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Abstract
Objective. The objective of this work was to quantitatively investigate the mechanisms
underlying the performance gains of the recently reported ‘recalibrated feedback
intention-trained Kalman Filter’ (ReFIT-KF). Approach. This was accomplished by designing
variants of the ReFIT-KF algorithm and evaluating training and online data to understand the
neural basis of this improvement. We focused on assessing the contribution of two training set
innovations of the ReFIT-KF algorithm: intention estimation and the two-stage training
paradigm. Main results. Within the two-stage training paradigm, we found that intention
estimation independently increased target acquisition rates by 37% and 59%, respectively,
across two monkeys implanted with multiunit intracortical arrays. Intention estimation
improved performance by enhancing the tuning properties and the mutual information
between the kinematic and neural training data. Furthermore, intention estimation led to fewer
shifts in channel tuning between the training set and online control, suggesting that less
adaptation was required during online control. Retraining the decoder with online BMI
training data also reduced shifts in tuning, suggesting a benefit of training a decoder in the
same behavioral context; however, retraining also led to slower online decode velocities.
Finally, we demonstrated that one- and two-stage training paradigms performed comparably
when intention estimation is applied. Significance. These findings highlight the utility of
intention estimation in reducing the need for adaptive strategies and improving the online
performance of BMIs, helping to guide future BMI design decisions.

(Some figures may appear in colour only in the online journal)

Introduction

Brain–machine interfaces (BMIs) are medical systems that
translate neural activity from the brain into control signals that
guide prosthetic devices. BMIs may ultimately offer disabled
patients a way to interact with the environment, including
restoring the ability to conduct activities of daily living.
Intracortical BMIs operate by measuring neural activity, such
as action potentials, and mapping these signals to relevant
control signals, such as muscle activation, force, or end effector

kinematics, i.e. the position or velocity of a prosthetic arm or
a computer cursor on a screen (for recent reviews see e.g.,
[1–8]). In the past few years, there has been considerable effort
devoted to making BMI technologies more clinically viable,
including an ongoing FDA phase-I clinical trial (e.g., [9–14])
and efforts to move beyond the need for multi-wire cables
connected to the subject by developing electronic circuits to
wirelessly transmit neural signals (for recent reviews see e.g.,
[15, 16]). However, despite these advances, the performance
of the algorithm that maps neural activity to kinematics (i.e.,
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the decoder) remains an important limitation to the more wide
spread use and efficacy of BMIs (e.g., [6, 17, 18]).

One approach to improving the performance of closed-
loop BMIs over time is through behavioral learning and
adaptation. In these paradigms, the decoding algorithm can
be arbitrarily assigned [19, 20] or loosely correlated to native
arm control [21, 22]. Over time, subjects can improve their
performance of fixed decoders through adaptive strategies,
which correlate to changes in neural tuning [23–25]. After
a sufficient amount of time, observed changes in the neural
data between native arm movement and BMI control stabilize
[26]. Such shifts in neural tuning may be attributed to inherent
changes in the neural representation or to suboptimal ‘out-of-
the-box’ decoding quality, requiring the subject to adopt a new
control strategy [20].

Another approach is to develop algorithms that mimic the
neural-to-kinematic biological mapping as closely as possible,
which are termed biomimetic decoders [27, 28]. Here, the goal
is to minimize the need for behavioral learning and adaptation
by building a decoder whose control strategy is similar to that
of native arm movement, with the aim of maximizing ‘out-
of-the-box’ performance. A central assumption enabling these
decoders is that neural firing characteristics should not change
significantly from training to online testing under BMI control
if the decoder has high predictive power and is controlled
in a manner similar to that of the native limb. As we will
demonstrate, shifts in neural tuning between training and
testing sets can therefore be used as an indicator that a decoder
is relying more heavily on an adaptive strategy rather than
a good biomimetic fit. It is important to note that while the
basic neuroscience question of how cortical neural activity
relates mechanistically to movements (kinematics) (e.g.,
[29–32]), muscles (e.g., [33–35]), and internal cortical
dynamics (e.g., [7, 36–39]) is still an open and contentious
question (e.g., [40–43]), biomimetic controllers seek merely
to provide a net neural-to-kinematics description or mapping
that does not deviate dramatically from experimental
observations of neural-to-kinematic relationships in the
relevant workspaces. Strategies of adaptation and biomimetic
fitting can be used in combination, particularly when the
biomimetic decoding strategies does not well mimic native
arm control.

Recently we reported the design and characterization
of a high-performing algorithm and training procedure,
termed the ‘recalibrated feedback intention-trained Kalman
filter’ (ReFIT-KF) [44, 45], which significantly improved
the performance of the highest-performance algorithm (i.e.,
the velocity based Kalman filter (VKF) [10, 46]). ReFIT-
KF involves a two-step training procedure, in which an
initial decoder is trained off of native arm reaches and
subsequently used for a second online training session. A
second decoder is then generated from the online training data
augmented by intention estimation modifications [44]. While
the various contributions of each innovation of ReFIT-KF
have been detailed in a previous publication [44], the specific
mechanisms related to the quantitative impact of intention
estimation modifications on the resulting fit and new decoder
have not yet been investigated, and may span adaptive and
biomimetic control strategies.

In this study, we investigated the neural mechanisms
contributing to the performance gains of ReFIT-KF. We
asked whether the key to high performance of ReFIT-KF
is the retraining step, the intention estimation training set
modifications, or a combination of the two. For instance, the
two-stage training procedure may be important for adaptive
processes, such as normalizing contextual changes between
native arm reaching and BMI control [20]. Alternatively,
the modifications to the training data may enable the neural
data to be more precisely correlated to the kinematic data
(i.e., the intended kinematics), thereby leading to a more
biomimetic decoder. As will be further explained, training
set modifications are applied to the second stage of training
in the two-stage training procedure. By comparing the
performance of various algorithms derived from the ReFIT-KF
training philosophy, we demonstrate that intention estimation
modifications are largely responsible for the improvement
in overall performance. We investigate the effects intention
estimation modifications have on the training data and utilize
the shifts in neural tuning between the training and testing
set as a tool to assess the degree of adaption required for
online decoding. Finally, we show that intention estimation
modifications can be directly applied to native arm reaching
training data to generate a one-stage decoder that performs
comparably to ReFIT-KF. It is important to note that the ReFIT-
KF algorithm also features a positional feedback signal, which
we do not examine in this study.

Materials and methods

Behavioral task

All protocols and experimental methods were approved by
the Stanford University Institutional Animal Care and Use
Committee (IACUC). Two adult rhesus macaques (J and L)
were trained to make point-to-point reaches towards targets
presented in a 3D environment (MSMS, MDDF, e.g., [47]).
While the monkeys reached in a 3D environment to targets
rendered on a 2D fronto-parallel plane, and thus primarily
exhibited 2D reaches, the monkeys controlled a virtual cursor
moving strictly in the 2D fronto-parallel plane. A 3D percept
was enabled by a stereographic display using fused mirrors
and separate LCD monitors, which refreshed at 120 Hz. Hand
position was recorded using an infrared reflective bead taped
to the monkeys’ index fingers and a Polaris tracking system
(Northern Digital, Ontario, Canada), sampling at 60 Hz.

A center-out task was performed, prompting the cursor-
based acquisition of targets that alternated between the middle
of a workspace and the perimeter of either an 8 or 12 cm circle.
Successful trials required that the monkey hold the cursor
within the target acquisition boundaries (4.8 cm × 4.8 cm) for
500 ms and acquire the target within a maximum trial time of
5 s. A liquid reward was provided for each successful trial.

All experiments were performed in an A-B-A fashion with
250 center-out trials per block. This setup ensured that factors
such as monkey motivation and channels’ contents were the
same across different decoders within a given experimental
day. Two experimental days for Monkey J (2012-07-26, 2012-
07-27) and for Monkey L (2011-07-21, 2011-07-22) were used
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for the comparison between ReFIT-KF and Re-KF (see ‘The
ReFIT-KF algorithm’ section). Across two experimental days,
Monkey J completed 1222 center-out ReFIT-KF trials and
1208 center-out Re-KF trials; Monkey L completed 590 center-
out ReFIT-KF trials and 550 center-out Re-KF trials. t-tests
were conducted to evaluate if the distribution of last acquire
times across different decoders were statistically significant
(p < 0.05).

Four experimental days for Monkey J (2011-05-12, 2011-
05-13, 2011-05-16, 2011-05-17) and three experimental days
for Monkey L (2011-04-07, 2011-04-08, 2011-04-15) were
used for the comparison between ReFIT-KF and FIT-KF (see
‘The ReFIT-KF algorithm’ section). Monkey J completed
1376 center-out ReFIT-KF trials and 2381 center-out FIT-
KF trials; Monkey L completed 1091 center-out ReFIT-KF
trials and 1417 center-out FIT-KF trials. For comparing the
performance and tuning characteristics of FIT-KF versus KF,
three experimental days for Monkey J (2011-05-19, 2011-05-
20, 2011-05-24) and three experimental days for Monkey L
(2011-04-18, 2011-04-20, 2011-04-21) were used. Monkey J
completed 1300 center-out FIT-KF trials and 1115 center-out
KF trials; Monkey L completed 724 center-out FIT-KF trials
and 449 center-out KF trials. Again, t-tests were conducted
to evaluate if the performance across different decoders, as
measured by last acquire times, was statistically significant
(p < 0.05).

Electrophysiology

Monkeys J and L were implanted with 96-electrode Utah
arrays (400 μm electrode separation and 1 mm penetration
depth; Blackrock Microsystems Inc., Salt Lake City, UT) in
primary motor cortex (M1) and/or dorsal premotor cortex
(PMd) contralateral to the reaching arm. In Monkey J, an M1
array and a PMd array (192 total channels) were implanted
on 24 August 2009. In Monkey L, an array straddling the
PMd/M1 border was implanted on 22 January 2008. Data for
Monkey J were collected across 69 sessions from 2 September
2010 to 7 July 2012. Data for Monkey L were collected across
63 sessions from 1 July 2010 to 22 July 2011.

During an experimental session, neural signals measured
from the electrode arrays were initially processed using a
Cerebus recording system (Blackrock Microsystems Inc., Salt
Lake City, UT). Spiking activity was aggregated by setting a
−4.5 root mean square threshold on each channel without any
spike sorting. This has been shown to produce a stable source
of action-potential based neural signals [48, 49]. Behavioral
task control and neural decodes ran on separate PCs using a
Simulink / xPC platform (Mathworks, Natick, MA), yielding
a low communication latency of 3 ms.

The ReFIT-KF algorithm

The ReFIT-KF algorithm entails a two-stage training paradigm
[44]. In the first stage of training, the subject completes 500
trials of a 12 cm, center-out task with 8 targets using active arm
and hand movements. The kinematics of the cursor movements

and the simultaneous neural recordings are used to build a
‘first-pass decoder,’ such as a velocity or position-velocity
based Kalman filter (KF). In the second stage of training, the
subject completes an additional 500 trials of a 12 cm, center-
out task using the KF. The number of trials between the first
and second stages were matched to equalize the sampling and
variability of target selection in the data. The online training
data, comprised of the simultaneously recorded kinematic and
neural data during online KF control, are used to build a
‘final decoder’. If intention estimation is applied to the online
training data, this final decoder is precisely the ReFIT-KF filter
[44]. If intention estimation is not applied, the final decoder is
what we term the ‘recalibrated Kalman filter’ (Re-KF).

In this study, ‘intention estimation’ refers to training set
modifications, in which the cursor velocities in the training
set are rotated to point towards the direction of the target
and their magnitudes are set to zero during the periods the
cursor is successfully held at the target [44]. It is important
to note that the final retrained decoder receives no further
target information, and does not make use of prior knowledge
regarding target location as some algorithms do for separate
reasons [50–54]. These intention estimation modifications,
inferred by the experimenter, are based on the assumption
that the monkey intends to move to the target at all times and
intends to cease moving when holding on the target to select it.
For all decoders, neural data were binned in non-overlapping
50 ms intervals. This has been shown previously to be long
enough to provide reliable estimates of neural firing rates, but
short enough to not introduce deleteriously large time-lags into
the BMI closed-loop control [44, 45, 55].

If intention estimation is applied to the initial arm reaching
data, the final one-stage decoder is termed the ‘feedback-
intention-trained Kalman filter’ (FIT-KF). Here, the initial arm
reaching training task is designed to allow the kinematics data
to more closely model the distribution of the kinematic data
obtained in the second training stage of the two-stage training
paradigm. Specifically, we used the training task where a target
is randomly placed in a 16 × 16 cm2 workspace as opposed
to the original 12 cm center-out task, in order to better sample
the workspace area. In addition, we eliminated slow velocities
at (1) the beginning of the reach (150 ms for Monkey L, and
250 ms for Monkey J) and (2) after the monkey reaches the
target but before the monkey successfully holds the target.
This is done in order to more closely match the distribution of
velocity magnitudes seen in the two-stage training method.

Preferred direction

Preferred directions (PDs) were calculated in two different
ways. First, when characterizing the directional tuning of a
voltage-thresholded electrode channel during online control,
the PDs were determined based on assigning spike counts
to the prompted direction of movement. We assume that
within a time period (150 to 550 ms after target onset for
each trial) the monkey intends to move toward the prompted
target and neural activity thus best reflects this intention.
Second, when characterizing the directional tuning of the
training data, the PDs are viewed from the perspective of
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the decoder and are based on assigning spike counts to cursor
kinematics in 50 ms intervals and applying intention estimation
modifications as indicated. In these cases, the tuning of the
training data is determined after applying intention estimation
modifications in order to fully capture the experimenter’s
‘best-guess’ of the neural tuning for building a high performing
biomimetic decoder.

In both cases, the PD was calculated by fitting mean spike
counts per direction (0 to 2π in intervals of π/4) with a
cosine of frequency 2π , and determining the phase minimizing
the least squares error of the sinusoidal fit [29]. Only channels
that were cosine tuned in all control modalities (R2 >

0.5) for an individual day were considered in the analysis
characterizing changes in directional tuning (30–45 channels
for Monkey L and 75–85 channels for Monkey J).

Statistically significant changes in PDs were determined
using a bootstrap analysis. Firing rates were resampled
1000 times per direction to obtain a distribution of PDs for
each channel and condition (i.e. Hand, KF, Re-KF, ReFIT-KF),
and the means of these distribution were subtracted in order to
simulate the null hypothesis of identical means. Sets of PDs
were then randomly drawn from the zero-mean distributions,
and the PDs were subtracted to form a control distribution
to simulate the null hypothesis. To form the distribution of
shifts in PD between two conditions, 1000 PDs were randomly
sampled from one distribution and subtracted from a random
sample of PDs from the second distribution. If the absolute
mean shift in PD across two conditions for a given channel
was greater than 95% of the shifts based on noise, it is said
to be significant. F-tests were conducted to evaluate if the
variance in the distribution of shifts in PDs between different
training sets and their respective online control was statistically
significant (p < 0.05).

Information profiles

Two metrics were used for neuron ranking and evaluating
information density for a given channel. The first metric is
based on mutual information (MI), as shown in equations
(1)–(3). Here, p(x) denotes the probability that a channel
fires x spikes in a given 50 ms bin width, X represents all
such encountered x, M is the number of reach directions, and
y j is the reach direction, which can either be the prompted
direction, cursor direction, or cursor direction modified by
intention estimation. Then, p(x|yi) denotes the probability that
a channel fires x spikes in a given 50 ms bin when reaching
in direction yi. We calculate MI between binned spike counts
and reach direction. We use the prompted reach direction for
analyzing the ordered shifts in PD, and the cursor direction
for analyzing the benefits of intention estimation. For each
channel, the entropy, H(X ), and the entropy conditioned on
reach direction, H(X |Y ), are calculated to determine the MI,
I(X;Y ), as shown in equations (1)–(3). This statistical metric
captures how informative neural firing is of reach direction.
We note that a sufficient amount of data was used to estimate
the probability distributions such that a bias-corrected version
of MI (e.g., [56]) was not required.

H(X ) = −
∑

x∈X
p(x) log(p(x)) (1)

H(X |Y ) = −
M∑

j=1

p(y j)
∑

x∈X
p(x|y j) log(p(x|y j)) (2)

I(X;Y ) = H(X ) − H(X |Y ). (3)

The second information metric relies on the extent of
direction tuning of the channel, as characterized by the
modulation over variance (MDV) ratio. This metric has been
shown to lead to similar cell rankings as model-dependent
ranking methods [57]. For the MDV ratio, the mean and
variance of the firing rate, binned across the movement
direction of the cursor (with or without intention estimation),
are calculated. For each channel, the minimum mean firing
rate is subtracted from the maximum mean firing rate, which
is termed the ‘modulation’. Because some channels may have
large modulation but may be extremely noisy and variant, the
modulation is normalized by the mean variance of the firing
rates, across all directions, which gives rise to the MDV metric.

Results

Online performance

In order to investigate the mechanism by which ReFIT-KF
improves performance, we assessed the individual contribution
of intention estimation and the two-stage training procedure.
To evaluate the effects of intention estimation, we compared
the online performance of two decoders that differ only by
whether intention estimation was applied or not: the Re-KF
and the ReFIT-KF. In these experiments and analyses, neither
decoders incorporate positional feedback into the algorithm.

Figure 1 illustrates the two-stage training paradigm by
which these two decoders are generated. In the first stage, the
subject completes a reaching task under hand control. The
cursor kinematics and simultaneous neural activity, which
comprise the ‘training data,’ are used to build a ‘first-pass
BMI decoder’ (KF) for online control. In the second stage of
training, the subject completes an additional reaching task
using the KF. Training data from the online KF task is
then used to build the ‘final BMI decoder’ (i.e. Re-KF or
ReFIT-KF). The bolded flow diagram in figure 1 describes
the training framework of the ReFIT-KF algorithm in which
intention estimation modifications are applied to the KF
training data. The Re-KF decoder is generated from the same
two-stage training procedure; however, intention estimation
modifications are not applied in the second stage of training.

Decoder performance metrics are obtained from a center-
out reaching task in which the subject moves the cursor from
the center of a workspace to peripheral targets and holds the
cursor on the target for 500 ms to activate the selection. The
subject must then move the cursor back to the center of the
workspace for the next selection. In figure 2, the online closed-
loop BMI performance of KF, Re-KF, and ReFIT-KF are
shown, along with the natural hand movement for comparison,
from a 12 cm center-out reaching task.

In figures 2(a), (c), the mean distance of a reach to a
target is plotted as a function of duration of the reach for
each decoder. The thicker line later in time along each curve
indicates the ‘dial-in-time’. This is the average time that passes
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Hand Control Training Data

Training Data

Training Data

First Pass BMI 
control: KF

(Online Control) (Online Control)
(Bin data,
build model)

(Bin data,
build model)

(Bin data, apply 
IEMs on data
build model)

Final BMI Control:
Re-KF

Final BMI Control:
ReFIT-KF

[i]

[iia]

[iib]

(Online Control)

(Online Control)

Figure 1. Schematic of the two-stage training paradigms. In the first step of training, the monkey performs a 2D center out and back
reaching task with the native arm. (i) A first-pass BMI model is built using the recorded neural data and the kinematic data from the arm
movements. In the second step of training, the monkey performs the same 2D center out and back reaching task, while using the first-pass
BMI model (KF). A second set of training data is collected during this online run to build the final BMI model. This model-build is carried
out (iia) without training set modifications (Re-KF) and (iib) with intention estimation modifications (IEMs) of the training set (ReFIT-KF).
The bolded training paradigm indicates the method of training used in the ReFIT-KF algorithm [44]. The blue boxes schematize the
subject’s online cursor control activity; the black boxes schematize the training data, which is derived from the online cursor control.
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Figure 2. Effect of intention estimation modifications on the performance of three decoders. (a) The average distance from the current BMI
cursor location to the target for center-out reaches. The thick line indicates the dial-in-time. Data from Monkey L, 2011-07-21 and
2011-07-22. (b) Bar graph of the average acquire time required to successfully obtain the target for Monkey L. The white line indicates the
average time to first reach the target. (c) Same as in (a) but for Monkey J, 2012-07-26, 2012-07-27. (d) Same as in (b) but in Monkey J.

before the monkey successfully holds the target, after first
reaching the target. The 500 ms hold time itself is not shown or
included in this dial-in-time calculation. The dial-in-time can
be used as a measure of the fine control that enables the monkey
to narrow in on a target. The time preceding the dial-in-time
is the average time required to move from the center of the
workspace to a peripheral target. This period is more related to
speed and the global directionality of a movement. The overall
acquire time, defined as the time of target presentation until the
time of final target acquisition (not including the 500 ms hold
time), for each decoder is plotted in figures 2(b), (d). The time
below the white lines denotes the average time to first reach the
target. Additional time is often needed to achieve final target
acquisition due to behaviors such as target overshoot; the time
above the white line denotes the dial-in-time.

Across two experimental days per subject, ReFIT-KF
reached targets 37% faster than Re-KF in Monkey L
(p < 0.001, t-test) and 59% faster in Monkey J (p <

0.001), as determined by normalizing the difference in

last acquisition times by the Re-KF last acquisition time.
Acquisition time was improved primarily due to a decrease
in the dial-in-time. Here, both models were trained on a two-
stage training paradigm but ReFIT-KF incorporated intention
estimation modifications in its training set, suggesting that
intention estimation modifications independently improves
performance.

The contribution of the retraining step in the two-stage
training paradigm is less clear when evaluating performance.
To evaluate the benefit of retraining on performance, we
compared the performance of KF with Re-KF, which is
built using the same decoding algorithm as KF but from
online KF training data. In figure 2, Re-KF is shown to have
slower acquisition times as compared to KF, suggesting that
retraining leads to slower velocities; this will be addressed in
the discussion section.

Importantly, we note that retraining with intention
estimation (ReFIT-KF, figure 2, gold) leads to a finer degree of
online control than simply retraining alone (Re-KF, figure 2,
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Figure 3. Effects of intention estimation on tuning characteristics. (a) Tuning curve characteristics using training data from two
representative channels with (black) and without (gray) intention estimation for channel 41, Monkey J, 2011-06-10. Error bars denote
standard error. (b) Same as (a) but for channel 76, Monkey J, 2011-06-10. (c) Histogram of the ratio of the tuning curve modulations when
intention estimation modifications are applied over not applied across all viable channels for Monkey J (blue, averaged data across 60 d) and
Monkey L (red, averaged data across 55 d). (d) Histogram of the ratio of per-channel firing rate variance when intention estimation is applied
over not applied across all viable channels for Monkey J (blue, averaged data across 60 d) and Monkey L (red, averaged data across 55 d).

blue). In the following two sections, we investigate how
intention estimation modifications alter the training data
characteristics; specifically, we examine its effects on the
second stage of training in the two-stage training paradigm
(i.e. as in ReFIT-KF). We later show how intention estimation
can also be applied to a one-stage training paradigm.

Effects of intention estimation modification on training data

Intention estimation modifications alter training data by
associating neural firing rates with rotated kinematics that
are presumably better reflected in the neural data. To
evaluate the effects of intention estimation modifications on
the training data, we examined the changes in the tuning curve
characteristics (i.e. modulation and per-channel variance)
of the training data before and after intention estimation
modifications were applied to the data.

As exemplified in figures 3(a) and (b), intention estimation
modifications are shown to alter tuning curve characteristics,
as seen by comparing the light gray tuning curve, in which
intention estimations are not applied, to the black tuning curve,
in which they are applied. The tuning curves of figures 3(a) and
(b) exemplify an increase in modulation by 1.36 and 1.25 fold,
respectively, and a decrease in firing rate variability across
directions by 0.88 and 0.83 fold, respectively, when intention
estimation is applied versus not applied. Error bars in the figure
denote standard error. Modulation per channel is defined by
the difference in the minimum and maximum firing rates of the
fitted tuning curve; the per-channel firing rate variance is the
variance of the firing rates in each direction, averaged across
all directions, for a given channel.

The effects of intention estimation on the change in
modulation and variance were examined across 60 d of
training data for Monkey J (2011-06-10 to 2010-09-02) and

55 d of training data for Monkey L (2011-05-19 to 2010-
07-01). Changes in the tuning curves for each channel were
averaged across all days for each monkey. Histograms of
the number of channels displaying changes in modulation
and variance when intention estimation was applied to the
training data are shown in figures 3(c), (d) for Monkey J
(blue) and Monkey L (red). On average, intention estimation
modifications increased the modulation by 1.54 ± 0.12 fold
(mean ± std, significantly different than mean of 1, p <

0.001, t-test, Monkey J) and 1.38 ± 0.16 fold (p < 0.001,
Monkey L), as calculated by the ratio of the modulation
with intention estimation relative to that without intention
estimation. Intention estimation also decreased the per-channel
variance across reach directions by 0.90 ± 0.03 (mean ±
std, significantly different than mean of 1, p < 0.001, t-test,
Monkey J) and 0.95 ± 0.05 (p < 0.001), as calculated by the
ratio of per-channel variance with intention estimation relative
to that without intention estimation. Intention estimation
modifications reclassify neural firing rates with different
rotated kinematics. These modifications are shown here to
enhance tuning characteristics by increasing the modulation
and decreasing the per-channel variance of the tuning curve.

We further evaluate how the information content changes
when intention estimation modifications are applied to the
training data by using the metrics of MDV and MI. The MDV
metric is determined by the ratio of the modulation over the
per-channel firing rate variance. The ratios are then averaged
over all viable channels and experimental days. Across the
same 60 d of training data for Monkey J (2010-09-02 to 2011-
06-10) and 55 d of training data for Monkey L (2010-07-01 to
2011-05-19), intention estimation modifications to the data are
found to increase the MDV by a factor of 1.60 ± 0.16 (mean ±
std, statistically significant from mean of 1, p < 0.001, t-test,
Monkey J) and 1.34 ± 0.20 (p < 0.001, Monkey L).
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Figure 4. Tuning shifts between training sets and respective online testing sets for each component of the two-stage training paradigm.
(a) Histograms of the shifts in PD between the native hand training data and the online first-pass decoder, KF (stage i); first-pass decoder
training set and the online final decoder data, Re-KF (stage iia); the first-pass decoder training set with intention estimations modifications
(IEMs) and the online final decoder data, ReFIT-KF (stage iib). Red bars indicate statistically significant deviations, and the green line
indicates the bootstrapped distribution of shifts due to noise. (b) Shifts in PD per channel ordered from the most (channel 1) to least
contributory channels (channel 85) for stage i, iia, and iib. The channels that have statistically significant shifts in PD are colored in red.
Data from Monkey J, 2012-07-26.

The MI metric evaluates the information shared between
the neural firing rates and kinematic training data (see
methods). Applying intention estimation to the data is found
to increase the MI by a factor of 1.57 ± 0.21 (mean ±
std, statistically significant from mean of 1, p < 0.001, t-
test, Monkey J) and 1.54 ± 0.22 (p < 0.001, Monkey L).
This suggests that intention estimation plays a critical role in
making the training data more harmonious by enabling neural
firing rates to be associated with kinematics that are better
reflected in the neural data. Ultimately, intention estimation
leads to an increased correlation between neural and kinematic
training data, improving the online performance of the decoder.
To reiterate, the above intention estimation modification
analyses were performed offline, and no online retraining
occurred before these tuning curve and MI improvements were
found.

Preferred directions

Given that intention estimation can alter the training data, we
evaluated how the tuning characteristics of the training data
matches that of online cursor control. If the decoder captures
the natural relationship between neural firing and kinematics
precisely, few new adaptive strategies would be required for
high controllability, as the decoder becomes controlled in a
manner similar to that during the training period. As a result,
one would expect fewer shifts in the tuning properties between
the training data and the online closed-loop BMI data.

In figure 4, we evaluated the shifts in PD of the neural data
for three training sets and their respective online performance,

in order to probe the components of the two-stage paradigm.
We measured the shifts in PD for each step illustrated
in figure 1 (i.e. stage i, iia, iib) to assess the degree to
which retraining and intention estimation modifications help
minimize changes in tuning. Figure 4(a) shows histograms
of the shifts in PD between the training and testing data;
red indicates PDs that are statistically different between the
training and testing data. The green line depicts the distribution
of change in PD as a result of noise. A wider distribution of
shifts in PD indicates that the neural characteristics changed
notably between the training set and online control sessions.
Fewer shifts in the PD suggest that the neural characteristics
of the training data are predictive of online control neural
characteristics and are thus preserved during online decoder
control. The shifts in PD for all viable channels, ordered from
the most to least informative channels as measured by MI, are
plotted in figure 4(b). Figure 5 is a replica of figure 4 but in
Monkey L.

As shown in figure 4, we first evaluated tuning shifts
between training data derived from native hand control versus
the first-pass online control, KF, as in stage i. Over two
experimental days per monkey, 75% of channels in Monkey J
and 58% in Monkey L had significant changes in PD. These
shifts in the PDs may be attributed to altered online neural
characteristics that compensate for changes in behavioral
context or for poor decoder quality. If these shifts were
attributable to changes in the behavioral context (i.e. native
arm control versus BMI control), we would expect fewer shifts
in PD if the same decoder were built from BMI controlled
training data, i.e. stage iia. On the other hand, if the shifts in PD
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Figure 6. Schematic of the one-stage training paradigms. A final
BMI control model is built from the native hand control training data
without (ia) and with intention estimation modifications (IEMs) (ib).

are attributable to adaptation of the subject’s control strategy
which result from poor decoder performance, we would expect
fewer shifts in PD if the decoder were more biomimetic,
as when intention estimation modifications are applied, i.e.
stage iib.

In the second column of figure 4, we illustrate the shifts
in PD between the online training model versus the final
retrained online model, Re-KF, as in stage iia. Over the same
experimental days, 67% of channels in Monkey J and 50% in
Monkey L have significant changes in PD; furthermore, the
variance in the distribution of PD shifts between stages i and
iia decreased by 1.32 fold (p < 0.001, F-test, Monkey J) and
1.26 fold (p = 0.05, Monkey L) from data aggregated across
two experimental days. These findings indicate that there is a
benefit to retraining the decoder on a training set of the same
behavioral context.

In the third column of figure 4, we demonstrate that
adding intention estimation modifications to the training data
can further minimize the shifts in PD. Over two experimental
days, 34% of channels in Monkey J and 35% in Monkey L
have significant shifts in PD, fewer than the prior stages. The
variance in the distribution of PD shifts between stage i to
stage iib decreased by 3.62 fold (p < 0.001, F-test, Monkey
J) and 1.55 (p < 0.001, Monkey L) across two experimental
days. Furthermore, the variance in the PD shifts between stage
iia and iib decreased by 2.75 fold (p < 0.001, F-test, Monkey
J) and 1.23 (p = 0.08, Monkey L).

In figure 4(b), we note that less contributory channels tend
to have larger shifts in PD as compared to more contributory

channels. In particular, the mean absolute shift in PD in the
more contributory channels (i.e. the first half of channels in
order of contribution by MI, channels 1–43) was smaller than
that in the less contributory channels (i.e. the second half
of channels in order of contribution, channels 44–85). For
instance, in stage i of figure 4(b), the mean shift in PD for the
more contributory channels is 30.3◦ as compared to 37.6◦ in
the less contributory channels. In stage iia, the mean shift in
PD is 16.5◦ in the more contributory channels versus 21.1◦

in the less contributory channels, and in stage iib, 5.4◦ versus
9.2◦, respectively. In stage i of figure 5(b), we note a similar
trend such that the mean shift in PD for more contributory
channels is 17.3◦ as compared to 36.6◦ in the less contributory
channels. In stage iia, the mean shift in PD is 17.9◦ versus
25.5◦, and in stage iib, 8.6◦ versus 16.9◦, respectively.

The combined effects of retraining and intention
estimation on the shifts in PD were evaluated across 60 d
of training data for Monkey J (2010-09-02 to 2011-06-10)
and 55 d with Monkey L (2010-07-01 to 2011-05-19). On
each experimental day, the ReFIT algorithm was built and
performed online. Just as before, the shifts in PD for stage i
were compared to that of stage iib (i.e. ReFIT-KF). We note
that averaged across 60 d for Monkey J, 71% of channels
significantly changed their PD during stage i as compared to
34% of channels during stage iib; furthermore, the variance in
shifts in PD decreased by 3.00 fold (p< 0.001, F-test) between
stage i and stage iib. Averaged across 55 d in Monkey L, 51%
of channels significantly changed their PD during stage i as
compared to 27% of channels in stage iib; the variance in shifts
in PD decreased by 2.16 fold (p < 0.001) between stage i and
stage iib.

Developing a one-stage decoder

In the previous sections, we showed that both retraining and
intention estimation reduces the neural shifts between training
data and online control; however, we also noted that retraining
reduced online cursor velocities. We therefore explored the
feasibility of applying intention estimation to a one-stage
training paradigm in order to maintain high speeds and achieve
good control. Intention estimation modifications in the context
of hand movements corrects for intrinsic movement variability
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Figure 7. Comparison of the online performance of one and two-stage decoders with intention estimation. (a) The average distance to target
is plotted for center-out reaches using hand control (green), KF (blue), ReFIT-KF (yellow), and FIT-KF (red). Data from Monkey L,
aggregated across six experimental days. (b) The average acquire times to successfully hold a target are plotted for the four control
modalities, where the white line indicates the first time the subject reaches the target without necessarily holding it in Monkey L. (c) Same
comparison as in (a) but in Monkey J; data aggregated across seven experimental days. (d) Same as in (b) but in Monkey J.

and noisiness relative to cortical neural activity (e.g., [58–60]);
furthermore, it infers that when trying to stop, the subject is
commanding a zero velocity.

As shown in figure 6, a FIT-KF decoder was built by
applying intention estimation modifications to a new hand
training set. A new hand training set comprised of reaching
to randomly placed targets, as described in the methods, was
developed to approximately mimic the broader spectrum of
kinematics the first-pass decoder obtains during the two-stage
training paradigm, as compared to kinematics of the native
arm training set. We compare two training paradigms in which
both decoders are trained from hand data but one paradigm
also includes intention estimation. To maximize performance,
we also incorporated the feedback control innovation in the
comparison of both algorithms unlike the previous set of
experiments. We, however, do not explicitly tease apart the
contribution of feedback control in this study.

As shown in figure 7, FIT-KF performed comparably
to ReFIT-KF. Furthermore, applying intention estimation
modifications to the hand training data increased the rate
of successfully acquiring targets by 30% in Monkey L (p
< 0.001, t-test) and 50% in Monkey J (p < 0.0001), as
measured by normalizing the difference in acquire times
between KF and FIT-KF by the acquisition time of KF. In this
figure, performance metrics were based on an 8 cm center-out
reaching task, in which ReFIT-KF and FIT-KF were directly
compared in an A-B-A fashion (see ‘Materials and methods’)
across four experimental days for Monkey J (2011-05-12,
2011-05-13, 2011-05-16, 2011- 05-17) and three experimental
days for Monkey L (2011-04-07, 2011-04-08, 2011-04-15).
In addition, KF and FIT-KF were directly compared across
three experimental days for Monkey J (2011-05-19, 2011-05-
20, 2011-05-24) and three experimental days for Monkey L

(2011-04-18, 2011-04-20, 2011-04-21). Direct comparisons
of FIT-KF, ReFIT-KF and KF were collapsed together to give
rise to the performance metrics of figure 7.

As before, intention estimation applied to hand reaching
training data is shown to reduce the shifts in PD between
the training and online testing data. In figures 8 and 9, a
histogram of the shifts in PD are shown between hand training
data and online KF control (stage ia) on the left, and between
hand training data with intention estimation modifications and
online FIT-KF control (stage ib) on the right. We note that
averaged across the three experimental days for Monkey L
and Monkey J, 71% (Monkey L) and 66% (Monkey J) of
channels had shifts in PD that were significant between hand
training data without intention estimation and online testing.
When intention estimation modifications were applied to the
hand training data, 34% (Monkey L) and 52% (Monkey J)
of channels had significant shifts in PD, demonstrating that
fewer channels had significant shifts in tuning between the
training and testing set. Furthermore, the variance in shifts in
PD decreased by 1.42 fold (p < 0.001, t-test, Monkey L) and
1.19 fold (p = 0.011, Monkey J) when intention estimation
modifications were applied.

As before, the mean shift in PD was also compared
between the more versus less contributory channels. For
instance, in stage ia of figure 8(b), the mean shift in PD for the
more contributory channels (i.e. first half of channels in order
of contribution by MI, channels 1–37) is 23.8◦, as compared
to 29.4◦ in the less contributory channels (channels 38–75). In
stage ib of figure 8(b), the mean shift in PD was 12.7◦ versus
17.7◦, respectively. In stage ia of figure 9, the mean shift in PD
was 24.7◦ for the more contributory channels and 29.4◦ for
the less contributory channels, and in stage ib of figure 9(b),
19.8◦ versus 22.4◦, respectively. These findings reaffirm the
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Figure 8. Tuning shifts between training and online testing sets for a one-stage training paradigm. (a) Histograms of the shifts in PD
between the hand training data versus the online first-pass decoder, KF (stage ia), and between the hand training data with intention
estimation modifications (IEMs) versus the online first-pass decoder, FIT (stage ib). (b) Shifts in PD ordered from the most to least
contributory channels. Data from Monkey L, 2011-04-21.
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Figure 9. Tuning shifts between training sets and respective online testing sets, as in figure 8. Data from Monkey J, 2011-05-19.

importance of intention estimation in not only the two-stage
training paradigm, but also the one-stage paradigm, allowing
for higher online performance and a corresponding decrease
in PD shifts.

Discussion

In this study, we investigate two components of the high
performing ReFIT-KF decoder [44]: retraining and intention
estimation. We show that intention estimation directly
improves decoder performance. We demonstrate that intention
estimation can augment the tuning curve characteristics of the
training data used to fit a decoder by enhancing the modulation
and reducing the per-channel variance. These changes
demonstrate that the intention estimation modifications enable
neural firing rates to be better associated with kinematics
reflected in the neural data. Without intention estimation,
firing rates may be sub-optimally binned with respect to
their intended kinematics, thereby decreasing the correlations
between each channel’s firing rate and reach kinematics. We
demonstrate that the modified training set ultimately leads to
improvement in the online performance of the decoder.

When intention estimation is applied, we note that the
distribution of shifts in PD between the training and tests

sets decreases, which suggests that the subject was able to
control the decoder online with minimal adaptation or change
in control strategy. The decrease in PD shifts with intention
estimation demonstrates that algorithmic modifications can
alter the tuning shifts, and that modifying the training data
can lead to a more biomimetic online control strategy. As
shown in figures 2 and 7, intention estimation is shown to
improve performance primarily by its reduction in dial-in-
time, highlighting its effect on controllability. As noted in the
methods, the intention estimation modifications used in this
study involve two modifications to the training data: rotating
the cursor velocity toward the target and setting the velocity
magnitude during the period the cursor is successfully held
at the target to zero. As shown in a previous paper [44], the
modification of rotating the cursor velocity toward the target
more significantly improved offline decode performance as
compared to the scaling the velocity magnitude at the target. As
we used threshold crossings and did not spike sort individual
channels, we note that this study does not address how single
neuron PDs are affected.

We furthermore observe that retraining can be helpful
as it also reduces the shifts in PD, presumably because the
training and testing data are of the same behavioral modality.
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However, from figure 2 showing the comparison of KF and
Re-KF, we observe an additional undesired effect of retraining
in which overall decoded velocities tend to decrease, leading to
longer acquisition times. Because the retrained decoder relies
on online cursor kinematics, the performance of the retrained
decoder is dependent on that of first-pass decoder. In this
sense, errors in decoding can be compounded through each
retraining iteration; for example, if the decoding algorithm
tends to produce slower velocities, then the decoder will slow
down through retraining iterations. Slower retrained decoders
may arise if the online training data has a larger fraction
of slower velocities, e.g. if there is an increased amount
of time spent dialing into the target during online cursor
control. Alternatively, when interim decoders have poor online
performance, the online cursor kinematics may at any time be
associated incorrectly with the subject’s intention and relative
cortical activity. As a consequence, instances of high velocity
kinematics occur for a more diverse set of firing rates, causing
the correlation between high velocity kinematics and neural
data to decrease and resulting in a slower decoder.

Retraining may be helpful when put in tandem with
intention estimation modifications, as these modifications may
correct for errors in the first-pass training data between the
subject’s intention (and related neural activity) and cursor
movement due to poor first-pass decode performance. Without
correction, these errors may be propagated, leading to slower
decoders, as discussed. Given the observation, however, that
retraining without intention estimation modifications slow
down overall acquisition times, we assessed the viability of
directly applying intention estimation to the first stage of
training. Because FIT-KF and ReFIT-KF performed similarly,
whereas ReFIT-KF performs superiorly to Re-KF, we highlight
the importance of intention estimation over retraining in the
ReFIT-KF paradigm when using this animal model [61].
The performance gains observed when intention estimation
modifications were directly applied to arm reaching data
furthermore suggest that there is sufficient variability in
the natural reaches of the subject for a given movement
intention (e.g., [58–60]). In this setting, intention estimation
modifications appear to correct for intrinsic movement
variability relative to the neural activity.

It is important to note that many of the channels that
exhibit small changes in PD tend to contribute significantly
to the decoder, as shown in figures 4(b) and 5(b). There
are two explanations for this observation. First, it is possible
that channels that are more informative and contributory are
consistent in their tuning over different contexts. Second,
because more of the informative channels are weighted heavily
in the decoder, cursor movement is best achieved by adapting
a control strategy that modulates contributory channels in a
predictable way that matches the training paradigm. Therefore,
the PDs of these contributory channels would be expected to
vary less [62]. Nevertheless, we find that reducing the tuning
shifts of even largely non-contributory channels leads to an
improvement in the performance of the decoder.

While we show that tuning curve shifts can be reduced
by generating decoders that are more biomimetic, adaptive
strategies may also be important to further improve decode

performance. In particular, shifts in tuning may differ in
degree depending on not only the algorithm employed but
also the animal model used and the training methodologies
(e.g., passive observation versus reaching, [61]). When neural
properties shift as a result of a context change or over long
periods of time, co-adaption algorithms [23, 63] or a two-
stage training procedure may be critical for adjusting to the
shifts in neural tuning. In a clinical setting, a patient may
necessarily require a different initial training paradigm, such
as observation or imagination, and adaptive measures due to
larger contextual changes may be necessary.

In this paper we demonstrate that intention estimation
modifications provide a way to develop high-performance out-
of-the-box decoders (i.e., FIT-KF and ReFIT-KF). In doing
so, we assumed that mimicking the native neural-to-arm
mapping would result in a good initial decoder. In particular,
we focus on improving the directional controllability of the
cursor to be more similar to the control strategies of the
native arm. Improving the biomimetic nature of cursor speeds
is not investigated in this study and may require nonlinear
decoders for biomimetic design. It remains unclear what
the ideal final control strategy of a BMI is and whether it
might be biomimetic strategy or an entirely different strategy.
For example, other groups have observed subjects adopting
new control strategies during BMI control, such as reducing
arm movements, despite being trained with arm movements
[21, 22]. In instances like this, a combination of biomimetic
and adaptive control strategies would be beneficial for seeding
the decoder at a level of high performance and then relying on
adaptation if a different control strategy is desired. Unlike the
minimal tuning shifts observed in this paper when employing
a biomimetic decoder, large, stable shifts in tuning may be
seen when there are explicit changes in contexts or control
modalities [26]. Yet, we have provided here an understanding
for how certain algorithmic and training modifications, such
as with intention estimation, may be able to denoise and
improve the training data. As a result, tuning shifts can be
decreased based on algorithmic changes, which is useful
if the subject desires an out-of-the-box high-performance
(biomimetic) controller.

Performance continues to be a challenge for the clinical
viability of BMIs. With an improved understanding of
how intention estimation modification affects the training
set data and, ultimately, fit of a decoder, it will become
important to develop training paradigms that better elicit and
predict patient intentions. It is important to again highlight
that intention estimation modifications are applied offline
during the fitting of the decoder. Knowledge of the target
position is required only for the initial training period;
for clinical applications, high-performance cursor control
independent of known target position could therefore be
achieved after the initial training period. Encouragingly, the
ReFIT-KF and Velocity-KF performance results, including
ReFIT outperforming Velocity-KF, have been translated to a
person with paralysis (amyotrophic lateral sclerosis, or ALS)
as part of the BrainGate multi-site FDA phase-I clinical trial
[64, 65]. Another study has also reported that a closed-loop
based KF, incorporating a variant of the kinematic vector
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rotation retraining, has translated to and shown performance
benefit beyond an otherwise matched open-loop KF in two
people with paralysis (pontine stroke, and ALS) as part of the
BrainGate clinical trial [14]. By continuing to understand and
utilize biomimetic and adaptive strategies, the performance of
BMIs should continue to increase which is important for BMI
clinical viability.
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