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Abstract. We propose a novel system for associating multi-target tracks
across multiple non-overlapping cameras by an on-line learned discrim-
inative appearance affinity model. Collecting reliable training samples
is a major challenge in on-line learning since supervised correspondence
is not available at runtime. To alleviate the inevitable ambiguities in
these samples, Multiple Instance Learning (MIL) is applied to learn an
appearance affinity model which effectively combines three complemen-
tary image descriptors and their corresponding similarity measurements.
Based on the spatial-temporal information and the proposed appearance
affinity model, we present an improved inter-camera track association
framework to solve the “target handover” problem across cameras. Our
evaluations indicate that our method have higher discrimination between
different targets than previous methods.

1 Introduction

Multi-target tracking is an important problem in computer vision, especially
for applications such as visual surveillance systems. In many scenarios, multi-
ple cameras are required to monitor a large area. The goal is to locate targets,
track their trajectories, and maintain their identities when they travel within or
across cameras. Such a system consists of two main parts: 1) intra-camera track-
ing, i.e. tracking multiple targets within a camera; 2) inter-camera association,
i.e. “handover” of tracked targets from one camera to another. Although there
have been significant improvements in intra-camera tracking , inter-camera track
association when cameras have non-overlapping fields of views (FOVs) remains
a less explored topic, which is the problem we focus on in this paper.

An illustration for inter-camera association of multiple tracks is shown in
Figure[Il Compared to intra-camera tracking , inter-camera association is more
challenging because 1) the appearance of a target in different cameras may not be
consistent due to different sensor characteristics, lighting conditions, and view-
points; 2) the spatio-temporal information of tracked objects between cameras
becomes much less reliable. Besides, the open blind area significantly increases
the complexity of the inter-camera track association problem.

Associating multiple tracks in different cameras can be formulated as a cor-
respondence problem. Given the observations of tracked targets, the goal is to
find the associated pairs of tracks which maximizes a joint linking probability,
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Fig. 1. Illustration of inter-camera association between two non-overlapping cameras.
Given tracked targets in each camera, our goal is to find the optimal correspondence
between them, such that the associated pairs belong to the same object. A target may
walk across the two cameras, return to the original one, or exit in the blind area. Also,
a target entering Camera 2 from blind area is not necessarily from Camera 1, but may
be from somewhere else. Such open blind areas significantly increase the difficulty of
the inter-camera track association problem.

in which the key component is the affinity between tracks. For the affinity score,
there are generally two main cues to be considered: the spatio-temporal informa-
tion and appearance relationships between two non-overlapping cameras. Com-
pared to spatial-temporal information, the appearance cues are more reliable
for distinguishing different targets especially in cases where FOVs are disjoint.
However, such cues are also more challenging to design since the appearances of
targets are complex and dynamic in general. A robust appearance model should
be adaptive to the current targets and environments.

A desired appearance model should incorporate discriminative properties be-
tween correct matches and wrong ones. Between a set of tracks among two non-
overlapping cameras, the aim of the affinity model is to distinguish the tracks
which belong to the same target from those which belong to different targets.
Previous methods [TJ2J3] mostly focused on learning the appearance models or
mapping functions based on the correct matches, but no negative information
is considered in their learning procedure. To the best of our knowledge, online
learning of a discriminative appearance affinity model across cameras has not
been utilized.

Collecting positive and negative training samples on-line is difficult since no
hand-labelled correspondence is available at runtime. Hence, traditional learning
algorithms may not apply. However, by observing spatio-temporal constraints of
tracks between two cameras, some potentially associated pairs of tracks and some
impossible pairs are formed as “weakly labelled samples”. We propose to adopt
the Multiple Instance Learning (MIL) [45/6] to accommodate the ambiguity
of labelling during the model learning process. Then the learned discrimina-
tive appearance affinity model is combined with spatio-temporal information to
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compute the crucial affinities in the track association framework, achieving a
robust inter-camera association system. It can be incorporated with any intra-
camera tracking method to solve the problem of multi-object tracking across
non-overlapping cameras.

The rest of the paper is organized as follows. Related work is reviewed in
Section 2l The overview of our approach is given in Section Bl The framework
of track association between two cameras is described in Section @l The method
of learning a discriminative appearance affinity model using multiple instance
learning is discussed in Section Bl The experimental results are shown in Sec-
tion [Gl The conclusion is given in Section [1

2 Related Work

There is large amount of work, e.g. [7I8/9], for multi-camera tracking with over-
lapping field of views. These methods usually require camera calibration and
environmental models to track targets. However, the assumption that cameras
have overlapping fields of view is not always practical due to the large number
of cameras required and the physical constraints upon their placement.

In the literature, [TOTTIT2] represent some early work for multi-camera track-
ing with non-overlapping field of views. To establish correspondence between
objects in different cameras, the spatio-temporal information and appearance re-
lationship are two important cues. For the spatio-temporal cue, Javed et al. [13]
proposed a method to learn the camera topology and path probabilities of objects
using Parzen windows. Dick and Brooks [14] used a stochastic transition matrix
to describe people’s observed patterns of motion both within and between fields
of view. Makris et al. [15] investigated the unsupervised learning of a model of
activity from a large set of observations without hand-labeled correspondence.

For the appearance cue, Porikli [I] derived a non-parametric function to model
color distortion for pair-wise camera combinations using correlation matrix anal-
ysis and dynamic programming. Javed et al. [2] showed that the brightness
transfer functions(BTFs) from a given camera to another camera lie in a low di-
mensional subspace and demonstrated that this subspace can be used to compute
appearance similarity. Gilbert and Bowden [16] learned the BTF's incrementally
based on Consensus-Color Conversion of Munsell color space [17].

Besides, there is some work addressing the optimization framework of multiple
targets correspondence. Kettnaker and Zabih [12] used a Bayesian formulation to
reconstruct the paths of targets across multiple cameras. Javed et al. [I3] dealt
with this problem by maximizing the a posteriori probability using a graph-
theoretic framework. Song and Roy-Chowdhury [I8] proposed a multi-objective
optimization framework by combining short-term feature correspondences across
the cameras with long-term feature dependency models.

Learning a discriminative appearance affinity model across non-overlapping
cameras at runtime makes our approach different from the existing ones. Most
previous methods did not incorporate any discriminative information to distin-
guish different targets, which is important for inter-camera track association
especially when the scene contains multiple similar targets.
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Fig. 2. The block diagram of our system for associating multiple tracked targets from
multiple non-overlapping cameras

3 Overview of our Approach

Our system contains three main components: the method of collecting online
training samples, the discriminative appearance affinity model, and track as-
sociation framework. We use a time sliding window method to process video
sequences. The learned appearance affinity models are updated in each time
window. The system block diagram of our method is shown in Figure 2

The collection of online training samples is obtained by observing the spatio-
temporal constraints in a time sliding window. Assuming that the multi-object
tracking is finished in each camera, a training sample is defined as a pair of tracks
from two cameras respectively. Negative samples are collected by extracting pairs
of tracks in two cameras which overlap in time. It is based on the assumption
that one object can not appear in two non-overlapping cameras at the same
time. Positive samples could be collected by similar spatio-temporal information.
However, it is difficult to label the positive training sample in an online manner
since it is indeed the correspondence problem that we want to solve. Instead
of labelling each sample, several potentially linked pairs of tracks constitute
one positive “bag”, which is suitable for the Multiple Instance Learning (MIL)
algorithm.

The learning of appearance affinity model is to determine whether two tracks
from different cameras belong to the same target or not according to their ap-
pearance descriptors and similarity measurements. Instead of using only color
information as in previous work, appearance descriptors consisting of the color
histogram, the covariance matrix, and the HOG feature, are computed at multi-
ple locations to increase the power of description. Similarity measurements based
on those features among the training samples establish the feature pool. Once
the training samples are collected in a time sliding window, a MIL boosting
algorithm is applied to select discriminative features from this pool and their
corresponding weighted coefficients, and combines them into a strong classifier
in the same time sliding window so that the learned models are adapted to the
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current scenario. The prediction confidence output by this classifier is trans-
formed to a probability space, which cooperates with other cues (e.g. spatial
correspondence and time interval) to compute the affinity between tracks for
association.

The association of tracks in two cameras is formulated as a standard assign-
ment problem. A correspondence matrix is defined where the pairwise association
probabilities are computed by spatio-temporal cues and appearance information.
This matrix is designed to consider all possible scenarios in two non-overlapping
cameras. The Hungarian algorithm is applied to solve this problem efficiently.

4 Track Association between Cameras

To perform track association across multiple cameras, we firstly focus on the
track association between two cameras and then extend it to the case of mul-
tiple cameras. Previous methods often model it as an MAP problem to find
the optimal solution via Bayes Theorem [I2lJ3], a graph theoretic approach [I3],
and expected weighted similarity [T9]. We present an efficient yet effective ap-
proach which maximizes the joint linking probability. Assuming that the task
of single camera tracking has been already solved; there are m tracks in cam-
era C% denoted by 7% = {T¢,---, 7%} and n tracks in camera C® denoted by
Tb = {T?,.-. ,Tf;} respectively. We may simply create a m by n matrix and
find the optimal correspondence between 7¢ and 7. However, in the case of
non-overlapping cameras, there exist “blind” areas where objects are invisible.
For example, an object which leaves C® does not necessarily enter C? as it may
either go to the exit in the blind area or return to C'*. We define an extended
correspondence matrix of size (2m + 2n) x (2m + 2n) as follows:

Amxm Bmxn mem —Omxn
H=— Dyxm Enxn —0nxm Gnxn (1)
mem —Omxn

—Onxm Knxn O(m+n)><(m+n)

This formulation is inspired by [20], but we made the necessary modification
to accommodate all situation which could happen between the tracks of two
non-overlapping cameras. The components of each matrix are defined as follows:
B;; = log Pink (T — T;’) is the linking score of that the tail of T links to the
head of T;’. It models the situation that a target leaves C* and then enters C?; a
similar description is applied to D;; = log Plink(TJfl — TP). A;j = log Piink(TF —
Tf) if 4 # j is the linking score of that the tail of 7} links to the head of T7'.
It models the situation that a target leaves C* and then re-enters camera a
without travelling to camera C?; a similar description is also applied to B =
log Pink (TP — T;’) if i # j. Fyj or Gy;if ¢ = j is the score of the T2 or T;’ is
terminated. It models the situation that the head of target can not be linked
to the tail of any tracks. J;; and Kj; if ¢ = j is the score of that the T}* or
T]b is initialized. It models the situation that the tail of target can not link to
the head of any track. By applying the Hungarian algorithm to H, the optimal
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Table 1. A short summary of the elements in each sub-matrix in H, which models all
possible situations between the tracks of two non-overlapping cameras. The optimal
assignment is solved by Hungarian algorithm.

matrix description element
A the target leaves and returns to C* A;; = —c0 if i = j
B the target leaves C'® and enters c? B;j is a full matrix
D the target leaves C® and enters C* D;; is a full matrix
E the target leaves and returns to C° Eij=—-ifi=j
F  the target terminates in C' Fij=—c0ifi#j
G the target terminates in C° Gij =—ocoifi#j
J  the target is initialized in C* Jij = —ooifi#j
K the target is initialized in C? Kij=—ccifi#j

assignment of association is obtained efficiently. A summary of each sub-matrix
in H is given in Table [11

The linking probability, i.e. affinity between two tracks 7; and T is defined
as the product of three important cues(appearance, space, time):

Piink(T; — Tj) = Po(T3,Tj) - Ps(e(Ty), e(T})) - P (T; — Tile(Ty), e(Ty))  (2)

where e(T;) denotes the exit/entry region of T;. Each of three components mea-
sures the likelihood of T; and 7} being the same object. The latter two terms
P, and P; are spatio-temporal information which can be learned automatically
by the methods proposed in [15/3]. We focus on the first term P, and propose a
novel framework of online learning a discriminative appearance affinity model.

5 Discriminative Appearance Affinity Models with
Multiple Instance Learning

Our goal is to learn a discriminative appearance affinity model across the cameras
at runtime. However, how to choose positive and negative training samples is a
major challenge since exact hand-labelled correspondence is not available while
learning online. Based on the spatio-temporal constraints, we are able to only
exclude some impossible links and retain several possible links, which are called
“weakly labelled training examples”.

Recent work [5l6] presents promising results on face detection and visual
tracking respectively using Multiple Instance Learning (MIL). Compared to tra-
ditional discriminative learning, MIL describes that samples are presented in
“bags”, and the labels are provided for the bags instead of individual samples.
A positive “bag” means it contains at at least one positive sample; a negative
bag means all samples in this bag are negative. Since some flexibility is allowed
for the labelling process, we may use the “weakly labelled training examples”
by spatio-temporal constraints and apply a MIL boosting algorithm to learn the
discriminative appearance affinity model.
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5.1 Collecting Training Samples

We propose a method to collect weakly labelled training samples using spatio-
temporal constraints. To learn an appearance affinity model between cameras,
a training sample is defined as a pair of tracks from two cameras respectively.
Based on the tracks generated by a robust single camera multi-target tracker,
we make a conservative assumption: any two tracks from two non-overlapping
cameras which overlap in time represent different targets. It is based on the
observation that one target can not appear at different locations at the same
time. Positive samples are more difficult to obtain since there is no supervised
information to indicate which two tracks among two cameras represent the same
objects. In other words, the label of “4+1” can not be assigned to individual
training samples. To deal with the challenging on-line labelling problem, we
collect possible pairs of tracks by examining spatio-temporal constraints and
put them into a “bag” which is labelled “+1”. The MIL boosting is applied to
learn the desired discriminative appearance affinity model.

In our implementation, there are two set to be formed for each track: a set
of “similar” tracks and a set of “discriminative” tracks. For a certain track 77
in camera C?, each element in its “discriminative” set Dg indicates a target T}
in camera C® which is impossible to be the same target with T'}'; each element
in the “similar” set Sjl? represents a possible target 7, ,i’ in C® which might be the
same target with 7. These cases are described as:

T} € 8} if P(Tj — TY) - Pi(e(T}), e(TF)) > 6

b b a b a b (3)

Ty € D} if (T — Ty)) - Pi(e(1}),e(T})) =0
The threshold 6 is adaptively chosen to maintain a moderate number of instances
included in each positive bag. The training sample set B = B* U B~ can be
denoted by

Bt :{asi : {Tf,T,g},VT,f € S;’;yi : —|—1}

(4)
B~ :{xi (T8, TP), i T) € Dby, : —1}

where each training sample x; may contain multiple pairs of tracks which rep-
resents a bag. A label is given to a bag.

5.2 Representation of Appearance Model and Similarity
Measurement

To build a strong appearance model, we begin by computing several local features
to describe a tracked target. In our design, three complementary features: color
histograms, covariance matrices, and histogram of gradients (HOG) constitute
the feature pool. Given a tracked target, features are extracted at different loca-
tions and different scales from the head and tail part to increase the descriptive
ability.
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We use RGB color histograms to represent the color appearance of a local
image patch. Histograms have the advantage of being easy to implement and
having well studied similarity measures. Single channel histograms are concate-
nated to form a vector frap,, but any other suitable color space can be used. In
our implementation, we use 8 bins for each channel to form a 24-element vector.
To describe the image texture, we use a descriptor based on covariance matrices
of image features proposed in [21]. It has been shown to give good performance
for texture classification and object categorization. To capture shape informa-
tion, we choose the Histogram of Gradients (HOG) Feature proposed in [22].
In our design, a 32D HOG feature froq, is extracted over the region R; it is
formed by concatenating 8 orientations bins in 2 x 2 cells over R.

In summary, the appearance descriptor of a track 7; can be written as:

Ai = ({fhap, b {Cl} {fhoc, ) (5)

where ff%G p, is the feature vector for color histogram, Cé is the covariance matrix,
and beGi is the 32D HOG feature vector. The superscript [ means that the
features are evaluated over region R!.

Given the appearance descriptors, we can compute similarity between two
patches. The color histogram and HOG feature are histogram-based features
so standard measurements, such as x? distance, Bhattacharyya distance, and
correlation coefficient can be used. In our implementation, correlation coefficient
is chosen for simplicity. The distance measurement of covariance matrices is
determined by solving a generalized eigenvalues problem, which is described
in [21].

After computing the appearance model and the similarity between appearance
descriptors at different regions, we form a feature vector by concatenating the
similarity measurements with different appearance descriptors at multiple loca-
tions. This feature vector gives us a feature pool that we can use an appropriate
boosting algorithm to construct a strong classifier.

5.3 Multiple Instance Learning

Our goal is to design a discriminative appearance model which determines the
affinity score of appearance between two objects in two different cameras. Again,
a sample is defined as a pair of targets from two cameras respectively. The affin-
ity model takes a pair of objects as input and returns a score of real value by
a linear combination of weak classifiers. The larger the affinity score, the more
likely that two objects in one sample represent the same target. We adopt the
MIL Boosting framework proposed in [5] to select the weak classifiers and their
corresponding weighted coefficients. Compared to conventional discriminative
boosting learning, training samples are not labelled individually in MIL; they
form “bags” and the label is given to each bag, not to each sample. Each sample
is denoted by x;;, where 7 is the index for the bag and j is the index for the sam-
ple within the bag. The label of each bag is represented by y; where y; € {0,1}.
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Although the known labels are given to bags instead of samples, the goal is to
learn the the instance classifier which takes the following form:

T
H(xy) =) ahi(zij) (6)
t=1

In our framework, the weak hypothesis is from the feature pool obtained by
Section 5.2. We adjust the sign and normalize h(x) to be in the restricted range
[-1,41]. The sign of h(x) is interpreted as the predicted label and the magnitude
|h(x)| as the confidence in this prediction.

The probability of a sample x;; being positive is defined as the standard
logistic function,

1

T 1+ exp(—yiy) @)

pij = 0 (yi;)
where y;; = H(z;;). The probability of a bag being positive is defined by the
“noisy OR” model:

pi=1- H(l - Pij) (8)
J
If one of the samples in a bag has a high probability p;;, the bag probability p;
will be high as well. This property is appropriate to model that a bag is labelled
as positive if there is at least one positive sample in this bag. MIL boosting uses
the gradient boosting framework to train a boosting classifier that maximizes
the log likelihood of bags:

log L(H) = Zy log pi + (1 — y;) log(1 — pi) (9)

The weight of each sample is given as the derivative of the loss function log L(H)
with respect to the score of that sample y;;:

Olog L(H ; — Di
= gy( ) _ yzp‘pzpij (10)
i %
Our goal is to find H(z) which maximizes (@), where H(z) can be obtained by
sequentially adding new weak classifiers. In the ¢-th boosting round, we aim at
learning the optimal weak classifier h; and weighted coefficient a; to optimize
the loss function:

(o, hy) = arg r’rllinlogL(Ht_l + ah) (11)

To find to the optimal (a,h:), we follow the framework used in [23J5] which
views boosting as a gradient descent process, each round it searches for a weak
classifier h; to maximize the gradient of the loss function. Then the weighted
coefficient ay is determined by a linear search to maximize log L(H + aht). The
learning procedure is summarized in Algorithm 1.
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Algorithm 1. Multiple Instance Learning Boosting
Bt ={ ({1, T2, ...}, +1) p: Positive bags
Input: B~ —J ({zi1,2:2,..}, —1) }: Negative bags
F ={h(zi;)}: Feature pools
1: Initialize H =0

2: fort=1to T do
3: for k=1to K do

4: pij = o(H + hi(xij))
5. pr=1-]]0-p)
J
k
k Yi —Di k&
6: Wi = k Pij
7:  end for '

8:  Choose k* = arg mgxz wfjhk(xij)
)
9:  Set hy = hy»
10:  Find o = arg max log L(H + ah) by linear search
11:  Set oy = o™
12: Update H «<— H + ath:
13: end for

Output: H(z) =Y., arhi()

6 Experimental Results

The experiments are conducted on a three-camera setting with disjoint FOVs.
First, we evaluate the effectiveness of our proposed on-line learned discrimi-
native appearance affinity model by formulating the correspondence problem
as a binary classification problem. Second, for a real scenario of multiple non-
overlapping cameras, the evaluation metric is defined, and the tracking results
using our proposed system are presented. It is shown that our method achieves
good performance in a crowded scene. Some graphical examples are also pro-
vided.

6.1 Comparison of Discriminative Power

We first evaluate the discriminative ability of our appearance affinity model,
independent of the tracking framework that it will be embedded in. Given the
tracks in each camera, we manually label the pairs of tracks that should be as-
sociated to from the ground truth. Affinity scores are computed among every
possible pair in a time sliding window by four methods: (1) the correlation coef-
ficients of two color histogram; (2) the model proposed in Section 5 but without
MIL learning, i.e. with equal coefficients ay; (3) off-line MIL learning, i.e. learn-
ing is done on another time sliding window; (4) MIL learning on the same time
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Table 2. The comparison of the Equal Error Rate using different appearance affinity
models. It shows that the on-line learning method has the most discriminative power.

Camera pair color only no learning off-line learning on-line learning
ch.c? 0.231 0.156 0.137 0.094
c?.c? 0.381 0.222 0.217 0.159

window. In a three-camera setting, the experiments are done in two camera pairs
(C1,C?) and (C?,C3); equal error rate in two tasks is the metric to evaluate the
performance. In (C*,C?), the number of evaluated pairs is 434 and the number
of positive pairs is 35. In (C?,C?), the number of evaluated pairs is 148 and the
number of positive pairs is 18. The length of time sliding window is 5000. The
experimental results are shown in Table[2l In each camera pair, the model using
online MIL learning achieves the lowest equal error rate compared to the other
three methods.

6.2 Evaluation Metrics

In previous work, quantitative evaluation of multi-target tracking across multiple
cameras is barely mentioned or simply a single number e.g. tracking accuracy
is used. It is defined as the ratio of the number of objects tracked correctly to
the total number of objects that passed through the scene in [2I3]. However, it
may not be a suitable metric to measure the performance of a system fairly,
especially in a crowded scene where targets have complicated interactions. For
example, if two tracked targets exchange their identities twice while travelling
across a series of three cameras should be worse than if they exchange only
once. Nevertheless, these two situations are both counted as incorrect tracked
objects in the metric of “tracking accuracy”. We need a more complete metric
to evaluate the performance of inter-camera track association.

In the case of tracking within a single camera, fragments and ID switches are
two commonly used metrics. We adopt the definitions used in [24] and apply it
to the case of tracking across cameras. Assuming that multiple targets tracking
in a single camera is obtained, we only focus on the fragments and ID switches
which are not defined within cameras. Given the tracks in two cameras C®
and C*: T¢ = {T¢,--- ,T%} and T® = {T},--- , T}, the metrics in tracking
evaluation are:

e Crossing Fragments(X-Frag): The total number of times that there is a link
between T/ and T}’ in the ground truth, but missing in the tracking result.

e Crossing ID switches(X-IDS): The total number of times that there is no
link between T}* and T;’ in the ground truth, but existing in the tracking result.

e Returning Fragments(R-Frag): The total number of times that there is link
between 77" and 77" which represents a target leaving and returning to C* in

1
ground truth, but missing in the tracking result.



394 C.-H. Kuo, C. Huang, and R. Nevatia

Table 3. Tracking results using different appearance models with our proposed metrics.
The lower the numbers, the better performance it is. It shows that our on-line learned
appearance affinity models achieve the best results.

Method X-Frag X-IDS R-Frag R-IDS
(a)input tracks 206 0 15 0
(b)color only 9 18 12 8
(c)off-line learning 6 15 11 7
(d)on-line learning 4 12 10 6

e Returning ID switches(R-IDS): The total number of times that there is no
link between T} and T}" which means they represent different targets in ground
truth, but existing in the tracking result.

For example, there are T, T¢ in C*, and T}, T¢ in C®. In the ground truth,
(T, T?) and (T, T?) are the linked pairs. If they switch their identities in the
tracking result, i.e. (T, T) and (T§, T?) are the linked pairs, that is considered
as 2 X-frag and 2 X-IDS. This metric is more strict but well-defined than the
traditional definition of fragments and ID switches. Similar descriptions apply
to R-Frag and R-IDS. The lower these four metrics, the better is the tracking
performance.

6.3 Tracking Results

The videos used in our evaluation are captured by three cameras in a campus
environment with frame size of 852x480 and length of 25 minutes. It is more
challenging than the dataset used in the previous works in the literature since
this dataset features a more crowded scene (2 to 10 people per frame in each
camera). There are many inter-object occlusions and interactions and people
walking across cameras occurs often. The multi-target tracker within a camera
we use is based on [24], which is a detection-based tracking algorithm with
hierarchical association.

We compare our approach with different appearance models. The results are
also shown in Table Bl The result of (a) represents the input, i.e. no linking
between any tracks in each camera. The result of (b) uses only color histogram
is used as the appearance model. In the result of (c), our proposed appearance
model is used but learned in an off-line environment, which means the coefficients
ay are fixed. The result of (d) uses our proposed appearance models. It shows
that our proposed on-line learning method outperforms these two appearance
models. This comparison justifies that our stronger appearance model with on-
line learning improves the tracking performance. Some association results are
shown in Figure[l It shows that our method finds the correct association among
multiple targets in a complex scenen, e.g. people with IDs of 74, 75, and 76 when
they travel from camera 2 to camera 1.
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{a}aral B {b) Camera 2
Fig. 3. Sample tracking results on our dataset. Some tracked people travelling through
the cameras are linked by dotted lines. For example, the targets with IDs of 74, 75,

and 76 leave Camera 2 around the same time, our method finds the correct association
when they enter Camera 1. This figure is best viewed in color.

7 Conclusion

We describe a novel system for associating multi-target tracks across multiple
non-overlapping cameras. The contribution of this paper focuses on learning
a discriminative appearance affinity model at runtime. To solve the ambigu-
ous labelling problem, we adopt Multiple Instance Learning boosting algorithm
to learn the desired discriminative appearance models. An effective multi-object
correspondence optimization framework for intra-camera track association prob-
lem is also presented. Experimental results on a challenging dataset show the
robust performance by our proposed system.
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