Intentional Motion Online Learning and
Prediction™

Dizan Vasquez, Thierry Fraichard, Olivier Aycard, and Christian Laugier

Inria Rhone-Alpes
http://emotion.inrialpes.fr

Summary. Motion prediction for objects which are able to decide their trajectory
on the basis of a planning or decision process (e.g. humans and robots) is a chal-
lenging problem. Most existing approaches operate in two stages: a) learning, which
consists in observing the environment in order to identify and model possible mo-
tion patterns or plans and b) prediction, which uses the learned plans in order to
predict future motions. In existing techniques, learning is performed off-line, hence,
it is impossible to refine the existing knowledge on the basis of the new observa-
tions obtained during the prediction phase. This paper proposes a novel learning
approach which represents plans as Hidden Markov Models and is able to estimate
the parameters and structure of those models in an incremental fashion by using
the Growing Neural Gas algorithm. Our experiments demonstrate that the tech-
nique works in real-time, is able to operate concurrently with prediction and that
the resulting model produces long-term predictions.

1 Introduction and Related Work

In order to successfully interact with a dynamic environment, a person, a robot
or any other autonomous entity needs to reason about how the objects which
populate this environment are going to move in the future. However, this
knowledge about the future is often unavailable a priori, hence it is necessary
to resort to prediction: estimate future motion based on available knowledge
about the object’s present and past states. This explains the importance of
prediction techniques for a number of research domains like motion planning,
tele-surveillance and automatic traffic control [1, 2].

This work focuses on motion prediction for objects which are able to per-
form trajectories as a result of an internal motion planning process or decision
mechanism (e.g. persons, animals and robots). It is assumed that such plans

* This work has been partially supported by a Conacyt scholarship. We also want
to thank the support of the french CNRS Robea ParkNav and the Predit Mobivip
projects.

P. Corke and S. Sukkarieh (Eds.): Field and Service Robotics, STAR 25, pp. 305-316, 2006.
© Springer-Verlag Berlin Heidelberg 2006

306 D. Vasquez et al.

are made with the intention to reach a specific goal, thus the name intentional
motion which will be used hereafter to designate this kind of motion.

Assuming that the object’s decision mechanism as well as all the rele-
vant variables at every time step (e.g. internal state, sensorial input, etc.) are
known, predicting its trajectory consists in replicating the planning process
in order to find the intended trajectory. However, this assumption is not re-
alistic. Neither the planning model nor the variables are known or observable
(what is the decision mechanism of a human being?) and they must be in-
ferred from observed motion before performing prediction. This leads to the
following decomposition of the problem:

e Learning. Construct a plan representation based on observations.
e Prediction. Use the representation obtained during learning to estimate
future states on the basis of present knowledge.

Thus, learning consists in observing a given environment in order to con-
struct a representation of every possible plan for it. But, how long should we
observe the environment in order to construct such a ”plan library”? Given
the enormous number of possible plans for all but the simplest environments,
there is not a simple answer. This raises an important problem of existing
learning techniques (e.g. [3, 4]): the use of a ”learn then predict” approach,
meaning that the system goes through a learning stage where it is presented
with a set of observations (an example dataset) from which it construct its
plan models. Then, the plan library is ”frozen” and the system goes into the
prediction stage.

The problem with this approach is that it makes the assumption that all
possible plans are included in the example dataset, which, as we have shown, is
a difficult condition to meet. This paper addresses the problem by proposing a
”learn and predict” approach which is able to learn in an incremental fashion
(ie by continuously refining its knowledge on the basis of new observations
used for prediction). To the extent of our knowledge, this is the first intentional
motion prediction technique in the literature to have this property.

Learning techniques used by the ”learn then predict” approaches are very
diverse. For example in [5] plans are modeled as series of straight motion seg-
ments which are clustered together. In [3] and [6], typical behaviors are learned
by clustering whole trajectories. In [7] Bui proposes Abstract Hidden Markov
Models as a way to represent plans as hierarchies of probabilistic sub-plans
or policies. Although the approach does not define an automatized learning
mechanism, this has been done in [4] by using the Expectation-Maximization
algorithm.

In this paper, we present an approach which is able to continuously
learn from observations in an incremental fashion. It models plans as Hid-
den Markov Models (HMM)[8] augmented with a variable which indicates the
goal that the plan intends to reach?. The learning algorithm is composed of

2 An HMM is a stochastic finite-state automaton which models a process whose
state evolves according to a transition probability at discrete time-steps. The

Intentional Motion Online Learning and Prediction 307

two modules: in the first one, the Growing Neural Gas algorithm [9] is used to
estimate both the set of states in the model and the observation probabilities.
The second module identifies goals and then uses a Maximum-Likelihood cri-
terion to update the transition probability of the model. As mentioned above,
the technique determines the number of goals and states in the model, thus
learning the structure of the underlying HMM.

The rest of the paper is structured as follows: section 2 presents an overview
of the problem. Section 3 discusses the details of our HMM-based probabilis-
tic model and describes how it is used to represent plans. The details of the
learning algorithm are presented in section 4. Section 5 discusses the exper-
imental results. The paper ends by exposing our conclusions and explaining
future research directions.

2 Problem Overview

This paper proposes an unsupervised learning algorithm which constructs plan
representations by observing the motion of objects (e.g. pedestrians, vehicles,
etc.) moving in a given environment. Plans are modelled as Hidden Markov
Models augmented with a variable v which is used to represent the particular
goal that the object intends to reach.

The input of the learning algorithm is a continuous stream of observations
ot = {01,092, -} gathered through a tracking system. In order to keep nota-
tion simple, we will assume that no more than one object is observed at the
same time, noting that the approach is easily generalizable to the multi-object
case. It will also be assumed that the tracking system can determine when
the object has stopped or exited the environment.

Every observation o = (x4, yt, n:) returned by the tracker consists of an
estimate of the object’s position® at time ¢ and a binary variable 1; which
indicates whether the object has reached the end of its trajectory (n = 1)
or not (n = 0). A trajectory ends when the object stops moving or exits the
environment.

Learning will consist in estimating the parameters of the slightly modified
HMM which will be presented in the following section.

state of the process may only be observed through a noisy sensor, the probability
that a measure provided by the sensor corresponds to a given state is known as
the observation probability.

3 Higher-dimensional observations (ie (z¢,y:, =1, y:)) may also be used as input by
the algorithm.

308 D. Vasquez et al.

3 Probabilistic Model Definition

In order to develop our model, we will start from the HMM?* joint probability
distribution (JPD) for a single time-step, which may be written as follows:

(qt, gt—1,0¢) = p(qe—1)p(q¢ | @—1)p(0s | qr) (1)

Where ¢;_1 and ¢; represent the state at time ¢ — 1 and ¢, respectively,
and o; represents the observation returned by the sensor at time t. The de-
composition contains the three probabilities that define an HMM: a) the state
prior, or belief state p(g:—1); b) the transition probability p(q; | ¢t—1) and c)
the observation probability p(o: |).

In the context of this work. Discrete states will correspond to positions
in the environment and transition probabilities will depend on the particular
goal that an object intends to reach. In order to account for different goals,
we will augment the HMM with a variable v which is used to represent them:

p(at; gt—1,0t,7) = plat—1)p(V)p(ar | v, ae-1)p(ot | gr) (2)

This JPD has been obtained from eq. 1 by making two additional condi-
tional independence assumptions: a) The goal does not depend on the previous
state p(y | gt—1) = p(7y) and b) given the state, the observation is independent
of the goal p(o | q,7) = p(ot | q1).

Due to the fact that « is not time-dependent, this may be regarded as
having a different Markov model for every value of -, where all such mod-
els share the same observation probabilities and number of states. The idea
is a simplified version (ie without the actions) of the probabilistic planning
technique known as Markov Decision Processes.

Having defined a JPD, we will proceed to specify all the model’s relevant
variables as well as their respective domains:

e N € N: The total number of discrete states in the model. These states

correspond to positions in the environment.

Gt,qi—1 € [1, N]: The object’s states at time ¢ and ¢ — 1, respectively.

o¢ € R?: The object’s state estimation returned by the sensor at time ¢.
(e the observation variable).

e (G € N: The total number of goals in the model. The goals correspond to
specific places in the environment (ie it may correspond to many discrete
states).

e ~ € [1,G]: The goal that the object intends to reach.

Finally, we the representations we have chosen for the probability distri-
butions:

4 In this section, it is assumed that the reader is familiar with Hidden Markov
Models. The interested reader is referred to [8] for an excellent tutorial on the
subject.

Intentional Motion Online Learning and Prediction 309

p(qt | v, qt—1): Table, it will be further described in §4.3.

plot | [g = 1]): Gaussian G(u;, 0y).
p(qo): Uniform Uy = % This probability is used to initialize the belief
state for a new trajectory.

e p(7): Uniform Ug = é This probability is used to initialize the goal’s
belief for a new trajectory.

4 Parameter Learning Algorithm

On the basis of the model specification presented in §3 it is possible to define a
learning algorithm which consists in estimating parameters from observations.
Having defined the priors as uniform distributions, this leaves four parameters
to be estimated: the transition and observation probabilities, and the values
for N and G. It is worth noting that, by learning both N and G, the proposed
technique is able to learn the structure of the model. This is an significant
departure from existent techniques [3, 4], which depend on values fixed a
PTioTi.

Assuming that, for every observed trajectory the associated goal is known,
learning may be performed using the Baum-Welch algorithm [10] which is a
specialization of Expectation-Maximization [11] and has become the standard
learning technique for HMM’s. However, it has two problems which prevent
its application to our particular problem: a) it is not incremental and b) it
needs to know the number of states to be learned a priori. The first problem
may be solved by using incremental variants of the algorithm [12, 13], but
the second one is more difficult to solve and is not a trivial task. Moreover,
we want to deal with the general case, where goals are not known beforehand
and should be identified.

The approach proposed in this paper takes a different approach by splitting
the problem in three tasks:

1. State GNG. The observation probability p(o; | ¢:) and the number of
states N are estimated using the Growing Neural Gas algorithm (§4.1).

2. Goal GNG. Another instance of GNG is used to estimate the number of
goals G as well as their position.

3. Viterbi Counting. The Viterbi algorithm [14] is used to perform a max-
imum likelihood (ML) estimation of the transition probability p(g: |
v,qt—1). This estimation uses the outputs of tasks 1 and 2 (§4.3).

The rest of the section provides the details of the tree learning tasks.

4.1 Learning Discrete States and Observation Probabilities

The observation probability for a given state p(o; | [¢¢ = i]) is defined as a
gaussian. Therefore, the learning algorithm should estimate the mean value
w; and standard deviation o; for the N states.

310 D. Vasquez et al.

This rises the question of the ” correct” value for N, which is an important
question. The state space is continuous, when it is mapped to a finite set
of discrete values an error is introduced in the representation. The number
of states allows to trade off accuracy and computational efficiency. By incre-
menting the value of N the approximation error — also known as distortion —
is reduced at the expense of additional calculation burden.

There is another way of reducing the distortion: discrete states may be
placed in such a way that the mean distance between them and observed data
is minimized. This is known as Vector Quantization [15].

Our approach uses a Vector Quantization algorithm known as Growing
Neural Gas (GNG) [9] in order to estimate the number of discrete states of
the model as well as the mean values and standard deviation of the obser-
vation probabilities. This algorithm has been chosen between many different
approaches existent in the literature [15, 16, 17, 18] due to its following prop-
erties:

e It is fast. The costliest operation is of O(N). This can be further optimized
by using a hierarchical structure like an r-tree[19].

e The number of states is not fixed. New states are added and deleted as
observations arrive.

e It is incremental. This makes it suitable to process continuous streams of
observations.

The algorithm processes observation on a one by one basis. It produces a
graph, where nodes representing discrete states are explicitly linked to their
closest neighbors (the graph is a subset of the Delaunay triangulation). Every
node i is associated to a vector u; known as the centroid.

The application of this structure to estimate the required parameters is
straightforward: state information {z,y;} contained in each observation is
used as an input for a GNG. The resulting set of nodes represents discrete
states whose centroids are the mean values of the observation probabilities.
The standard deviation o; for state ¢ is approximated by averaging the half
length of the links emanating from the corresponding node

Insertion of new states is no longer allowed when argmin o; is less than a
given threshold. This restrains the algorithm from discretizing the space below
the sensor’s precision. Thresholding may be regarded as defining a minimum
cell size, which is similar to conventional grid approaches but with two im-
portant advantages: a) the location of the cells is not fixed a priori and b)
only relevant cells are represented. The latter advantage depends on the ratio
between the existing positions (ie the full grid) those which are actually vis-
ited by objects. Usually, this advantage becomes more important as the state
dimension grows due to motion constraints which apply to the object (e.g.
acceleration and speed limits, unaccessible areas, etc.).

An example of the use of GNG is presented in fig. 1. The environment
is a simulator of the laboratory’s entry hall. It contains a number of places
which may constitute motion goals (e.g. the stairways in the bottom or the

Intentional Motion Online Learning and Prediction 311

two doors in the top of figure 1la). Fig. 1b presents the state of the GNG
structure after processing 1000 trajectories.

! |V e LA
a) Sample Environment b) GNG Network

Fig. 1. Using GNG to represent discrete states in the laboratory entry hall.

4.2 Identifying Goals

The problem of automatically identifying the goals that an object seeks to
reach using only observation data is very difficult since these goals are often
related to information which is not present in this data (e.g. the presence of
a billboard).

The approach taken here aims to identify goals based on a simple hypoth-
esis: when an object stops moving (or exits the environment) it is because it
has reached its goal. This leads to a simple goal identification scheme: every
observation o; having 7, = 1 (end observation) is sent to a GNG structure
which clusters this information together into high-level goals.

The nodes of the resulting GNG graph corresponds to goals®. The graph
itself may be used to identify the goal that corresponds to a given end-state
observation:

v =minarg; [|(ze, ye) — p ||, for ne =1 (3)

4.3 Learning Transition Probabilities

Transition probabilities are updated once a complete trajectory is available,
this means that all non-end observations are stored until an observation having
n = 1 is received, then, expression 3 is used to compute the attained goal g.
For every observation in the trajectory o;, the Viterbi algorithm is used in
order to find ¢; given the past state ¢;:—1 = ¢ (which has been estimated in
the previous iteration)®:

% notations uf and p? will be used henceforth in order to distinguish between state
and goal GNG’s

S This implies iterating through the domain of ¢;, meaning that the update step
has cost O(N).

312 D. Vasquez et al.

¢ —maxarg, {paqt — 3 b= gl las = (s | g = m}

The obtained values for g, i and j are then used as indices to update a
transition count matrix A on a maximum-likelihood criterion:

Alg,i,j] — Alg,i, 4] +1 (4)

If the observation correspond to the first step of a trajectory only the
current state is estimated using:

qo = maxarg;{p(oo | [q0 = i])} (5)

Transition probabilities are calculated using:

i _ o _Alg]
p(lg: =71 [v =g, [ge—1 = 1]) S Alg, i, 7] (6)

Finally, when N or G change due to additions or deletion on the corre-
sponding GNG structures the corresponding columns and rows are simply
inserted or deleted accordingly, this is possible due to the fact that we are
storing counts instead of probabilities in the transition matrix.

5 Experimental Results

In order to validate it, the proposed approach has been applied to the predic-
tion of pedestrian motion in the entry hall of the Inria laboratory, which is a
rectangular area of approximately 8 x 20 meters. As it may be seen in fig.2,
the environment consists mostly of an open area without much structure.

We have performed experiments with both real and simulated data. Real
data has been gathered through a vision system which tracks people using
a single camera having wide-angle lenses. The system projects observations
from the camera plan to the floor plan. It is worth noting that, due to the
projection process, the system ends up covering only about 60% of the total
area.

Simulated data consists of noisy trajectories between predefined sequences
of control points.

5.1 Evaluation Criterion

In order to perform prediction, the probability p(y | 0g,--,0:) has been
estimated using a particle filter with a resampling step [20] to integrate new
observations.

The performance of the algorithm has been evaluated by measuring the
difference between the predicted and effective final destination. The first n

Intentional Motion Online Learning and Prediction 313

Fig. 2. The INRIA entry hall

observations of a trajectory were used to predict the most probable goal g =
maxarg; p([y =] | 00, ,0n). The global estimation error is calculated as
the average of all the distance between the goal such obtained and the real
end of the trajectory.

5.2 Results

We have run our experiments using datasets of 600 trajectories both for real
and simulated data. The algorithm was initialized by processing 500 trajecto-
ries before starting to record the results. The remaining 100 trajectories were
processed as follows: for every trajectory, the predicted goal is estimated using
10% of its length, then 20% and so on until 90%. This allows us to measure
how new knowledge improves prediction.

The results obtained for both simulated and real data are presented in
fig. 3.

Mean Prediction Error

=

0 20 3 40 s 6 70 80 90
Trajectory %

Fig. 3. Experimental results

314 D. Vasquez et al.

It may be seen that both error curves decrease in near linear fashion with
respect to the known fraction of the trajectories, we regard this as an encour-
aging result, particularly in the case of real data, which was very noisy due
to the tracker’s inability to adequately track the object’s motion during all of
its motion. However, we think that faster (non-linear) convergence rates are
achievable, in particular by using a more efficient goal discovery mechanism.

It may be surprising to find that real data seems to perform better than
simulated data. The reason is that the simulator produces trajectories which
cover the entire entry hall, while, as we have explained above, real data is
gathered only in a fraction of the environment.

It is important to mention that all the results presented here are prelim-
inary. For example, the chosen performance measure should be improved to
take into account situations where a trajectory passes through more than one
goal, in this case, the system will probably predict that the object intends to
reach these ”intermediate” goals (which we think is fine), but, as they do not
correspond to the trajectory’s final position, the resulting prediction error will
be high.

5.3 Real-Time

In our experiments, prediction has been performed simultaneously with learn-
ing and graphic display for the test data set. Our unoptimized implementation
of the technique runs on a 2 Ghz Athlon PC at a frequency of 20—60 Hz. Even
if we consider this as adequate for most real-time systems involving pedestri-
ans, the system may be further optimized at the code level or by using a more
efficient technique for searching the winner in the GNG structure, for example

(64.1).

6 Conclusions

In this paper, we proposed a method for learning motion plans from obser-
vations. Our approach represent plans as Hidden Markov Models. Learning
consists of three modules: a) the Growing Neural Gas algorithm is used to
estimate the total number of states IV as well as the observation probability
distribution; b) another GNG structure is used to estimate the number and
positions of goals in the environment, and c¢) the Viterbi algorithm is used to
perform a Maximum-Likelihood estimation of the transition probability.

The main contribution of this technique is that it follows a ”learn and pre-
dict” approach, thus allowing the continuous improvement of existent knowl-
edge on the basis of new observations. To the best of our knowledge no other
technique in the literature is able to do that. A second important contribution
consists on the fact that, by learning the number of states and the number of
goals, this technique is able to learn the structure of the model, this distin-
guishes our work from techniques with fix this values a priori.

Intentional Motion Online Learning and Prediction 315

The technique has been implemented and applied to both real and sim-
ulated data. The experiments show that the learned model may be used to
efficiently predict the intended goal of an object. Moreover, this is performed
in real time.

7 Future Work

The approach presented in this paper is a first approximation to the problem.
In the short term, our goal is to test the approach in a different setting: the
ParkView experimental platform, which is able to track a car moving in a
parking lot (fig. 4).

Fig. 4. The ParkView platform: left) camera view of the Cycab experimental car
moving in the parking lot of the laboratory; right) the Cycab as detected on the
tracking system.

In the medium term, a number of lines of work are being considered: a)
including velocity and object size in the space representation; b) modelling
of semi-dynamic objects such as doors which may be either open or closed;
¢) the extension of the algorithm to learn hierarchical plan models such as
Abstract Hidden Markov Models [7].

References

1. D. Koller, J. Weber, T. Huang, J. Malik, G. Ogasawarea, B. Rao, and S. Russell,
“Towards robust automatic traffic scene analysis in real-time,” in Proceedings
of the 33rd Conference on Decision and Control, Lake Buena Vista, FL (USA),
December 1994, pp. 3776-3781.

2. K. Kyriakopoulos and G. Saridis, “An integrated collision prediction and avoid-
ance scheme for mobile robots in non-stationary environments,” in Proceedings
of the IEEFE Int. Conf. on Robotics and Automation, Nice, France, May 1992,
pp. 194-199.

3. M. Bennewitz, W. Burgard, and S. Thrun, “Learning motion patterns of persons
for mobile service robots,” in Proceedings of the IEEE Int. Conf. On Robotics
and Automation, Washington, USA, 2002, pp. 3601-3606.

316

4.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

D. Vasquez et al.

S. Osentoski, V. Manfredi, and S. Mahadevan, “Learning hierarchical models
of activity,” in IEEE/RSJ International Conference on Intelligent Robots and
Systems, Sendai, Japan, 2004.

E. Kruse, R. Gusche, and F. M. Wahl, “Acquisition of statistical motion pat-
terns in dynamic environments and their application to mobile robot motion
planning,” in Proceedings of the IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems, Grenoble, France, 1997, pp. 713-717.

D. Vasquez and T. Fraichard, “Motion prediction for moving objects: a statis-
tical approach,” in Proc. of the IEEE Int. Conf. on Robotics and Automation,
New Orleans, LA (US), apr 2004, pp. 3931-3936.

H. Bui, S. Venkatesh, and G. West, “Policy recognition in the abstract
hidden markov models,” Journal of Artificial Intelligence Research, vol. 17, pp.
451-499, 2002. [Online]. Available: citeseer.ist.psu.edu/bui02policy.html

L. R. Rabiner, “A tutorial on hidden markov models and selected applications
in speech recognition,” Readings in speech recognition, pp. 267-296, 1990.

B. Fritzke, “A growing neural gas network learns topologies,” Advances in Neu-
ral Information Processing Systems, 1995.

L. Baum and T.Petrie, “Statistical inference for probabilistic functions of finite
state markov chains,” Annals of Mathematical Statistics, no. 37, 1966.

N. Dempster, A.and Laird, , and D. Rubin, “Maximum likelihood from incom-
plete data via the EM algorithm,” Journal of the Royal Statistical Society, vol. 9,
no. 1, pp. 1-38, 1977, series B.

Y. Singer and M. K. Warmuth, “Training algorithms for hidden markov models
using entropy based distance functions.” in Advances in Neural Information
Processing Systems 9, NIPS. Denver, CO (USA) December 2-5, 1996: MIT
Press, 1996, pp. 641-647.

R. M. Neal and G. E. Hinton, “A new view of the EM algorithm that justifies
incremental, sparse and other variants,” in Learning in Graphical Models, M. 1.
Jordan, Ed. Kluwer Academic Publishers, 1998, pp. 355-368.

A. J. Viterbi, “Error bounds for convolutional codes and an asymptotically
optimum decoding algorithm,” IEEE Transactions on Information Theory, vol.
IT-13, no. 2, pp. 260-269, April 1967.

Y. Linde, A. Buzo, and R. Gray, “An algorithm for vector quantizer design,”
IEEFE Transactions on Communications, vol. COM-28, pp. 84-95, 1980.

T. Kohonen, Self-Organizing Maps, ser. Springer Series in Information Sciences.
Berlin, Heidelberg: Springer, 1995, vol. 30, (Second Extended Edition 1997).
M. Martinetz and K. J. Schulten, “A “neural-gas” network learns topologies,”
in Proceedings of International Conference on Articial Neural Networks, T. Ko-
honen, K. M??kisara, O. Simula, and e. J. Kangas, Eds., vol. I, North-Holland,
Amsterdam, 1991, pp. 397-402.

G. Carpenter, S. Grossberg, and D. Rosen, “Fuzzy art: An adaptive resonance
algorithm for rapid, stable classification of analog patterns,” in Proc. Int. Joint
Conf. Neural Networks, vol. 11, Seattle, USA, 1991, pp. 411-420.

A. Guttman, “R-trees: A dynamic index structure for spatial searching.” in
SIGMOD Conference, 1984, pp. 47-57.

S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial on
particle filters for on-line non-linear/non-gaussian bayesian tracking,” IFEE
Transactions on Signal Processing, vol. 50, no. 2, pp. 174-188, feb 2002.
[Online]. Available: citeseer.ist.psu.edu/article/arulampalamO1tutorial.html

	1 Introduction and Related Work
	2 Problem Overview
	3 Probabilistic Model De.nition
	4 Parameter Learning Algorithm
	4.1 Learning Discrete States and Observation Probabilities
	4.2 Identifying Goals
	4.3 Learning Transition Probabilities

	5 Experimental Results
	5.1 Evaluation Criterion
	5.2 Results
	5.3 Real-Time

	6 Conclusions
	7 Future Work
	References

