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Abstract

Background: MicroRNAs (miRNAs) are a novel class of non-coding small RNAs. In mammalian cells, miRNAs repress the

translation of messenger RNAs (mRNAs) or degrade mRNAs. miRNAs play important roles in development and differentiation,

and they are also implicated in aging, and oncogenesis. Predictions of targets of miRNAs suggest that they may regulate more

than one-third of all genes. The overall functions of mammalian miRNAs remain unclear. Combinatorial regulation by

transcription factors alone or miRNAs alone offers a wide range of regulatory programs. However, joining transcriptional and

post-transcriptional regulatory mechanisms enables higher complexity regulatory programs that in turn could give cells

evolutionary advantages. Investigating coordinated regulation of genes by miRNAs and transcription factors (TFs) from a

statistical standpoint is a first step that may elucidate some of their roles in various biological processes.

Results: Here, we studied the nature and scope of coordination among regulators from the transcriptional and miRNA

regulatory layers in the human genome. Our findings are based on genome wide statistical assessment of regulatory associations

("interactions") among the sets of predicted targets of miRNAs and sets of putative targets of transcription factors. We found

that combinatorial regulation by transcription factor pairs and miRNA pairs is much more abundant than the combinatorial

regulation by TF-miRNA pairs. In addition, many of the strongly interacting TF-miRNA pairs involve a subset of master TF

regulators that co-regulate genes in coordination with almost any miRNA. Application of standard measures for evaluating the

degree of interaction between pairs of regulators show that strongly interacting TF-miRNA, TF-TF or miRNA-miRNA pairs tend

to include TFs or miRNAs that regulate very large numbers of genes. To correct for this potential bias we introduced an

additional Bayesian measure that incorporates not only how significant an interaction is but also how strong it is. Putative pairs

of regulators selected by this procedure are more likely to have biological coordination. Importantly, we found that the

probability of a TF-miRNA pair forming feed forward loops with its common target genes (where the miRNA simultaneously

suppresses the TF and many of its targets) is increased for strongly interacting TF-miRNA pairs.

Conclusion: Genes are more likely to be co-regulated by pairs of TFs or pairs of miRNAs than by pairs of TF-miRNA, perhaps

due to higher probability of evolutionary duplication events of shorter DNA sequences. Nevertheless, many gene sets are

reciprocally regulated by strongly interacting pairs of TF-miRNA, which suggests an effective mechanism to suppress functionally

related proteins. Moreover, the particular type of feed forward loop (with two opposing modes where the TF activates its target

genes or the miRNA simultaneously suppresses this TF and the TF-miRNA joint target genes) is more prevalent among strongly

interacting TF-miRNA pairs. This may be attributed to a process that prevents waste of cellular resources or a mechanism to

accelerate mRNA degradation.
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Background
MiRNAs belong to a class of non-coding small RNAs. The
first miRNA was found by Victor Ambros and his col-
leagues [1,2]. Its mature sequence contains only 21~24
nucleotides. Lee et al. and Wightman et al. [2,3] first
found that miRNAs might regulate protein expression at a
post-transcriptional stage. The properties of this novel and
vital class of regulators are being extensively studied.
Although some miRNAs may be transcribed by RNA
polymerase III (Pol III) [4], it is believed that most miR-
NAs are transcribed by RNA polymerase II (Pol II) [5]. In
mammalian cells, the original transcripts are cleaved by
the Drosha RNase II endonuclease into 60~70nt and then
exported to cytoplasm by Exportin-5 and its cofactor Ran-
GTP [6-9]. Finally, Dicer crops the exported miRNAs in
the cytoplasm into 21nt mature miRNAs [10-12]. Mature
miRNAs are eventually transferred to Argonaute proteins
and serve as guides in mRNA silencing [13]. Expression
studies have shown that many miRNAs have tissue-spe-
cific or developmental-stage-specific expression patterns
[5,14]. Emerging in vivo and in vitro experiments are show-
ing that miRNAs regulate a broad diversity of cellular
processes, including differentiation, development, aging,
apoptosis, oncogenesis and metabolism [5,15-19].

Identification of targets of miRNAs is a critical step in deci-
phering the function of miRNAs. Comprehensive under-
standing of the underlying mechanisms of miRNA
binding is lacking. Efficient high-throughput experimen-
tal methods for miRNA target identification are still
underdeveloped. Therefore, genome-wide identification
of miRNA targets is currently based on computational pre-
dictive models. In plants, these predictions are straightfor-
ward since a plant gene typically contains a sequence that
is complementary to the sequence of the whole miRNA
[20]. Moreover, most targets of miRNAs in plants are tran-
scription factors [5,20]. In metazoan, the situation is more
complex since a perfect complementarity is not necessary
for a miRNA to recognize its targets. Recently developed
algorithms to predict the targets of metazoan miRNAs
include PicTar [21], miRanda [22] and TargetScan [23].
These algorithms employ similar sets of rules of the form:
1) the ~7nt core region at the 5' of miRNAs should
approximately match with the 3' untranslated regions
(UTR) of the putative target genes; 2) the free energy of the
entire miRNA/mRNA duplex should be below a cutoff
value; 3) the binding sites should be conserved among
several different species. Small differences in the imple-
mentation of the rules of these algorithms contribute to
discrepancies among their predicted targets. Despite the
lack of sufficient numbers of experimentally verified tar-
gets for accurate assessment of the overall sensitivity and
specificity of the predictions obtained by these algo-
rithms, recent reports indicate that a large class of miRNA
targets can be confidently predicted [24,25].

Studying the extent to which miRNAs interact in a combi-
natorial fashion with other regulators (e.g. TFs and signal
molecules) and among themselves is an important step
for further elucidating the functions of miRNAs at a sys-
tem-wide level. Earlier studies have demonstrated how
combinatorial transcriptional regulation affects expres-
sion patterns across a variety of biological conditions
[26,27]. Recently, Cui et al. employed a statistical
approach to decipher global relationships in miRNA reg-
ulation, cellular signaling networks [28] and predicted
transcription regulatory networks [29]. In these studies,
Cui et al. examined the relationship between the centrality
(number of connections) of each node (gene) in signaling
networks or transcription regulatory networks and abun-
dance of miRNA binding. They found that miRNAs typi-
cally target: a) positive regulatory motifs (three or four
proteins which positively regulate each other); b) down-
stream network components and the highly connected
scaffolds in a signalling network; and c) genes whose pro-
moter regions include a large number of putative tran-
scription factor binding sites.

Here, we derived a combined draft of the human TF and
miRNA regulatory network and investigated the extent of
combinatorial regulation within and between the tran-
scriptional and miRNA regulatory layers. To determine
biologically coordinated regulation by any pair of TF or
miRNA regulators, we utilized several measures for assess-
ing the statistical interaction between the miRNA and TF
variables. When we assess interaction strength by employ-
ing interaction estimators such as the correlation between
the binding profiles of each pair of regulators, Fisher's
exact test, the Chi Square test or similar tests for associa-
tion, we are more likely to identify pairs of strongly inter-
acting regulators for which at least one of the two
regulators targets a large number of genes. To reveal bio-
logical coordination between regulators that target a
smaller number of genes, we utilized an additional non-
standard interaction measure based on a Bayesian
approach.

Results
Intra and inter-coordinated gene regulation by pairs of 

miRNAs and TFs

To identify groups of genes that are likely to be combina-
torially regulated by TF-TF, miRNA-miRNA and TF-
miRNA pairs, we constructed a combined transcriptional
and miRNA putative regulatory network using the TRANS-
FAC transcription factor database [30] and the PicTar
miRNA database [21]. The PicTar database stores the pre-
dicted targets of 168 distinct human miRNAs. To obtain
an analogous list for the predicted targets of the 236
human transcription factors whose probability weight
matrices (PWMs) are stored in the Transfac(R) 9.4 data-
base, we scanned the promoters of all annotated tran-
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scripts and matched them against each of these PWMs. To
assess the robustness of our general observations, we var-
ied the parameters used in constructing the predictive
links of the transcriptional binding network (see details in
the Methods section above). To label the predicted targets
of each TF in the transcription regulatory network, we
used the Refseq database whose identifiers are uniquely
associated with gene transcription start sites and their cor-
responding promoters. Use of the Refseq database ena-
bled us to combine the transcriptional network with the
PicTar database that provides annotation of the miRNA
targets in terms of Refseq IDs. We then linked each Refseq
ID to its corresponding gene symbol using the NCBI gene
database. A gene that was mapped to multiple Refseq IDs,
due to alternative splicing, was marked as a target of a
miRNA or TF if the latter regulates at least one of the
gene's Refseq transcripts. With this in mind, we will
present the results and discussion in term of gene symbols
instead of RefSeq IDs.

It is plausible that the degree of coordinated gene co-reg-
ulation by pairs of TFs, miRNAs or TF-miRNA regulators
can be inferred by utilizing statistical association (interac-
tion) measures for quantifying the significance and size of
the overlap between the sets of predicted targets of each
pair of regulators. To evaluate the significance of the over-
lap, viz., the extent to which the targets of one regulator
are enriched in targets of another regulator, we first
applied Fisher's Exact Test. We then transformed the p-val-
ues obtained from Fisher's Exact Test into q-values (as a
False Discovery Rate Correction) [31].

We found that co-regulation by TF pairs or miRNA pairs is
substantially more abundant compared to co-regulation
by TF-miRNA pairs. This trend is demonstrated by the
block diagonal structure of the (ranked-based) scatter plot
of the significant regulatory pairs, as shown in Fig. 1a. We
found that about 5.5% (2212 out of 39648) of the TF-
miRNA pairs share a significant number of targets (q-
value < 0.01). These 2212 pairs include 85 TFs and 155
miRNAs. Inspection of the off-diagonal TF-miRNA blocks

TF and miRNA interaction heatmapFigure 1
TF and miRNA interaction heatmap. Each pixel on Figures 1a and 1b represents the association of a unique pair of regu-
lators. Figure 1a measures this association by a Fisher's Exact Test p-value (dark pixels represent lower p-values or alterna-
tively a higher value of -log10p). Figure 1b measures the association by the Bayesian probability Pr{logOR>0.6} (Here a dark 
pixel means a high probability). The TFs and miRNAs are ordered so that the number of targets of each regulator increases as 
one moves across the Figure from left to right on the horizontal axis, and also up the vertical axis. Both Figures 1a and 1b illus-
trate that while TF-TF and miRNA-miRNA associations are common, TF-miRNA interactions are less so. The TF-miRNA rec-
tangles of Fig 1a demonstrate that the most significant associations (as found by Fisher's Exact Test) tend to involve TF-miRNA 
pairs with the TF having a large number of targets. In the corresponding areas of Figure 1b, we see a more uniform sprinkling 
of dark points, indicating that the Bayesian approach is less sensitive to sample size effects. The stripes on the TF-miRNA rec-
tangles of both figures demonstrate that certain TFs are associated with almost all the miRNAs – while, surprisingly, many TFs 
with a similar number of targets seem to not be significantly associated with any miRNA.
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in Fig. 1a show that only one third of the TFs share a sig-
nificant number of targets with at least one miRNA, while
a majority of miRNAs have significant overlap with targets
of one or more TFs. Moreover, the red stripes in the off-
diagonal blocks shown in Fig. 1a, indicate that a few mas-
ter TF regulators (TFs with a very large number of targets)
co-regulate genes in coordination with a large number of
miRNAs. This suggests that regulation by some TFs is
accompanied by additional "corrections" or fine-tuning
of protein concentrations via combinatorial regulation
with multiple miRNAs. As seen in Figure 1a, TFs with a
larger number of targets are more likely to have significant
overlap (q-value < 0.01) with targets of miRNAs. How-
ever, this is most probably due to a sample-size effect
associated with p-values: when testing multiple hypothe-
ses in a situation where the sample sizes differ with each
test, the statistical power will generally be higher for tests
run on larger samples. In testing TF-miRNA associations,
a proxy for sample size is the number of target genes asso-
ciated with the TF and miRNA. There may also be impor-
tant TF-miRNA associations where each regulator in the
TF-miRNA pair has only a small number of targets, how-
ever, the power of Fisher's Exact Test may be too low for
us to detect such pairs. In addition, a significant p-value or
q-value for a TF-miRNA pair gives us no guarantee that the
association is of practical importance: small and uninter-
esting effect sizes can still show small p-values if the sam-
ple size is large enough.

With these issues in mind, we used an alternative
approach to identify associated miRNA-TF pairs. Our new
approach allows us to identify additional associated
miRNA-TF pairs such that the TF and the miRNA do not
necessarily have a large number of targets. It also gives
greater emphasis than Fisher's Exact Test to the effect size
of the TF-miRNA association. With this method, we rank
by how sure we are that the TF-miRNA association, meas-
ured by the log Odds Ratio (logOR), exceeds a certain
threshold. More formally, we compare the various TF-
miRNA associations by examining the Bayesian posterior
probability Prob{logOR >c} for each pair. The threshold
c is chosen from the data. Larger values of this statistic
imply a greater level of association between the TF and
miRNA. Indeed, as can be seen from Fig. 2, no matter how
we choose c, a large value of Prob{logOR >c} implies the
corresponding Fisher's Test p-value will be small. As dem-
onstrated in Fig. 1b, in contrast to Fisher's test, the most
salient TF-miRNA associations according to our Bayesian
methodology do not necessarily involve TF-miRNA pairs
where both regulators have many targets.

Co-regulation of related genes

The statistical relationships reported in the previous sec-
tion are based on predictive input of the miRNA targets
and a mix of predictive and experimental input of the TF

targets. We obtain similar conclusions using other data-
bases of miRNA targets [23]. The common presumption
among genomics experimentalists is that the overall false
positive rate in predicting TF or miRNA binding sites
using various prediction methods is in the range of 50%-
80%. It is plausible that the quality of these predictions
can be improved by reproducing the genome-wide analy-
ses of the previous section for a smaller set of functionally
related genes.

In the current study, we examined the degree to which
gene sets regulated by any TF, miRNA or pair of TF-miRNA
intersect with thousands of functionally related sets of
genes annotated in the biological process classification
Gene Ontology (GO) catalogue [32]. Using Fisher's Exact
Test, we found that out of the 2212 strongly interacting
TF-miRNA pairs (OMTs, q-value<0.01), 1223 are signifi-
cantly enriched in at least one GO term. These 1223 OMTs
involve 48 TFs and 121 miRNAs and are enriched in 96
GO terms, while the targets of 117 of 168 miRNAs and the
targets of 105 of 236 TFs are enriched in 71 and 206 GO
terms, respectively.

Interestingly, we found that gene sets associated with cell
adhesion related GO terms including homophilic cell
adhesion, cell-cell adhesion and the less specific cell adhe-
sion category, are enriched by 40, 25 and 14 miRNAs,
respectively, but not enriched by any TF. The groups of
gene targets bound by the 14 miRNAs enriched in the less
specific cell adhesion category are a subset of the groups
bound by the 25 miRNAs enriched in cell-cell adhesion
activity.

Similarly, the 25 groups associated with cell-cell adhesion
are a subset of the 40 miRNAs gene sets enriched by
homophilic cell adhesion. This observation is not only
consistent with the current presumption that miRNAs are
only found in multi-cellular species, but provides an
important clue for their cellular roles and origin. Moreo-
ver, since the reduction in cell adhesion correlates with
tumor invasion, it implicates these miRNAs with cancer
metastasis. We found that 8 out of the 40 cell adhesion
enriched miRNAs are present in a dataset of 21 miRNAs
that are up or down regulated in a variety of cancers [33].

Feed forward loops

There are two possible mechanisms by which miRNAs
repress mRNA translation: 1) blocking mRNA translation
without degrading the mRNA targets; 2) direct degrada-
tion of mRNA targets by miRNA. Both mechanisms allow
a rapid reduction in the number of translated proteins
compared to the long half-life time required to suppress
the mRNAs via transcriptional regulation. Predictively,
miRNAs could repress hundreds of mRNAs, which in turn
could be wastefully produced if the relevant TFs do not
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Comparison of Fisher's exact test and Bayesian association scoreFigure 2
Comparison of Fisher's exact test and Bayesian association score. Scatter plots of Fisher's Exact Test p-value as a 
function of Bayesian association score. The 2D distributions demonstrate how the relationship between Fisher's Exact Test 
and our Bayesian score depends on the logOR threshold we use. Each sub-plot represents a different threshold value ranging 
from 0 to 1 – as indicated by each subtitle. For a particular threshold value, a pixel on the plot represents the local density of 
miRNA-TF pairs having the corresponding p-value (from the y-axis) and Bayesian Probability (from the x-axis). Here darker 
shaded regions indicate higher densities. For a 0 threshold, the Bayesian Test and Fisher's Test agree exactly. As we increase 
the threshold, we see fewer and fewer TF-miRNA pairs that are highly associated as measured by both ranking criteria (pairs 
whose measures approach 1 at the x-axis and 0 at the y-axis). The higher the threshold, the more emphasis we are placing on 
the size of the TF-miRNA association (as measured by a log Odds Ratio) and the less emphasis on sample size. Note that a very 
high Bayesian probability implies that the associated p-value will be small, no matter what threshold we use.
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change their level of activity. To avoid this inefficiency
and accelerate mRNA degradation, we hypothesize that a
TF that shares a large number of targets with a miRNA is
more likely be the target of this miRNA. This is a feed for-
ward mechanism in which a gene target and its TF regula-
tor are simultaneously suppressed by the same miRNA
and the gene is activated by the TF once the miRNA levels
are down regulated (See Fig. 3).

We compared the abundance of feed forward loops in the
group of strongly interacting TF-miRNA pairs (Fisher's
Exact Test q-value < 0.01) to their abundance in the
remaining TF-miRNA pairs. Using logistic regression (to
control for variation in the number of miRNA targets), we
found that the proportion of feed forward loops among
the strongly interacting TF-miRNA pairs is significantly
higher (p~1.86 × 10-9) than among the remaining pairs.

It is plausible that the effect of false predictions of TF and
miRNA targets on the overall conclusions may be reduced
by evaluating the strength of the interaction of each TF-
miRNA pair within a GO functional context. With this in
mind, we examined the abundance of FFLs as a function
of the extent (significance) to which triplets of gene sets
associated with a TF, a miRNA and a GO term overlap
with each other. We evaluated the significance of the over-
lap of each triplet using a constrained sum involving a
product of two hypergeometric distributions. The first dis-
tribution quantifies the significance of the intersection
between the targets of a TF with those of a miRNA, and the
second one quantifies the overlap between this intersec-
tion and a gene set associated with a GO term (see meth-
ods section for details). As shown in Fig. 4, the smaller the

p-value, the higher the fraction of FFLs among all the tri-
plets associated with the corresponding p-value.

We note that our database contains all the predicted FFLs.
FFLs that are not associated with strongly interacting TF-
miRNA pairs could also provide useful information in
exploring the regulation of genes of interest. For example,
hsa-miR-29b and its predicted MYBL2 target are deregu-
lated in breast cancer [33,34]. This miRNA and its target
gene form putative FFLs with BACH2 and SP1. Another
example relevant for breast cancer is the hsa-miR-17-5p/
EREG pair of miRNA and predicted target gene that puta-
tively form FFLs with E2F1, EGR2, FOXJ2 and RUNX1.

Discussion and conclusions
In this work we integrated transcriptional and post-tran-
scriptional putative human gene regulatory networks and
studied the landscape of coordinated gene regulation
within and between these two regulatory layers.

We determined the degree of combinatorial regulation
between pairs of regulators using statistical measures that

Relationship between FFL and TF/miRNA associationFigure 4
Relationship between FFL and TF/miRNA associa-
tion. Fraction of FFLs as a function of the statistical signifi-
cance for TFs and miRNAs association. The histogram 
displays the fraction of FFLs that result in each bin, when 
grouping miRNA/TF/GO triplets according to their log p-
value of joint-association. To generate this histogram, we 
used a slightly restricted set of biological-process GO terms, 
such that each group includes at least one gene that is a pre-
dicted target of a TF and a miRNA. The plot suggests that 
when a miRNA/TF/GO triplet is significantly associated, the 
corresponding miRNA and TF are more likely to form a feed 
forward loop.

Feed Forward Loop (FFL)Figure 3
Feed Forward Loop (FFL). A feed forward loop (FFL) is a 
regulatory motif in which regulator A regulates another regu-
lator denoted by B, and both regulators A and B regulate a 
common target C.

TF- targets
miRNA-targets

TF-miRNA

TF
miRNA

ALL GENES
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quantify the level of association between the sets of targets
of each of these pairs. We first used standard association
measures that employ a hypothesis testing approach to
determine the significance of the interaction between
pairs of regulators.

We then introduced an additional novel Bayesian
approach that allows us to simultaneously assess the sig-
nificance and strength of the interactions between the reg-
ulators. Since significance-based measures are strongly
dependent on sample size (the number of targets of each
regulator), the use of our new measure allows us to iden-
tify a balanced list of top interacting pairs of regulators
that takes into consideration not only sample size but also
effect size.

Our results suggest that genes are more likely to be co-reg-
ulated by pairs of TFs or pairs of miRNAs than by pairs of
TF-miRNA. One possible explanation for this observation
is that evolutionary duplication events of shorter DNA
sequences are more likely. This implies that binding sites
of regulators of a given genome whose distance along the
DNA is short have a higher probability to be duplicated in
a similar configuration in one or more positions in
descendent genomes. Remarkably, we found that the fre-
quency of co-appearance of pairs of 7-mer core sequences,
associated with known miRNAs is higher in the promoter
regions than their co-appearance at large genomic dis-
tance where one member of the pair is positioned in the
3'UTR region and the other in the promoter region (data
not shown). This is not obvious due to the fact that the
prevalence of these sequences in non 3'UTR regions is
low. This result is consistent with our suggestion that
short segments of DNA are more likely to be duplicated
than longer segments.

Regulation by pairs of TFs or miRNAs is more common
than by TF-miRNA pairs. However, many gene sets are still
reciprocally regulated by strongly interacting pairs of TF-
miRNA, which suggests an efficient mechanism to sup-
press functionally related proteins. In addition, the higher
prevalence of feed forward loops (FFL) among strongly
interacting TF-miRNA pairs, in which the miRNA simulta-
neously suppresses the TF and many of its targets may be
attributed to a mechanism designed to prevent waste of
cellular resources by prohibiting two simultaneous con-
tradictory processes: one in which the binding of the TF to
the promoter of the target gene stimulates production of
additional mRNA copies of this gene and the other where
the miRNA degrades these copies.

While there are many experimental results about feedback
loops involving miRNAs [35-40], the role of FFLs involv-
ing miRNAs is much less explored. Previous experiments,
studying the operational mechanics of FFLs focused on

specific biological pathways, such as metabolic pathways
or signal transduction pathways, or involved the interac-
tion of TFs alone (without the input of miRNAs).
Recently, O'Donnell et al. discovered a FFL in which c-
Myc activates E2F1, miR17-5p and miR-20 and the two
miRNAs in turn repress E2F1 [41]. Since E2F1 is also an
activator of c-Myc, the FFL provides a mechanism through
which c-Myc simultaneously activates E2F1 transcription
and limits its translation, allowing a tightly controlled
proliferative signal. Three recent studies suggest that the
architecture of a FFL of this type (where the miRNA is reg-
ulated by a TF and both of these regulators regulate
another TF) maybe associated with buffering of the noise
in the environment of the FFL system [42-44]. The config-
uration of FFL investigated here involves two inhibitory
links emanating from the regulator in the top of the FFL
and one stimulatory link from the other regulator of this
FFL. Mangan and Alon [45] found that out of the eight
possible FFL configurations (where each of the FFL links is
either inhibitory or stimulatory) this configuration is the
second most common FFL in the yeast transcriptional net-
work. One advantage of this kind of FFL is that at steady
state it allows the regulation of its target gene by stimuli
acting on any of its two regulators.

A FFL composed of post-transcriptional miRNA and tran-
scriptional TF regulators possesses an additional property.
Since miRNAs directly repress mRNAs, this FFL system has
a shorter response time to a stimulatory signal compared
to the purely transcriptional FFLs that are discussed in
[45]. It is also worth mentioning that once the system
reaches a steady state, in which the miRNA is at high level
and both the TF and target are at low levels, a transient dis-
turbance in the signal that controls the miRNA level will
only have a small effect on the state of the system. This
'denoising' function of miRNA is getting supports from
experiments [18,46]. Thus, it is plausible that such FFLs
with a miRNA at the origin offer an alternative mecha-
nism to dampen excessive fluctuations in the mRNA level
of a target gene. We infer the denoising property in this
type of FFL architecture based on the distinct expected
response times to increase and decrease mRNA concentra-
tion levels. On one hand a short time is needed to
dampen the mRNA levels of the target gene and the TF fol-
lowing the onset of miRNA. On the other hand once the
miRNA is turned off, the return to a state where the con-
centration of mRNA of the target gene is higher is gradual,
since the TF first has to be transcribed, translated and
transported to the nucleus, whereupon it can bind to the
promoter region of the gene and hence increase its mRNA
level.

Previous studies [47,48] suggested that miRNAs might
fine-tune the expression level of single genes by repressing
their translation. In this study we provide a genome-wide
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picture revealing the scope of combinatorial regulation by
pairs of TF-miRNA whose role may be associated not only
with a fine-tuning mechanism of the transcriptional net-
work, but also with a 'quick-OFF-slow-ON' switching
devise as well as a machinery designed to preserve
resources. Our analyses also allude to additional potential
unknown roles for miRNAs, e.g. regulating multiple cellu-
lar processes such as cell-cell adhesion.

Methods
Construction of the TF binding network

The results presented in this study are based on one choice
of parameters used to derive a predictive binding tran-
scriptional network. To validate the robustness of our gen-
eral observations, we constructed several predictive
transcriptional binding networks by exploring the param-
eter space. Specifically, we used different scanning ranges
of promoter regions (1000 bp or 2000 bp upstream of the
transcription start site (TSS) to 200bp, 1000bp, 2000bp or
position of the second exon downstream of the TSS), and
several TRANSFAC thresholds for determining a protein-
DNA binding site, including the requirement that there is
a sufficient match between the TF PWM in the homolo-
gous gene in mouse. We also used only the promoter
regions that are conserved in both human and mouse. The
results reported here are based on networks constructed
using existing experimental binding data and predicted
bindings that were generated by using sequences 2000 bp
upstream and 2000 bp downstream of RefSeq identified
transcription start sites and cut-offs intended to minimize
false positives, as provided by TRANSFAC.

The human and mouse Refseq IDs were extracted from the
most recently updated human and mouse genome builds
(NCBI Build 36.1 and NCBI Build 36 respectively). To
define direct regulation connectivity between a transcrip-
tion factor (TF) and a gene, we used the default parame-
ters (minimization of false positives) for matching the
position weight matrices (PWM) stored in Transfac® (ver-
sion 9.4) with the promoter regions by using the Transfac®

MATCH algorithm [49]. TF-target gene links found in the
matching step were retained only if the PWM match with
the human promoter region, as well as with the promoter
of the orthologous gene in the mouse genome (found in
the HomoloGene database [50]), were above the default
cutoff.

Predicted targets of miRNAs

Predicted targets of miRNAs were assembled from the Pic-
Tar Database [21]. In this study we used the predicted tar-
gets, which are conserved in human, chimpanzee, mouse,
rat, and dog genomes.

GO annotation

The annotations of Gene Ontology (GO) were down-
loaded from [51]. We mapped the GO terms to NCBI
Gene IDs using the index file from [52].

Enrichment analysis

P-values representing TF-miRNA enrichment were calcu-
lated using Fisher's Exact Test. For a TF-miRNA pair such
that the TF targets m genes (out of a possible N) and the
miRNA targets n genes, the p-value for TF-miRNA associa-
tion is given by

where k is the number of genes targeted by both the TF
and the miRNA.

We implemented a False Discovery Rate correction by
transforming the Fisher's Exact Test p-values into q-values
[31]. We used the Statistics program R and associated
"qvalue" package to perform these calculations.

We propose a new test extending Fisher's Exact Test to a
situation in which we wish to test for a 3-group associa-
tion. Given a set of N genes and three subsets of these
genes of sizes n, m and o, the p-value of a joint association
between all three subsets is calculated as:

where k is the overlap between the three groups.

Bayesian Methodology

Our likelihood model is based upon the multinomial dis-
tribution, which is a common choice in modelling count
data. For each TF-miRNA pair, suppose that we partition
the set of all genes into four subsets according to whether
each gene is a target of the TF or miRNA and count the
number of genes in each subset: N11, N12, N21 and N22

(e.g. N11 is the number of genes targeted by both the TF
and the miRNA and N12 is the number of genes targeted
by the TF but not by the miRNA). We regard each model
parameter pij as the probability that a gene contributes to
the count Nij (which we assume is constant for all genes).
Under the assumption that the genes are independent
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with respect to whether or not they are targets of each reg-
ulator, the likelihood equation is:

for pij ≥ 0 and ∑ij pij = 1. The Dirichlet prior distribution we

are using has the form: f(p11, p12, p21, p22) ∝ p11 
α - 1 p22 

α - 1

[53] and taking the product of the likelihood and prior,

we obtain :

 as our

posterior distribution. As an alternative to Fisher's Exact

Test, we use the statistic:

where c is a positive threshold to be chosen from the data
and I{A} represents the indicator function of a set A. This
can be interpreted as the posterior probability that the log
Odds Ratio (logOR) of association between a TF and a
miRNA exceeds c. Interestingly, if we choose α = 0 within
our prior distribution, the p-value according to Fisher's
Exact Test is equal to P{log OR > 0} [54], implying perfect
agreement between the two methods when c = 0. We
decided to set α = 0.001, which practically gives the same
results as Fisher's Exact Test (again when c = 0), but guar-
antees that our posterior distribution will be proper. The
choice for c is important: choosing a small value of c
would subject our analyses to sample-size effects, yet
choosing a value too large can imply even reasonably
large significant associations are ignored.

Choosing a value of c: Suppose we look at the 5% most

highly ranked miRNA-TF pairs (~2000 pairs). As men-

tioned earlier, if we use p-values from Fisher's Exact Test

to create our ranking, most of the TF-miRNA pairs in our

list show a large number of targets for both the miRNA

and the TF. More explicitly, if we define a(0) = (al,l
(0), al,g

(0),

ag,l
(0), ag,g

(0)) = (0.006, 0.016, 0.255, 0.722) where, for

example, al,g
(0) is the proportion of the top 2000 pairs for

which the number of TF targets is less than 376 and the

number of miRNA targets is greater than 253 (note that

376 and 253 are the median number of targets for the

respective sets of all TFs and all miRNAs), we see that

ranking by Fisher's Exact Test can produce too many pairs

where both the TF and miRNA have a large number of tar-

gets. We can define a similar vector: a(c) = (al,l
(c), al,g

(c),

ag,l
(c), ag,g

(c)) for other thresholds. We also define: a(s) =

(al,l
(s), al,g

(s), ag,l
(s), ag,g

(s)) to be the expected vector of corre-

sponding proportions that would result from a 'ranking

procedure' that is not subject to such a sample-size bias.

Our choice of c minimizes the Euclidean Distance

between a(c) and an estimate of a(s). Our method for esti-

mating a(s) is motivated by the observation that if one uses

the observed log Odds Ratio to rank TF-miRNA associa-

tions, there will be no sample-size bias if the variance of

the estimated log Odds Ratio does not change over the

pairs. More specifically, to estimate a(s), we first fit a Gen-

eralized Additive Model (GAM) [55] to create a 3D surface

displaying predicted logORs as a function of the number

of targets of the TF and number of targets of the miRNA.

Then, for each TF-miRNA pair, we simulate a value of

 by adding a residual to the GAM pre-

dicted logOR for that pair. The residual for each pair is

chosen to be a random draw from the residuals of the

GAM. Having simulated a logOR for each pair, we rank

the pairs according to their simulated logORs, and store

the resulting vector of proportions: 1
(s). Repeating this

simulation n times and recording i
(s) on step i we use

 as an estimate of a(s). Using n = 1000, and

a coarse grid of c values {0, 0.1, 0.2, ..., 1}, the optimal

threshold for c was found to be between 0.6 and 0.7. We

used a value of 0.6 in our analysis.
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