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Abstract

The graphics processing unit (GPU) has evolved from a fixed-
function processor with programmable stages to a programmable
processor with many fixed-function components that deliver mas-
sive parallelism. Consequently, GPUs increasingly take advantage
of the programmable processing power for general-purpose, non-
graphics tasks, i.e., general-purpose computation on graphics pro-
cessing units (GPGPU). However, while the GPU can massively
accelerate data parallel (or task parallel) applications, the lack of
explicit support for inter-block communication on the GPU ham-
pers its broader adoption as a general-purpose computing device.

Inter-block communication on the GPU occurs via global mem-
ory and then requires a barrier synchronization across the blocks,
i.e., inter-block GPU communication via barrier synchronization.
Currently, such synchronization is only available via the CPU,
which in turn, incurs significant overhead. Thus, we seek to propose
more efficient methods for inter-block communication. To system-
atically address this problem, we first present a performance model
for the execution of kernels on GPUs. This performance model
partitions the kernel’s execution time into three phases: (1) kernel
launch to the GPU, (2) computation on the GPU, and (3) inter-block
GPU communication via barrier synchronization. Using three well-
known algorithms — FFT, dynamic programming, and bitonic sort
— we show that the latter phase, i.e., inter-block GPU communica-
tion, can consume more than 50% of the overall execution time.

Therefore, we propose three new approaches to inter-block GPU
communication via barrier synchronization, all of which run only
on the GPU: GPU simple synchronization, GPU tree-based syn-
chronization, and GPU lock-free synchronization. We then evalu-
ate the efficacy of each of these approaches in isolation via a micro-
benchmark as well as integrated with the three aforementioned al-
gorithms. For the micro-benchmark, the experimental results show
that our GPU lock-free synchronization performs 7.8 times faster
than CPU explicit synchronization and 3.7 times faster than CPU
implicit synchronization. When integrated with the FFT, dynamic
programming, and bitonic sort algorithms, our GPU lock-free syn-
chronization improves the performance by 8%, 24%, and 39%, re-
spectively, when compared to the more efficient CPU implicit syn-
chronization.
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1. Introduction

Today, improving the computational capability of a processor
comes from increasing its number of processing cores rather than
increasing its clock speed. This is reflected in both traditional multi-
core processors and many-core graphics processing units (GPUs).

Originally, GPUs were designed for graphics-based applica-
tions. With the elimination of key architecture limitations, GPUs
have evolved to become more widely used for general-purpose
computation, i.e., general-purpose computation on GPU (GPGPU).
Programming models such as NVIDIA’s Compute Unified Device
Architecture (CUDA) [22] and AMD/ATI’s Brook+ [1] enable ap-
plications to be more easily mapped onto the GPU. With these pro-
gramming models, more and more applications have been mapped
to GPUs and accelerated [6, 7, 10, 12, 18, 19, 23, 24, 26, 30].

However, GPUs typically map well only to data or task parallel
applications whose execution requires minimal or even no inter-
block communication [9, 24, 26, 30]. Why? There exists no explicit
support for inter-block communication on the GPU. Currently, such
inter-block communication occurs via global memory and requires
a barrier synchronization to complete the communication, which is
(inefficiently) implemented via the host CPU. Hereafter, we refer to
such CPU-based barrier synchronization as CPU synchronization.

In general, when a program (i.e., kernel) executes on the GPU,
its execution time consists of three phases: (1) kernel launch to the
GPU, (2) computation on the GPU, and (3) inter-block GPU com-

munication via barrier synchronization.1 With different approaches
for synchronization, the percentage of time that each of these three
phases takes will differ. Furthermore, some of the phases may over-
lap in time. To quantify the execution time of each phase, we pro-
pose a general performance model that partitions the kernel exe-
cution time into the three aforementioned phases. Based on our
model and code profiling while using the current state of the art
in barrier synchronization, i.e., CPU implicit synchronization (see
Section 4.2), inter-block communication via barrier synchroniza-
tion can consume as much as 50% of the total kernel execution
time, as shown in Table 1.

Hence, in contrast to previous work that mainly focuses on opti-
mizing the GPU computation, we focus on reducing the inter-block

1 Because inter-block GPU communication time is dominated by the inter-
block synchronization time, we will use inter-block synchronization time

instead of inter-block GPU communication time hereafter.
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Algorithms FFT SWat Bitonic sort

% of time spent on inter-
block communication

19.6% 49.7% 59.6%

Table 1. Percent of Time Spent on Inter-Block Communication

communication time via barrier synchronization. To achieve this,
we propose a set of GPU synchronization strategies, which can
synchronize the execution of different blocks without the involve-
ment of the host CPU, thus avoiding the costly operation of a kernel
launch from the CPU to GPU. To the best of our knowledge, this
work is the first that systematically addresses how to better sup-
port more general-purpose computation by significantly reducing
the inter-block communication time (rather than the computation
time) on a GPU.

We propose two types of GPU synchronization, one with locks
and one without. For the former, we use one or more mutual-
exclusive (mutex) variables and an atomic add operation to imple-
ment GPU simple synchronization and GPU tree-based synchro-
nization. For the latter, which we refer to as GPU lock-free syn-
chronization, we use two arrays, instead of mutex variables, and
eliminate the need for atomic operations. With this approach, each
thread within a single block controls the execution of a different
block, and the inter-block synchronization is achieved by synchro-
nizing the threads within the block with the existing barrier function
syncthreads().

We then introduce these GPU synchronization strategies into
three different algorithms — Fast Fourier Transform (FFT) [16],
dynamic programming (e.g., Smith-Waterman [25]), and bitonic
sort [4] — and evaluate their effectiveness. Specifically, based on
our performance model, we analyze the percentage of time spent
computing versus synchronizing for each of the algorithms.

Overall, the contributions of this paper are three-fold. First, we
propose a set of GPU synchronization strategies for inter-block
synchronization. These strategies do not involve the host CPU, and
in turn, reduce the synchronization time between blocks. Second,
we propose a performance model for kernel execution time and
speedup that characterizes the efficacy of different synchronization
approaches. Third, we integrate our proposed GPU synchroniza-
tion strategies into three widely used algorithms — Fast Fourier
Transform (FFT), dynamic programming, and bitonic sort — and
demonstrate performance improvements of 8%, 24%, and 39%, re-
spectively, over the traditional CPU synchronization approach.

The rest of the paper is organized as follows. Section 2 provides
an overview of the NVIDIA GTX 280 architecture and CUDA
programming model. The related work is described in Section 3.
Section 4 presents our performance model for kernel execution
time. Section 5 describes our GPU synchronization approaches. In
Section 6, we give a brief description of the algorithms that we
use to evaluate our proposed GPU synchronization approaches, and
Section 7 presents and analyzes the experimental results. Section 8
concludes the paper.

2. Overview of CUDA on the NVIDIA GTX 280

The NVIDIA GeForce GTX 280 GPU card consists of 240 stream-
ing processors (SPs), each clocked at 1296 MHz. These 240 SPs are
grouped into 30 streaming multiprocessors (SMs), each of which
contains 8 streaming processors (SPs). The on-chip memory for
each SM contains 16,384 registers and 16 KB of shared mem-
ory, which can only be accessed by threads executing on that SM;
this grouping of threads on a SM is denoted as a block. The off-
chip memory (or device memory) contains 1 GB of GDDR3 global

memory and supports a memory bandwidth of 141.7 gigabytes per
second (GB/s). Global memory can be accessed by all threads and
blocks on the GPU, and thus, is often used to communicate data
across different blocks via a CPU barrier synchronization, as ex-
plained later.

NVIDIA provides the CUDA programming model and soft-
ware environment [22]. It is an extension to the C programming
language. In general, only the compute-intensive and data-parallel
parts of a program are parallelized with CUDA and are imple-
mented as kernels that are compiled to the device instruction set.
A kernel must be launched to the device before it can be executed.

In CUDA, threads within a block, i.e., threads executing within
a SM, can communicate via shared memory or global memory. The
barrier function syncthreads() ensures proper communica-
tion. We refer to this as intra-block communication.

However, there is no explicit support for data communication
across different blocks, i.e., inter-block communication. Currently,
this type of data communication occurs via global memory, fol-
lowed by a barrier synchronization via the CPU. That is, the barrier
is implemented by terminating the current kernel’s execution and
re-launching the kernel, which is an expensive operation.

3. Related Work

Our work is most closely related to two areas of research: (1) algo-
rithmic mapping of data parallel algorithms onto the GPU, specifi-
cally for FFT, dynamic programming, and bitonic sort and (2) syn-
chronization protocols in multi- and many-core environments.

To the best of our knowledge, all known algorithmic mappings
of FFT, dynamic programming, and bitonic sort take the same gen-
eral approach. The algorithm is mapped onto the GPU in as much
of a “data parallel” or “task parallel” fashion as possible in order
to minimize or even eliminate inter-block communication because
such communication requires an expensive barrier synchronization.
For example, running a single (constrained) problem instance per
SM, i.e., 30 separate problem instances on the NVIDIA GTX 280,
obviates the need for inter-block communication altogether.

To accelerate FFT [16], Govindaraju et al. [6] use efficient mem-
ory access to optimize FFT performance. Specifically, when the
number of points in a sequence is small, shared memory is used;
if there are too many points in a sequence to store in shared mem-
ory, then techniques for coalesced global memory access are used.
In addition, Govindaraju et al. propose a hierarchical implementa-
tion to compute a large sequence’s FFT by combining the FFTs of
smaller subsequences that can be calculated on shared memory. In
all of these FFT implementations, the necessary barrier synchro-
nization is done by the CPU via kernel launches. Volkov et al. [30]
try to accelerate the FFT by designing a hierarchical communi-
cation scheme that minimizes inter-block communication. Finally,
Nukada et al. [20] accelerate the 3-D FFT through shared memory
usage and optimizing the number of threads and registers via appro-
priate localization. Note that all of the aforementioned approaches
focus on optimizing the GPU computation by minimizing or elimi-
nating the inter-block communication rather than by optimizing the
performance of inter-block communication.

Past research on mapping dynamic programming, e.g., the
Smith-Waterman (SWat) algorithm, onto the GPU used graphics
primitives [15, 14] in a task parallel fashion. More recent work uses
CUDA, but again, largely in a task parallel manner [18, 19, 26],
e.g., running a single (constrained) problem instance per SM in
order to eliminate the need for inter-block communication — with
the tradeoff, of course, being that the size of the problem is limited
by the size of shared memory, i.e., 16 KB. That is, because multi-
ple problem instances share the GPU resources, the problem size is
severely restricted.
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For bitonic sort, Greβ et al. [7] improve the algorithmic com-
plexity of GPU-ABisort to O (n log n) with an adaptive data struc-
ture that enables merges to be done in linear time. Another parallel
implementation of the bitonic sort is in the CUDA SDK [21], but
there is only one block in the kernel to use the available barrier
function syncthreads(), thus restricting the maximum num-
ber of items that can be sorted to 512 — the maximum number of
threads in a block. If our proposed inter-block GPU synchroniza-
tion is used, multiple blocks can be set in the kernel, which in turn,
will significantly increase the maximum number of items that can
be sorted.

Many types of software barriers have been designed for shared-
memory environments [17, 8, 11, 2, 3], but none of them can be
directly applied to GPU environments. This is because multiple
CUDA thread blocks can be scheduled to be executed on a single
SM and the CUDA blocks do not yield to the execution. That is, the
blocks run to completion once spawned by the CUDA thread sched-
uler. This may result in deadlocks, and thus, cannot be resolved
in the same way as in traditional CPU processing environments,
where one can yield the waiting process to execute other processes.
One way of addressing this is our GPU lock-based barrier synchro-
nizations, i.e., GPU simple synchronization and GPU tree-based
synchronization. These approaches leverage a traditional shared
mutex barrier and avoid deadlock by ensuring a one-to-one map-
ping between the SMs and the thread blocks.

Cederman et al. [5] implement a dynamic load-balancing
method on the GPU that is based on the lock-free synchronization
method found on traditional multi-core processors. However, this
scheme controls task assignment instead of addressing inter-block
communication. In addition, we note that lock-free synchronization
generally performs worse than lock-based methods on traditional
multi-core processors, but its performance is better than that of the
lock-based methods on the GPU in our work.

The work of Stuart et al. [27] focuses on data communication
between multiple GPUs, i.e., inter-GPU communication. Though
their approach can be used for inter-block communication across
different SMs on the same GPU, the performance is projected to be
quite poor because data needs to be moved to the CPU host memory
first and then transferred back to the device memory, which is
unnecessary for data communication on a single GPU card.

The most closely related work to ours is that of Volkov et
al. [29]. Volkov et al. propose a global software synchronization
method that does not use atomic operations to accelerate dense
linear-algebra constructs. However, as [29] notes, their synchro-
nization method has not been implemented into any real applica-
tion to test the performance improvement. Furthermore, their pro-
posed synchronization cannot guarantee that previous accesses to
all levels of the memory hierarchy have completed. In contrast, our
proposed GPU synchronization approaches guarantee the comple-
tion of memory accesses with the existing memory access model
in CUDA. In addition, we integrate each of our GPU synchroniza-
tion approaches in a micro-benchmark and three well-known algo-
rithms: FFT, dynamic programming, and bitonic sort.

4. A Model for Kernel Execution Time and

Speedup

In general, the kernel’s execution time on GPUs consists of three
components — kernel launch time, computation time, and synchro-
nization time, which can be represented as

T =

M
∑

i=1

(

t
(i)
O + t

(i)
C + t

(i)
S

)

(1)

Figure 1. Total Kernel Execution Time Composition

where M is the number of kernel launches, t
(i)
O is the kernel

launch time, t
(i)
C is the computation time on a GPU, and t

(i)
S is the

synchronization time for the ith kernel launch as shown in Figure 1.
Each of the three time components is impacted by a few factors.
For instance, the kernel launch time depends on the data transfer
rate from the host to the device as well as the size of kernel code
and parameters. For the computation time, it is affected by memory
access methods, the thread organization (number of threads per
block and number of blocks per grid) in the kernel, etc.

From Equation (1), an algorithm can be accelerated by decreas-
ing any of the three time components. Since the kernel launch time
is much smaller compared to the other two (as described in Sec-
tions 4.2 and 4.3), we ignore the kernel launch time in the follow-
ing discussion. If the synchronization time is reduced, according
to the Amdahl’s Law, the maximum kernel execution speedup is
constrained by

ST =
T

tC + (T − tC) /SS

=
1

(

tC

T

)

+
(

1 − tC

T

)

/SS

=
1

ρ + (1 − ρ) /SS

(2)

where ST is the kernel execution speedup gained with reducing the

synchronization time, ρ = tC

T
is the percentage of the computation

time tC in the total kernel execution time T , tS is the synchro-
nization time of the CPU implicit synchronization, which is our
baseline as mentioned later. SS is the synchronization speedup. In
Equation (2), the smaller the ρ is, the more speedup can be gained
with the same SS . In practice, different algorithms have different
ρ. For example, for the three algorithms used in this paper, FFT
has a ρ value larger than 0.8, while Swat and bitonic sort both have
a ρ value about 0.5. Since most of the previous works were focus-
ing on optimizing the computation, i.e., decreasing the computation
time tC . The more optimization is performed on an algorithm, the
smaller ρ will become. At this time, if we decrease the synchro-
nization time, large kernel execution speedup can be obtained.

In this paper, we will focus on decreasing the synchroniza-
tion time. This is due to three facts: 1) There have been a lot of
works [19, 25, 15, 6, 10] to decrease the computation time. Tech-
niques such as shared memory usage, divergent branch removing
have been widely used. 2) No work has been done to decrease the
synchronization time for less-data-dependent algorithms to be ex-
ecuted on a GPU; 3) In some algorithms, the synchronization time
consumes a large part of the kernel execution time (e.g., SWat and
bitonic sort in Figure 15), which results in a small ρ.

Currently, the available synchronization approach is the CPU
synchronization approach, in which, depending on whether the
function cudaThreadSynchronize() is called, there are two
methods — CPU explicit synchronization and CPU implicit syn-
chronization. In addition, our proposed GPU synchronization in-
cludes GPU simple synchronization, GPU tree-based synchroniza-
tion, and GPU lock-free synchronization. In the following subsec-
tions, we present the kernel execution time model of the CPU ex-
plicit/implicit synchronization and the GPU synchronization. In the
next section, the proposed GPU synchronization approaches will be

3 2009/9/19



(a) CPU explicit synchronization

(b) CPU implicit synchronization

Figure 2. CPU Explicit/Implicit Synchronization Function Call

described in detail and their time consumption is modeled and an-
alyzed quantitatively.

4.1 CPU Explicit Synchronization

Figure 2(a) shows the pseudo-code of the CPU explicit synchro-
nization, in which kernel func() is the kernel function, and
the implicit barrier is implemented by terminating the current ker-
nel execution and launching the kernel again, then a barrier exists
between the two kernel launches. In addition, in the CPU explicit
synchronization, the function cudaThreadSynchronize() is
used. According to the CUDA programming guide [22], “it will
block until the device has completed all preceding requested task”,
and then a new kernel can be launched. So, in the CPU explicit syn-
chronization, the three operations of a kernel’s execution are exe-
cuted sequentially across different kernel launches, and the time
needed for multiple times of kernel execution is the same as that in
Equation (1), i.e.

T =

M
∑

i=1

(

t
(i)
O + t

(i)
C + t

(i)
CES

)

(3)

where, M is the number of kernel launches, t
(i)
O is the kernel launch

time, t
(i)
C is the computation time, and t

(i)
CES is the synchroniza-

tion time (the kernel returning time is included.) for the ith kernel
launch, respectively. Since the function cudaThreadSynchronize()
across multiple kernel launches is useless and causes overhead to
the kernel’s execution, in practice, the CPU explicit synchroniza-
tion is not usually used.

4.2 CPU Implicit Synchronization

Compared to the CPU explicit synchronization, the function
cudaThreadSynchronize() is not called in the CPU im-
plicit synchronization as shown in Figure 2(b). As we know, ker-
nel launch is an asynchronous operation, i.e., the kernel func-
tion kernel func() will return before its computation fin-
ishes, and if there are multiple kernel launches, subsequent kernel
launches will be performed without waiting for the completion of
their previous kernel’s computation. So, in the CPU implicit syn-
chronization, except for the first kernel launch, the following kernel
launches are pipelined with the computation of their previous ker-
nel launches. In the CPU implicit synchronization, the time com-
position of multiple times of kernel execution is shown in Figure 3
and the total kernel execution time can be represented as

T = t
(1)
O +

M
∑

i=1

(

t
(i)
C + t

(i)
CIS

)

(4)

where, M is the number of kernel launch times, t
(1)
O is the kernel

launch time for the first kernel launch, t
(i)
C and t

(i)
CIS are the com-

putation time and synchronization time for the ith kernel launch,

Figure 3. Kernel Execution Time Composition of CPU Implicit
Synchronization

Figure 4. GPU Synchronization Function Call

Figure 5. Kernel Execution Time Composition of GPU Synchro-
nization

respectively. Since kernel launch time is pipelined for all kernel
launches except the first one, less time is needed to execute the
same kernel for the same number of times compared to the CPU
explicit synchronization.

4.3 GPU Synchronization

In the GPU synchronization, synchronization across different
blocks is implemented by calling a synchronization function
gpu sync() (described in detail in Section 5) without termi-

nating the kernel’s execution and re-launching the kernel. Pseudo-
code of the GPU synchronization is shown in Figure 4. Here, the
function device func() implements the same functionality
as the kernel function kernel func() in Figure 2, but it is a
device function instead of a global one, so it is called on the de-
vice rather than on the host. The function gpu sync() is the
explicit barrier for the inter-block communication. With the GPU
barrier function gpu sync(), the kernel kernel func1()

will be launched only once. As a result, it avoids executing the
costly operation — kernel launch multiple times, and it is possible
to save time for the kernel’s execution compared to the CPU syn-
chronization strategy. The time composition of the kernel execution
is shown in Figure 5 and represented as

T = tO +

M
∑

i=1

(

t
(i)
C + t

(i)
GS

)

(5)

where, M is the number of barriers needed for the kernel’s execu-

tion, tO is the kernel launch time, t
(i)
C and t

(i)
GS are the computation

time and synchronization time for the ith loop, respectively.
Compared to the CPU implicit synchronization, if the time

needed to execute the barrier function gpu sync() is less than
the synchronization time of the CPU implicit synchronization, less
time is needed to execute device func() for the same number
of times compared to that with the CPU implicit synchronization
approach.
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5. Proposed GPU Synchronization

Since in CUDA programming model, the execution of a thread
block is non-preemptive, care must be taken to avoid dead locks in
GPU synchronization design. Consider a scenario where multiple
thread blocks are mapped to one SM and the active block is waiting
for the completion of a global barrier. A deadlock will occur in
this case because the unscheduled thread blocks will not be able to
reach the barrier without preemption. Our solution to this problem
is to have an one-to-one mapping between thread blocks and SMs.
In other words, for a GPU with ‘Y’ SMs, we ensure that at most ‘Y’
blocks are used in the kernel. In addition, we allocate all available
shared memory on a SM to each block so that no two blocks can be
scheduled to the same SM because of the memory constraint.

In the following discussion, we will present three alternative
GPU synchronization designs: GPU simple synchronization, GPU
tree-based synchronization, GPU lock-free synchronization. The
first two are lock-based designs that make use of mutex variables
and CUDA atomic operations. The third design uses a lock-free al-
gorithm that avoids the use of expensive CUDA atomic operations.

5.1 GPU Simple Synchronization

The basic idea of GPU simple synchronization is to use a global
mutex variable to count the number of thread blocks that reach
the synchronization point. As shown in Figure 62, in the barrier
function gpu sync(), after a block completes its computation,
one of its threads (we call it the leading thread) will atomically
add 1 to g mutex. The leading thread will then repeatedly com-
pare g mutex to a target value goalVal. If g mutex is equal
to goalVal, the synchronization is completed and each thread
block can proceed with its next stage of computation. In our design,
goalVal is set to the number of blocks N in the kernel when the
barrier function is first called. The value of goalVal is then incre-
mented by N each time when the barrier function is successively
called. This design is more efficient than keeping goalVal con-
stant and resetting g mutex after each barrier because the former
saves the number of instructions and avoids conditional branching.

1 //the mutex variable

2 __device__ int g_mutex;

3

4 //GPU simple synchronization function

5 __device__ void __gpu_sync(int goalVal)

6 {

7 //thread ID in a block

8 int tid_in_block = threadIdx.x * blockDim.y

9 + threadIdx.y;

10

11 // only thread 0 is used for synchronization

12 if (tid_in_block == 0) {

13 atomicAdd(&g_mutex, 1);

14

15 //only when all blocks add 1 to g_mutex will

16 //g_mutex equal to goalVal

17 while(g_mutex != goalVal) {

18 ......

19 }

20 }

21 __syncthreads();

22 }

Figure 6. Code snapshot of the GPU Simple Synchronization
(Some code details have been omitted to enhance readability.)

In the GPU simple synchronization, the execution time of the
barrier function gpu sync() consists of two parts — atomic

2 Because volatile variables are not supported in atomic functions in CUDA,
an atomicCAS() function should be called within the while loop to
prevent the while loop from being compiled away.

Figure 7. Time Composition of GPU Simple Synchronization

addition and checking of g mutex. The atomic addition can only
be executed sequentially by different blocks, but the g mutex

checking can be executed in parallel. Assume there are N blocks
in the kernel, the time of each atomic addition is ta, and the
time of the g mutex checking is tc. If all blocks finish their
computation at the same time as shown in Figure 7, the time to
execute gpu sync() is

tGSS = N · ta + tc (6)

where N is the number of blocks in the kernel. From Equation (6),
the cost of GPU simple synchronization increases linearly relative
to N .

5.2 GPU Tree-Based Synchronization

One way to improve the performance of GPU simple synchro-
nization is to increase the concurrency of updating the global mu-
tex variable. For this purpose, we propose GPU tree-based syn-
chronization approach. Figure 8 shows a 2-level tree-based GPU
synchronization method. In this figure, thread blocks are divided
into m groups with block number ni for group i, (i = 1, · · · , m).
For each group, a separate mutex variable g mutex i is assigned
to synchronize its blocks with the GPU simple synchronization
method. After blocks within a group are synchronized, another mu-
tex variable g mutex is used to synchronize all the blocks in the
m groups.

Similar to the model we used for GPU simple synchronization,
the time to execute the gpu sync() function can be represented
as

tGTS = (n̂ · ta + tc1) + (m · ta + tc2) (7)

where n̂ = maxm
i=1 (ni) and m are the number of atomic add

operations that are executed sequentially in the first and second
levels, if all blocks finish their computation simultaneously. tc1

and tc2 are the time to check the mutex variables in the first and
second levels, respectively. To obtain the least time to execute the
synchronization function gpu sync(), the number of groups m
is calculated as

m =
⌈√

N
⌉

(8)

With the group number m, if m2 equals N , then there are m
blocks in each group, i.e., ni = m, (i = 1, · · · , m); Otherwise, for
the first m − 1 groups, ni = ⌊N/ (m − 1)⌋, (i = 1, · · · , m − 1),
and for the last group m, nm = N −⌊N/ (m − 1)⌋ · (m − 1). For
the GPU 3-level tree-based synchronization, the number of groups
and the number of blocks in each group can be calculated in a
similar way.

When the number of blocks is small, the GPU 2-level tree-based
method may incur more overhead than the GPU simple synchro-
nization approach. However, as the number of blocks gets larger,
the advantage of the tree-based approach is obvious. For example,
if we only consider the time for atomic addition, when N > 4, the
GPU 2-level tree-based approach will outperform the GPU simple
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Figure 8. GPU Tree-based Synchronization

synchronization approach, assuming all blocks finish their compu-
tation at the same time. In practice, because there are more check-
ing operations in the GPU 2-level tree-based synchronization ap-
proach than the GPU simple one, the threshold value will be larger
than 4. The same case is for the comparison of the GPU 2-level and
3-level tree-based synchronization approaches.

5.3 GPU Lock-Free Synchronization

While scaling better than GPU simple synchronization, GPU tree-
based synchronization still relies on costly CUDA atomic opera-
tions. In this section, we propose a lock-free synchronization algo-
rithm that avoids the use of atomic operations completely. The ba-
sic idea of this approach is to assign a synchronization variable to
each thread block, so that each block can record its synchronization
status independently without competing for a single global mutex.

As shown in Figure 93, our lock-free synchronization algorithm
uses two arrays Arrayin and Arrayout to coordinate the syn-
chronization requests from various blocks. In these two arrays, each
element is mapped to a thread block in the kernel, i.e., element i is
mapped to thread block i. The algorithm is outlined into three steps
as follows:

1. When block i is ready for communication, its leading thread
(thread 0) sets element i in Arrayin to the goal value
goalVal. The leading thread in block i then busy-waits on
element i of Arrayout to be set to goalVal.

2. The first N threads in block 1 repeatedly check if all elements
in Arrayin are equal to goalVal, with thread i checking

the ith element in Arrayin. After all elements in Arrayin
are set to goalVal, each checking thread then sets the corre-
sponding element in Arrayout to goalVal. Note that the
intra-block barrier function syncthreads() is called by
each checking thread before updating elements of Arrayout.

3. The leading thread in each block continues its execution once
it sees the corresponding element in Arrayout is set to
goalVal.

It worths noting that in the step 2 above, rather than having
one thread to check all elements of Arrayin in serial, we use N
threads to check the elements in parallel. This design choice turns
out to save considerable synchronization overhead according to our
performance profiling. Note also that goalVal is incremented
each time when the function gpu sync() is called, similar to
the implementation of GPU simple synchronization.

From Figure 9, there is no atomic ‘add’ operation in the GPU
lock-free synchronization. All the operations can be executed in
parallel. Synchronization of different thread blocks is controlled by
threads in a single block, which can be synchronized efficiently by
calling the barrier function syncthreads(). From Figure 10,

3 Similarly, because volatile variables are not supported in atomic functions
in CUDA, an atomicCAS() function should be called within the while
loop to prevent the while loop from being compiled away.

1 //GPU lock-free synchronization function

2 __device__ void __gpu_sync(int goalVal,

3 int *Arrayin, int *Arrayout)

4 {

5 // thread ID in a block

6 int tid_in_block = threadIdx.x * blockDim.y

7 + threadIdx.y;

8 int nBlockNum = gridDim.x * gridDim.y;

9 int bid = blockIdx.x * gridDim.y + blockIdx.y;

10

11 // only thread 0 is used for synchronization

12 if (tid_in_block == 0) {

13 Arrayin[bid] = goalVal;

14 }

15

16 if (bid == 1) {

17 if (tid_in_block < nBlockNum) {

18 while (Arrayin[tid_in_block] != goalVal) {

19 ......

20 }

21 }

22 __syncthreads();

23

24 if (tid_in_block < nBlockNum) {

25 Arrayout[tid_in_block] = goalVal;

26 }

27 }

28

29 if (tid_in_block == 0) {

30 while (Arrayout[bid] != goalVal) {

31 ......

32 }

33 }

34 __syncthreads();

35 }

Figure 9. Code snapshot of the GPU Lock-free Synchronization
(Some code details have been omitted to enhance readability.)

Figure 10. Time Composition of GPU Lock-free Synchronization

the execution time of gpu sync() is composed of five parts and
calculated as

tGLS = tSI + tCI + tSync + tSO + tCO (9)

where, tSI is the time for setting an element in Arrayin, tCI

is the time to check an element in Arrayin, tSync is the intra-
block synchronization time, and tSO and tCO are the time for
setting and checking an element in Arrayout, respectively. From
Equation (9), execution time of gpu sync() is unrelated to the
number of blocks in a kernel.
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5.4 Synchronization Time Verification via a
Micro-benchmark

To verify the execution time of the synchronization function
gpu sync() for each synchronization method, a micro-benchmark

to compute the mean of two floats for 10000 times is used. In
other words, in the CPU synchronization, each kernel calculates
the mean once and the kernel is launched 10000 times; in the GPU
synchronization, there is a 10000-round for loop used, and the
GPU barrier function is called in each loop. With each synchro-
nization method, their execution time is shown in Figure 11. In the
micro-benchmark, each thread will compute one element, the more
blocks and threads are set, the more elements are computed, i.e.,
computation is performed in a weak-scale way. So the computa-
tion time should be approximately constant. Here, each result is the
average of three runs.

From Figure 11, we have the following observations: 1) The
CPU explicit synchronization takes much more time than the
CPU implicit synchronization. This is due to, in the CPU implicit
synchronization, kernel launch time is overlapped for all kernel
launches except the first one; but in the CPU explicit synchroniza-
tion, kernel launch time is not overlapped. 2) Even for the CPU
implicit synchronization, a lot of synchronization time is needed.
From Figure 11, the computation time is only about 5ms, while the
time needed by the CPU implicit synchronization is about 60ms,
which is 12 times the computation time. 3) For the GPU simple
synchronization, the synchronization time is linear to the number
of blocks in a kernel, and more synchronization time is needed
for kernels with a larger number of blocks, which matches very
well to Equation (6) in Section 5.1. Compared to the CPU im-
plicit synchronization, when the block number is less than 24, its
synchronization time is less; otherwise, its synchronization time
is more. The reason is that, as we analyzed in Section 5.1, more
blocks means more atomic add operations are needed for the syn-
chronization. 4) Compare the GPU simple synchronization to the
GPU tree-based synchronization, if the block number is less than
11, the 2-level tree-based synchronization needs more time than the
GPU simple synchronization; otherwise, its synchronization time
is less than the GPU simple synchronization. Time consumption
relationship of the 2-level and 3-level tree-based synchronization
approaches is similar except the block number threshold is 29. 5)
For the GPU lock-free synchronization, since there are no atomic
‘add’ operations used, all the operations can be executed in parallel,
which makes it unrelated to the number of blocks in a kernel, i.e.,
the synchronization time is almost a constant value. Furthermore,
its synchronization time is much less (for more than 3 blocks set in
the kernel) than that of all other synchronization methods.

From the micro-benchmark results, the CPU explicit synchro-
nization needs the most synchronization time, and in practice, there
is no need to use this method. So in the following sections, we will
not use it any more, i.e., only the CPU implicit and GPU synchro-
nization approaches are compared and analyzed.

6. Algorithms Used for Performance Evaluation

Inter-block synchronization can be used in many algorithms. In this
section, we choose three of them that can benefit from our pro-
posed GPU synchronization methods. The three algorithms are Fast
Fourier Transformation [16], Smith-Waterman [25], and bitonic
sort [4]. In the following, a brief description is given for each of
them.

6.1 Fast Fourier Transformation

A Discrete Fourier Transformation (DFT) transforms a sequence
of values into its frequency components or, inversely, converts the
frequency components back to the original data sequence. For a

Figure 11. Execution Time of the Micro-benchmark.

data sequence x0, x1, · · · , xN−1, the DFT is computed as Xk =
∑N−1

i=0
xie

−j2πk i

n , k = 0, 1, 2, · · · , N − 1, and the inverse DFT

is computed as xi = 1
N

∑N−1

k=0
Xkej2πi k

n , i = 0, 1, 2, · · · , N−1.
DFT is used in many fields, but direct DFT computation is too
slow to be used in practice. Fast Fourier Transformation (FFT)
is a fast way of DFT computation. Generally, computing DFT

directly by the definition takes O
(

N2
)

arithmetical operations,

while FFT takes only O (N log (N)) arithmetical operations. The
computation difference can be substantial for long data sequence,
especially when the sequence has thousands or millions of points.
A detailed description of the FFT algorithm can be found in [16].

For an N -point input sequence, FFT is computed in log (N)
iterations. Within each iteration, computation of different points is
independent, which can be done in parallel, because they depend
on points only from its previous iteration. On the other hand,
computation of an iteration cannot start until that of its previous
iteration completes, which makes a barrier necessary across the
computation of different iterations [6]. The barrier used here can
be multiple kernel launches (CPU synchronization) or the GPU
synchronization approaches proposed in this paper.

6.2 Dynamic Programming: Smith-Waterman Algorithm

Smith-Waterman (SWat) is a well-known algorithm for local se-
quence alignment. It finds the maximum alignment score between
two nucleotide or protein sequences based on the Dynamic Pro-
gramming paradigm [28], in which the segments of all possible
lengths are compared to optimize the alignment score. In this pro-
cess, first, intermediate alignment scores are stored in a matrix M
before the matrix is inspected, and then, the local alignment corre-
sponding to the highest alignment score is generated. As a result,
the SWat algorithm can be broadly classified into two phases: (1)
matrix filling and (2) trace back.

In the matrix filling process, a scoring matrix and a gap-penalty
scheme are used to control the alignment score calculation. The
scoring matrix is a 2-dimensional matrix storing the alignment
score of individual amino acid or nucleotide residues. The gap-
penalty scheme provides an option for gaps to be introduced in the
alignment to obtain a better alignment result and it will cause some
penalty to the alignment score. In our implementation of SWat, the
affine gap penalty is used in the alignment, which consists of two
penalties — the open-gap penalty, o, for starting a new gap and the
extension-gap penalty, e, for extending an existing gap. Generally,
an open-gap penalty is larger than an extension-gap penalty in the
affine gap.

With the above scoring scheme, the alignment matrix M is filled
in a wavefront pattern, i.e. the matrix filling starts from the north-
west corner element and goes toward the southeast corner element.
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Figure 12. Wavefront Pattern and Dependency in the Matrix Fill-
ing Process.

Only after the previous anti-diagonals are computed can the current
one be calculated as shown in Figure 12. The calculation of each
element depends on its northwest, west, and north neighbors. As a
result, elements in the same anti-diagonal are independent of each
other and can be calculated in parallel; while barriers are needed
across the computation of different anti-diagonals. For the trace
back, it is essentially a sequential process that generates the local
alignment with the highest score. In this paper, we only consider
accelerating the matrix filling because it occupies more than 99%
of the execution time and it is the object to be parallelized.

6.3 Bitonic Sort

Bitonic sort is one of the fastest sorting networks [13], which is
a special type of sorting algorithm devised by Ken Batcher [4].
For N numbers to be sorted, the resulting network consists of

O
(

n log2 (n)
)

comparators and has a delay of O
(

log2 (n)
)

.

The main idea behind bitonic sort is using a divide-and-conquer
strategy. In the divide step, the input sequence is divided into
two subsequences and each sequence is sorted with bitonic sort
itself, where one is in the ascending order and the other is in
the descending order. In the conquer step, with the two sorted
subsequences as the input, the bitonic merge is used to combine
them to get the whole sorted sequence [13]. The main property of
bitonic sort is, no matter what the input data are, a given network
configuration will sort the input data in a fixed number of iterations.
In each iteration, the numbers to be sorted are divided into pairs
and a compare-and-swap operation is applied on it, which can be
executed in parallel for different pairs. More detailed information
about bitonic sort is in [4]. In bitonic sort, the independence within
an iteration makes it suitable to be executed in parallel and the
data dependency across adjacent iterations makes it necessary for a
barrier to be used.

7. Experiment Results and Analysis

7.1 Overview

To evaluate the performance of our proposed GPU synchroniza-
tion approaches, we implement them in the three algorithms de-
scribed in Section 6. For the two CPU synchronization approaches,
we only implement the CPU implicit synchronization because its
performance is much better than the CPU explicit synchronization.
With implementations using each of the synchronization approach
for each algorithm, their performance is evaluated in three aspects:
1) Kernel execution time decrease caused by our proposed GPU
synchronization approaches and its variation against the number
of blocks in the kernel; 2) According to the kernel execution time
model in Section 4, we calculate the synchronization time of each
synchronization approach. Similarly, the synchronization time vari-
ation against the number of blocks in the kernel is presented; 3)
Corresponding to the best performance of each algorithm with each
synchronization approach, the percentages of the computation time
and the synchronization time are demonstrated and analyzed.

Our experiments are performed on a GeForce GTX 280 GPU
card, which has 30 SMs and 240 processing cores with the clock
speed 1296MHz. The on-chip memory on each SM contains 16K
registers and 16KB shared memory, and there are 1GB GDDR3
global memory with the bandwidth of 141.7GB/Second on the
GPU card. For the host machine, The processor is an Intel Core
2 Duo CPU with 2MB of L2 cache and its clock speed is 2.2GHz.
There are two 2GB of DDR2 SDRAM equipped on the machine.
The operation system on the host machine is the 64-bit Ubuntu
GNU/Linux distribution. The NVIDIA CUDA 2.2 SDK toolkit is
used for all the program execution. Similar as that in the micro-
benchmark, each result is the average of three runs.

7.2 Kernel Execution Time

Figure 13 shows the kernel execution time decrease with our pro-
posed synchronization approaches and its variation versus the num-
ber of blocks in the kernel. Here, we display the kernel execution
time with the block number from 9 to 30. This is due to two rea-
sons: One is, if the number of blocks is less than 9, the performance
is much worse than that with block number larger than 9; On the
other hand, if a GPU synchronization approach is used, the maxi-
mum number of blocks in a kernel is 30. In addition, for the CPU
implicit synchronization, we run the programs with block number
from 31 to 120 with step of one block, but find that performance
with 30 blocks in the kernel is better than all of them, so we do
not show the performance with block number larger than 30 for the
CPU implicit synchronization. The number of threads per block is
448, 256, and 512 for FFT, SWat, and bitonic sort, respectively.
Figure 13(a) shows the performance variation of FFT, Figure 13(b)
displays the results of SWat, and Figure 13(c) is for bitonic sort.

From Figure 13, we can see that, first, with the increase of the
number of blocks in the kernel, kernel execution time will decrease.
The reason is, with more blocks (from 9 to 30) in the kernel, more
resources can be used for the computation, which can accelerate
the computation; Second, with the proposed GPU synchronization
approaches used, performance improvements are observed in all
the three algorithms. For example, compared to the CPU implicit
synchronization, with the GPU lock-free synchronization and 30
blocks in the kernel, kernel execution time of FFT decreases from
1.18ms to 1.076ms, which is an 8.81% decrease. For SWat and
bitonic sort, this value is 24.1% and 39.0%, respectively. Third, ker-
nel execution time difference between the CPU implicit synchro-
nization and the proposed GPU synchronization of FFT is much
less than that of SWat and bitonic sort. This is due to, in FFT, the
computation load between two barriers is much more than that of
SWat and bitonic sort. So the impact on the total kernel execution
time caused by the synchronization time decrease in FFT is not as
much as that in SWat and bitonic sort.

In addition, among the implementations with the proposed GPU
synchronization approach, 1) With more blocks set in the kernel,
kernel execution time decrease rate of the GPU simple synchro-
nization is not as fast as the other three (GPU 2-level tree-based,
3-level tree-based, and lock-free synchronization approaches). In
FFT, when the block number is less than 24, kernel execution time
with the GPU simple synchronization is less than that of the 2-
level tree-based synchronization; Otherwise, performance with the
2-level tree-based synchronization is better. Similarly, the threshold
values of SWat and bitonic sort are both 20; 2) If we consider the
GPU 2-level and 3-level tree-based synchronization approaches,
performance with the former is always better than that with the
latter. This is because, as we discussed in Section 5.2, if the num-
ber of blocks in the kernel is small, the mutex variable checking in
all 3 levels will make it need more time than the GPU 2-level tree-
based approach; 3) In the three algorithms, performance with the
GPU lock-free approach is always the best. The more blocks are set
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(a) FFT

(b) SWat

(c) Bitonic sort

Figure 13. Kernel Execution Time versus Number of Blocks in the
Kernel

in the kernel, the more performance improvement can be obtained
compared to the other three GPU synchronization approaches. The
reason is the time needed for the GPU lock-free synchronization
is almost a constant value and no additional time is needed for the
synchronization when there are more blocks set in the kernel.

7.3 Synchronization Time

In this section, we show the synchronization time variation versus
the number of blocks in the kernel. Here, the synchronization time
is the difference between the total kernel execution time and the
computation time, which is obtained by running an implementation
of each algorithm with the GPU synchronization approach, but with
the synchronization function gpu sync() removed. For the im-
plementation with the CPU implementation method, we assume its
computation time is the same as others because the memory access
and the computation is the same as that of the GPU implemen-
tations. With the above method, the time of each synchronization
method in the three algorithms are shown in Figure 14. Similar as
Figure 13, we show the number of blocks in the kernel from 9 to
30. Figure 14(a), 14(b), and 14(c) are for FFT, SWat, and bitonic
sort, respectively.

(a) FFT

(b) SWat

(c) Bitonic sort

Figure 14. Synchronization Time versus Number of Blocks in the
Kernel

From Figure 14, in SWat and bitonic sort, synchronization time
matches the time consumption models in Section 5. First, the CPU
implicit synchronization approach needs the most time while the
GPU lock-free synchronization takes the least time. Second, the
CPU implicit and the GPU lock-free synchronization has good
scalability, i.e., the synchronization time changes very little with
the change of the number of blocks in the kernel; Third, for the
GPU simple and 2-level tree-based synchronization approaches,
the synchronization time increases with the increase of the number
of blocks in the kernel; and the time increase of the GPU simple
synchronization is faster than that of the GPU 2-level tree-based
synchronization; Fourth, the GPU 3-level tree-based synchroniza-
tion method needs the most time among the proposed GPU syn-
chronization methods. For FFT, though the synchronization time
variation is not regular versus the number of blocks in the kernel,
their difference across different synchronization approaches is the
same as the other two algorithms. The reason for the irregularity is
caused by the property of the FFT computation, which needs more
investigation in the future.
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Figure 15. Percentages of Computation Time and Synchronization
Time

7.4 Percentages of the Computation Time and the
Synchronization Time

Figure 15 shows the performance breakdown in percentage of three
algorithms when different synchronization approaches are used. As
we can see, percentage of the synchronization time in FFT is much
less than that in SWat and bitonic sort. As a result, synchronization
time changes have a less impact on the total kernel execution time
compared to SWat and bitonic sort. This is compatible with what
are shown in Figure 13, in which, for FFT, kernel execution time
is very close with different synchronization approaches used; while
the kernel execution time changes a lot in SWat and bitonic sort;
In addition, with the CPU implicit synchronization approach used,
synchronization time percentage is about 50% percent in SWat
and bitonic sort. This indicates that inter-block communication
time occupies a large part of the total execution time in some
algorithms. As a result, decreasing the synchronization time can
improve the performance greatly in some algorithms; Finally, with
the GPU lock-free synchronization approach, percentage of the
synchronization time decreases from about 50% to about 30% in
SWat and bitonic sort, but that of FFT is much less, from about
20% to about 10%. The reason is similar, i.e., synchronization
time decrease does not impact the total kernel execution time much
because its percentage in the total kernel execution time is small.

8. Conclusion

In the current GPU architecture, data communication on GPUs re-
quires a barrier synchronization to guarantee the correctness of data
exchange. Till now, most previous GPU performance optimization
studies focus on optimizing the computation, and very few tech-
niques were proposed to reduce data communication time, which is
dominated by barrier synchronization time. To systematically solve
this problem, we first propose a performance model for the kernel
execution on a GPU. It partitions the kernel execution time into
three components: kernel launch, computation, and synchroniza-
tion. This model can help designing and evaluating various syn-
chronization approaches.

Second, we propose three synchronization approaches: GPU
simple synchronization, GPU tree-based synchronization and GPU
lock-free synchronization. The first two use mutex variables and
CUDA atomic operations, while the lock-free approach uses two
arrays of synchronization variables and does not rely on the costly
atomic operations. For each of these methods, we quantify its
efficiency with the aforementioned performance model.

We evaluate the three synchronization approaches with a micro-
benchmark and three important algorithms. From our experiment
results, with our proposed GPU synchronization approaches, per-
formance improvements are obtained in all the algorithms com-

pared to state-of-the-art CPU barrier synchronization. In addition,
the time needed for each GPU synchronization approach matches
the time consumption model well. Finally, based on the kernel ex-
ecution time model, we partition the kernel execution time into the
computation time and the synchronization time for the three algo-
rithms. In SWat and bitonic sort, the synchronization time takes
about half of the total execution time. This demonstrates that for
data-parallel algorithms with considerable data communication, de-
creasing synchronization time is as important as optimizing com-
putation.

As for future work, we will further investigate the reasons for
the irregularity of the FFT’s synchronization time versus the num-
ber of blocks in the kernel. Second, we will propose a general
model to characterize algorithms’ parallelism properties, based on
which, better performance can obtained for their parallelization on
multi- and many-core architectures.
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