded as a

multi-class classification. Therefore, we transfer the multi-

turn conversation from the nested dialogue structure into a flat

structure, so that the utterance triplets can be properly sam-

pled. Besides, we also performed a series of pre-processing

steps by utilizing Stanford’s CoreNLP tool [39] to avoid

text noise, such as utterance tokenization and word

lemmatization.

We introduce three single-turn task-oriented dialogue

dataset and two multi-turn dialogue datasets, which are listed

below:

The SNIPS dataset [40] is collected from the Snips per-

sonal voice assistant and contains 7 intent types. The number

of samples for each intention label is approximately the same.

The ATIS dataset [41] is the audio recording of making

the flight reservation. The training set includes utterances,

and the test set contains 893 utterances. We follow the previ-

ous experiment and set the validation set with 500 utterances

from the training set. There are 21 intention labels in the

dataset.

The Facebook’s multilingual dataset [42] contains anno-

tated utterances with the English version, Spanish version,

and the Thai version. It covers the weather, alarm, and

reminder domains in English, Spanish, and Thai language.

There are 12 intention labels in the training set.

The Daily Dialogue dataset[43] is a high-quality multi-

turn dialogue dataset, which mainly records dialogue in terms

of people’s everyday life. Each utterance of the Daily Dia-

logue dataset is manually labeled with the topic tag, intention

tag, and emotion tag.

The ICSI Meeting Recording Dialogue Act (MRDA)

dataset [44] contains 72 hours of multi-party meeting speech

dialogue from 75 naturally happened meetings. The original

tag sets of MRDA included 11 general tags and 39 specific

tags. Based on the previous experiments, we utilize the most

widely used class-map to cluster all tags into 5 groups of

intention categories.

B. HYPER-PARAMETERS TUNING

In this section, we illustrate the related parameters in model

training, which is associated with the triplet training process

and downstream task. All the work is implemented under the

TensorFlow framework.

In terms of the triplet training with the Siamese

RMCNN model, we pad each utterance to the maximum

length for training. We initialized word vectors with the

300-dimensional word2vec word vectors. We set the dropout

as 0.3 after the embedding layer to avoid over-fitting. The

hidden size of Bi-GRU is 512 in one direction. We use

multiple kernel size (1, 2, 3) in the CNN layer to encode

different utterance granularity, and the filter size is 256. The

three fully-connect layers and an L2-normalization layer are

followed behind. We set the Adam optimizer with a learning

rate of 2e-4 and a weight decay of 1e-6.

In terms of the Siamese BERT model, we fine-tuned

the BERT model with metric learning to obtain utterance

features. The pre-trained BERT encoder is trained on the

unlabeled data, which are Books corpus (800M words) and

English Wikipedia (2500M words). The maximum length

of an utterance is 50. The BERT-base model has 12-layers,

768- hidden states, and 12-heads. The hidden dim of the token

embedding is 50. We set the Adam optimizer with a learning

rate of 3e-5 and a weight decay of 1e-6. The other parameters

we follow the original BERT paper [5].

Furthermore, we utilize the feature-based strategy in down-

stream intention detection tasks. The pre-trained RMCNN

and BERT feature embedding model is employed as different

encoders in single-stream, respectively. In this section, we set

the hidden size as 64, Adam optimizer is used with learning

rate is 2e-4, and the batch size is 256.

C. BASELINES

We compare the proposed model with several state-of-the-

art baseline models. For the single-turn task-oriented dataset,

it includes the following:

• Attention-BiRNN [45] utilizes the encoder and decoder

model for joint learning the intention detection task

and slot-filling task. An attention weighted sum of all

encoded hidden states is used to recognize intention.

• Slot-Gated Attention [46] uses slot-gated LSTM to

learn context vector, which improves the performance

of intention classification.

• Capsule-NLU [47] accomplishes the intention detec-

tion by exploiting the hierarchical semantic information.

They propose a re-routing schema to synergize further

the slot filling performance using the inferred intention

representation.

• Joint BERT [48] uses joint intention classification and

slot filling based on the pre-trained BERT model.

• BERT-SLU [49] provides a novel encoder-decoder

framework based on a multi-class classification method

to joint learn intention detection and slot-filling. The

model uses BERT as an encoder to train utterance and

then design a decoder to detect intention label.

• Cross-Lingual transfer [42] uses a novel method of using

a multilingual machine translation encoder as contextual

word representations to predict intents.
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TABLE 2. The Dataset overviews. The number of the classes of each corpus is tag Intention, the vocabulary size of each corpus is tag Vocabulary. For the
train data, validation data, and test data, we indicate the number of utterances in the table.

TABLE 3. The recognition results on the Snips, ATIS and Facebook (EN)
datasets. The evaluation criteria in this table is accuracy value of test
dataset.

According to previous studies, there are several multi-

turn dialogue datasets contain the intention detection task.

In particular, we also verify the model on the multi-turn dia-

logue dataset to evaluate the model generalization capability.

Therefore, we compare our model with the existing baselines,

which includes:

• SVM [8] is a simple baseline model, which applies the

text feature and multi-classification algorithm on the

dialogue act classification.

• LSTM-SoftMax [15] method applies a deep LSTM

model to classify dialogue acts via the SoftMax classi-

fier.

• CNN [17] method utilizes the CNNmodel to encode the

utterance with the Softmax classifier. The encoder con-

siders two preceding utterances as context information

in the experiment.

• Bi-LSTM-CRF [18] method constructs a hierarchical

bidirectional LSTM as an encoder to learn the conver-

sation representation and the conditional random field

as the top layer to predict intention label.

• CRF-ASN [49] incorporates hierarchical semantic infer-

ence with memory mechanism on utterance modeling at

multiple levels and uses a structured attention network

on the linear-chain CRF to dynamically separate the

utterance into cliques.

• Dual-Attention [50] utilizes a novel dual task-specific

attention mechanism to capture interaction information

between intents and conversation topics for utterances.

• SelfAttn-CRF [51] proposes a hierarchical deep neural

network to model different levels of utterance and dia-

logue act and use CRF to predict dialogue acts.

V. DISCUSSION

A. THE RESULT ANALYSIS

Table 3 and Table 4 show the intention detection accuracy on

different datasets. Precisely, the prefix RAN means random

triplet sampling strategy, and SEQ refers to the sequential

triplet sampling strategy. The RAN-BERT means the random

sampling strategy with the BERT model as Siamese encoder,

and the SEQ-BERT means the sequential sampling strategy

with the BERT model as a Siamese encoder. The rest model

name is the same meaning.

As we can see the results shown in Table 3 and Table 4,

the proposed model significantly outperforms baseline mod-

els and achieve state-of-the-art performance on Snips, Face-

book (EN), and DYDA datasets. Although the proposed

model does not obtain the-state-of-the-art results on ATIS and

MRDAdatasets, it still can show that the feature learning abil-

ity of the proposed model is useful. For the task-oriented dia-

logue dataset, the proposed feature learning model achieves

the recognition accuracy of 99.29% (from 98.96%) on the

Snips dataset, 99.22% (from 99.11%) on Facebook(EN)

dataset. The fusion features also improve the performance

slightly that obtain 99.31% on the Snips dataset, 99.56%

on the ATIS dataset, 99.28% on Facebook(EN) dataset. For

the multi-turn dialogue dataset, the model SEQ-CNN, SEQ-

RCNN, and SEQ-BERT of the DYDA dataset improve the

accuracy over the-state-of-the-art model by 0.6%, 2.9%, and

1.5%, respectively. Themulti-source data fusion compensates

for the lack of data-sparse to a certain extent. It boosts the

performance than other methods because it integrates a wide

range of available features, which achieves 91.3% on the

DYDA dataset and 91.0% on MRDA.

However, the gains on the ATIS dataset andMRDA dataset

are slight. One of the reasons for this phenomenon is that the
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TABLE 4. The recognition results on the DYDA and MRDA datasets. The
evaluation criteria in the table is accuracy value of test dataset.

data distributions in these two datasets are both imbalanced.

In the MRDA dataset, the class ‘Statement’ is occupied more

than 50% of the intention category. In the ATIS dataset,

the intention label ‘‘flight’’ also accounts for almost half

of the total training data. Based on the sampling strategy,

the sampled utterances can be affected by the proportion of

intent categories in the database. It is difficult for the model to

learn the exact features for very few classes. Another reason

is that the ambiguity of label correlation and label annotation

is harmful to triplet feature learning. Besides, the MRDA

dataset was found to have a high negative correlation between

previous label entropy and accuracy, indicates the impact of

label noise. Some utterances in ATIS dataset contains more

than one label. In this experiment, we only study the single

intent of utterance, which affects the results to some extent.

The last reason is that the triplet training method adopts

the flat dialogue structure to compose utterance triplets and

predict the intents based on the multi-class classification

approach in the downstream task. The model only focuses on

the current utterance ignoring the hierarchical context struc-

ture information that damages the recognition performance

of multi-turn conversation. In the future, we also need to

consider how to be more effectively integrated triplet training

with the nested structured dialogue.

B. ABLATION STUDIES

Wecan observe the improvement of the proposedmodel in the

last section, and then we explore the contribution of each part

in this section. We first perform ablation studies to verify the

proposed feature embedding models, whether to contribute to

the intention classification task. Then, we explore the details

about the effect of BERT model selection. Next, we study the

impact of the sampling strategy selection. Besides, the mar-

gin parameter selection also is vital for model optimization.

We test the wide-range margin parameters in the experi-

ment. Finally, we exploit the T-SNE visualization method

to verify the performance of the pre-trained feature learning

models.

1) THE EFFECT OF THE ENCODER SELECTION

Table 5 shows the comparison between the basic models

and proposed triplet training model of different dialogue

datasets. To validate the generation ability of the proposed

model, we also add the other multilingual Facebook data

(Spain version and Thai version) in the experiment. The

CNN and RCNNmodels require particular text preprocessing

for different languages, so there is no comparability in this

experiment. Hence, we fine-tune the pre-trained multilingual

BERT model to evaluate the two datasets. We implement

comparative experiments under fixed hyperparameters and

parameters.

The results shown in Table 5 can prove that the pre-trained

feature learning models are sufficient to learn more discrim-

inative features representation for the intention classification

task. Precisely, the fine-tuned BERT model performed bet-

ter than RMCNN model in basic models. However, we can

see the triplet training can significantly improve the lean-

ing ability of RMCNN. From Tabel 5, the SEQ-RMCNN

model performs better than the BERT and CNN encoder on

Snips datasets, ATIS dataset, Facebook dataset, and DYDA

dataset. We attribute this to the fact that the combination of

Wikipedia embedding and RMCNN model can effectively

capture granular semantic details locally. Also, the Siamese

BERT encoder improves the results of the intention clas-

sification because the pre-trained BERT model can pro-

vide rich semantic information by unsupervised trained with

enormous external knowledge. The results demonstrate that

the pre-trained feature embedding model can effectively

improve conventional multi-class classification by supple-

menting utterance triplet training.

2) THE EFFECT OF THE SAMPLING STRATEGY

In this section, we discuss the effect of sampling strategy

on classification results. Based on the results of Table 5,

it can illustrate that both two sampling strategies can effec-

tively improve the results of the basic models (without triplet

training). To be specific, the sequential method is slightly

better than the random method. Besides, the multilingual

dataset also shows the sequential strategy is better than the

random strategy. The SEQ-BERT improved by 0.76% over

RAN-BERT in the Facebook dataset (Spain) and 2% in the

Facebook dataset (Thai). The reason for these results is that

the feature learning model might learn the useless context

information because of random selection.

Furthermore, we make a comparison between each inten-

tion label of the DYDA dataset to show the effect of different

strategies on context-sensitive data in detail. As we can see

in Fig. 4, the DYDA dataset has four intention labels, which

are Inform, Commissive, Question, and Directive. The pro-

posed models generally perform great on label ‘‘Inform’’ and

‘‘Question’’ because these two intent often appears in spoken

language. Although it performs poorly in tag ‘‘Commissive’’
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TABLE 5. The results comparison of basic model and proposed model for different dataset.

FIGURE 4. The effect of different encoders and sampling strategies on
each intent in the DYDA dataset.

because of the lack of data, we still can find the sequen-

tial strategy can improve feature representation to be more

distinguished. Specifically, the result of SEQ-CNN grew by

0.25 over RAN-CNN, the result of SEQ-RMCNN improved

by 0.26 over RAN-RMCNN. The ‘‘Directive’’ label promotes

0.24 on CNN, 0.28 in RMCNN, only 0.08 in BERT. There-

fore, the sequential sampling strategy can effectively select

valid utterance triplets for spoken language objects.

3) THE EFFECT OF THE BERT MODEL SELECTION

In this section, we study the influence of the choice of the

pre-trained BERT models based on the single-turn dialogue

datasets. The pre-trained BERT models are publicly released

on Google’s GitHub website.1 The BERT model includes a

monolingual version and a multilingual version. According

to the results, we find the monolingual BERT model benefits

the English dataset, but it improves less on Facebook (Spain)

and Facebook (Thai) datasets. The multilingual model can

effectively improve the performance of the cross-language

datasets. Therefore, we use monolingual models to deal with

English datasets and use multilingual models to train other

language datasets. Besides, the BERT models contain two

uncased versions and two cased versions. Therefore, we con-

duct a comparison of basic BERT and BERT triplet training

on the English version dataset. To keep the parameters to a

minimum in the interaction system, we only verify the model

on the basemodel. From Table 6, we can see the performance

1https://github.com/google-research/bert

FIGURE 5. The results comparison of different margin parameter based
on different dataset.

of uncased model is better than the cased model for utterance

representation. The random sampling strategy might inferior

the performance of the cased model on Snips and Facebook

datasets. In the following experiments, we finally adopt the

result of the Bert uncased base model as Siamese BERT

encoder to train utterance triplets.

Moreover, we verified the effect of token embedding on the

task-oriented dialogue dataset. We assume the token embed-

ding might provide finer-grained semantic information of

utterances compared with sentence embedding. Therefore,

we facilitate the comparison between sentence embedding

and token embedding on all task-oriented dialogue dataset.

We indicate the T as the token embedding in Table 7 and

Table 8. As we can see in Table 7 and Table 8, the token

embedding can enhance the semantic information of utter-

ance and improve the performance of intention detection.

Therefore, we choose token embedding as utterance feature

representation in this experiment.

4) THE EFFECT OF THE MARGIN PARAMETER

As we mentioned in (16), the margin parameter controls

the relative distance between the feature embeddings to its

positive samples and negative samples. Therefore, the margin

parameter selection is essential for model convergency and

optimization. From Fig. 5, we can observe that the triplet

loss optimization is sensitive to the margin parameters. The
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FIGURE 6. The T-SNE 2D visualization between original data distribution and pre-learned feature embeddings.

TABLE 6. The comparison of basic pre-trained BERT models and
pre-trained BERT models with triplet training on ATIS, Snips, and
Facebook dataset.

TABLE 7. The comparison of BERT token embedding on ATIS, Snips, and
Facebook dataset.

margin parameter is too large or too small, both results in

inferior performance. The large margin parameter may cause

over-fitting, and the small margin parameter may impair the

strength of the triplet loss because the small value not enough

to distinguish between details. Therefore, we conduct differ-

ent margin parameters under fixed hyperparameters in the

experiment to observe the impact of margin parameters for

recognition performance. We evaluate the margin parameters

onwide-ranged values from 0.1 to 20.We list the final choices

of the margin parameter for each dataset. To be specific,

we use 5 for the Snips dataset, 1 for the ATIS dataset, 1.5 for

the Facebook dataset, and 15 for DYDA and MRDA dataset.

Therefore, we set the fixed margin parameter in the following

experiments.

TABLE 8. The comparison of RMCNN token embedding on ATIS, Snips,
and Facebook dataset.

5) VISUALIZATION OF LEARNED REPRESENTATION

In this section, we apply the T-SNE [52] method to visual-

ize 2D feature embedding of test data learned from triplet

learning models. Based on the T-SNE visualization method,

we can intuitively observe the impacts of feature learning

models on different datasets in Fig. 6. The first column is

the original data distribution of each dataset, and the second

column is the utterance feature embeddings of the pre-trained

SEQ-BERT model. As we can see in Fig. 6, the feature

embedding of the same intention category is visibly getting

closer to each other and gain distinct clusters at the same time.

Hence, the proposed models are benefits for extracting more

discriminative features through utterance triplet training. The

triplet loss training results in a better feature embedding since

the margin parameter is considered appropriately.

However, the feature embedding of the MRDA corpus is

not as explicit as the DYDAdataset cause the data distribution

of the MRDA dataset is imbalanced. The ‘‘Statement’’ tags

are occupied approximately 50% in test data, so the rest of

the four intents are not clear enough to visualize. Therefore,

this visualization reveals the intuition that better underlying

feature embedding for short utterance can be obtained by

Siamese neural network architecture with metric learning.

VI. CONCLUSION AND FUTURE WORK

In conclusion, we formulated the intention detection task

from the perspective of enriching semantic information of
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utterances. In the first stage, we proposed a novel feature

embedding model by utilizing the fine-tune BERT model

and RMCNN model as Siamese encoders with a triplet loss

function. The RMCNN and BERT as Siamese encoders were

employed to train utterance triplets, and the triplet loss func-

tion can optimize the embedding model end-to-end. Then,

we can obtain two well-trained feature embedding models

to illustrate discriminative utterance features from differ-

ent aspects. Moreover, we introduced the sequential sam-

pling strategy in triplet selection to capture context within

the dialogue. In the second stage, we used a multi-source

fusion strategy to boost the recognition performance of the

downstream intention detection task. Given the pre-trained

models, we predict intention labels by fusing discriminative

pre-trained and other relevant features within the dialogue.

The extensive experiments demonstrated the effectiveness of

the proposed model for intention detection on several bench-

mark datasets. The results illustrate that the proposed method

can effectively improve the recognition accuracy of these

datasets. For single-turn task-oriented dialogue, the model

achieves 99.31% in the Snips dataset, 99.56% in the ATIS

dataset, 99.28% in Facebook (English) dataset, 97.67% in the

Facebook (Spain) and 96.39% in the Facebook (Thai). For

multi-turn conversation, the recognition accuracy achieves

91.3% in the DYDA dataset and 91.0% in the MRDA dataset.

There is still much space for improvements in our system.

Firstly, we can verify different neural network architectures,

loss functions, and distance metrics based on the pre-training

framework. Secondly, the multi-class classification learning

approach may inferior the results because the model pre-

dicts intents only consider the current time step. Except for

the single-turn dialogue and multi-turn dialogue, there are

more complicated dialogue structures, such as multi-party

and multi-modal dialogue. Therefore, the combination of

intricate dialogue structures and metric learning could be a

new direction. Furthermore, the triplet loss training also can

be employed in other NLP tasks like emotion detection and

topic adaptation in the dialogue system filed, which are also

promising for future research.
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