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ABSTRACT
Over the past few years, the design and performance of channel-aware scheduling strategies
have attracted huge interest. In the present paper we examine a somewhat different notion of
scheduling, namely coordination of transmissions among base stations, which has received little
attention so far. The inter-cell coordination comprises two key elements: (i) interference
avoidance; and (ii) load balancing. The interference avoidance involves coordinating the activity
phases of interfering base stations so as to increase transmission rates. The load balancing
aims at diverting traffic from heavily-loaded cells to lightly-loaded cells. We consider a dynamic
scenario where users come and go over time as governed by the arrival and completion of
random data transfers, and evaluate the potential capacity gains from inter-cell coordination in
terms of the maximum amount of traffic that can be supported for a given spatial traffic pattern.
We also show that simple adaptive strategies achieve the maximum capacity without the need
for any explicit knowledge of the traffic characteristics. Numerical experiments demonstrate that
inter-cell scheduling may provide significant capacity gains, the relative contribution from
interference avoidance vs. load balancing depending on the configuration and the degree of
load imbalance in the network.
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Abstract— Over the past few years, the design and
performance of channel-aware scheduling strategies have
attracted huge interest. In the present paper we examine
a somewhat different notion of scheduling, namely coor-
dination of transmissions among base stations, which has
received little attention so far. The inter-cell coordination
comprises two key elements: (i) interference avoidance;
and (ii) load balancing. The interference avoidance involves
coordinating the activity phases of interfering base stations
so as to increase transmission rates. The load balancing
aims at diverting traffic from heavily-loaded cells to lightly-
loaded cells. We consider a dynamic scenario where users
come and go over time as governed by the arrival and
completion of random data transfers, and evaluate the
potential capacity gains from inter-cell coordination in
terms of the maximum amount of traffic that can be
supported for a given spatial traffic pattern. We also
show that simple adaptive strategies achieve the maximum
capacity without the need for any explicit knowledge of the
traffic characteristics. Numerical experiments demonstrate
that inter-cell scheduling may provide significant capacity
gains, the relative contribution from interference avoidance
vs. load balancing depending on the configuration and the
degree of load imbalance in the network.

Index Terms— Wireless data networks, downlink, inter-
cell scheduling, load balancing, stability, network capacity.

I. INTRODUCTION

Wireless networks are evolving to support a wide
variety of high-speed data applications, in addition to
conventional voice services and current low-bandwidth
data services such as short messaging. Data applications
tend to have drastically different traffic characteristics
and QoS requirements than voice connections, calling for
fundamentally different resource allocation mechanisms.
In particular, wireless circuit-switched voice networks

rely on power control algorithms for adjusting the trans-
mit power so as to compensate for the varying channel
quality and maintain a fixed transmission rate. Various
data applications on the other hand, such as file transfers
and Web browsing sessions, do not have a stringent rate
requirement and are less sensitive to packet-level delays.
Such elastic applications are well-suited for rate control
algorithms which adapt the transmission rate over time
to track the fluctuations in the channel quality while
transmitting at constant (maximum) power.

Adaptive rate control mechanisms offer the possibility
to improve the throughput performance by scheduling
the data transmissions and exploiting the relative delay
tolerance of data users. A particularly attractive ap-
proach, in fading environments, is to schedule the trans-
missions to the various users when their channel con-
ditions are (relatively) favorable, as in the Proportional
Fair algorithm for the CDMA 1xEV-DO system [9],
[21]. While fading is considered to have a predominantly
adverse impact for voice connections, it thus provides the
opportunity to achieve throughput gains for elastic data
transfers. The design and performance of such channel-
aware or opportunistic scheduling algorithms have been
extensively studied over the past few years. Most of the
studies have focused on the performance at the packet
level for a static user population [2], [3], [16], [24], [27],
[30], [31], although recently the flow-level performance
in a dynamic setting has been analyzed as well [10],
[15].

In the present paper we focus on a different notion
of scheduling, namely coordination of transmissions
among base stations (BS’s), which has received relatively
little attention so far. The inter-cell scheduling that we
consider comprises two key elements: (i) interference
avoidance; and (ii) load balancing. The rationale for in-
terference avoidance stems from the simple fact that the
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feasible transmission rates are impacted by the amount of
interference from surrounding BS’s, so that significantly
higher rates may be achieved when neighboring BS’s
are switched off. When the increase in the feasible
rates is sufficiently large, it may outweigh the sacrifice
of transmission resources at the BS’s that are turned
off, yielding a net benefit. Note that the increase in
the rates is especially substantial for users on the cell
boundary which are affected the most by interference
from neighboring BS’s. Since the edge users are the most
demanding ones in terms of transmission resources, they
have a major impact on the overall performance.

The above observations are confirmed by the results
in [8], [20], [26] which show that such inter-cell schedul-
ing strategies achieve substantial throughput gains in a
static scenario with a fixed ensemble of users. They
are also indirectly supported by the findings in [11]
which examines the flow-level performance of networks
of BS’s in a dynamic setting. The latter paper does
actually not consider inter-cell scheduling (the BS’s
are assumed to be on as long as there are any users
to be served). However, it shows that accounting for
the time-varying activity patterns of surrounding BS’s
makes a crucial difference, suggesting potential scope
for significant gains from coordinating the transmission
activities of interfering BS’s.

As mentioned above, inter-cell coordination is differ-
ent in nature from opportunistic scheduling. However,
the active control of interference is somewhat related
in the sense that coordinating the activity phases of
interfering BS’s may be interpreted as a form of network-
wide opportunistic scheduling by generating favorable
channel conditions in a coordinated fashion. Antenna-
based incarnations of the latter concept (opportunistic
beam-forming to artificially induce channel variations)
have been explored in [31].

The motivation for load balancing arises from the
natural principle that the overall performance may be
improved by diverting traffic from heavily-loaded BS’s to
lightly-loaded BS’s. This may be achieved by allocating
users to BS’s not solely on the basis of signal strength
measurements, but taking load considerations into ac-
count as well, either average values or instantaneous con-
ditions, see for instance [12], [19]. As the latter already
implies, shifting traffic in wireless networks is hindered
by the fact that signal strengths and feasible transmission
rates tend to vary widely among candidate BS’s, so that
moving traffic from the strongest received BS to weaker
ones comes at the expense of raising the total load. In
particular, it is generally not optimal to perfectly balance
the loads. The above penalty is limited however for edge
users which do not have a strong affinity with a nearest

BS. Again, such users are also the most onerous ones
in terms of resource requirements, creating a promising
opportunity for performance improvements.

In the present paper we examine the potential capacity
gains from inter-cell coordination in a situation where
users come and go over time as governed by the arrival
and completion of random data transfers. Congestion
manifests itself in this context by the number of active
users competing for access to the transmission resources.
In particular, the network may be unstable in the sense
that the number of users may grow indefinitely. Thus we
introduce as in [14] the notion of network capacity as
the maximum amount of traffic compatible with stability
for some given spatial traffic pattern. In order to eluci-
date the coordination aspects, we consider the simplest
possible scenario with no radio channel variations due
to shadow fading or multi-path propagation.

In the subsequent analysis we focus on a scenario
where each user is uniquely attached to a serving BS
and each BS, when active, transmits to a single user.
Such networks are representative of the CDMA 1xEV-
DO system for instance, and will be simply referred to
as ‘TDMA networks’. Numerical experiments demon-
strate that inter-cell scheduling may provide significant
capacity gains in this practically interesting case, the
relative contribution from interference avoidance vs. load
balancing depending on the configuration and the degree
of load imbalance in the network.

As a final comment, it is worth observing that yet
a further degree of inter-cell coordination may be ac-
complished by transmitting to users from several BS’s
simultaneously and essentially operating the BS’s as an
antenna array. While the structure of the mathematical
models that we consider is general enough to cover such
approaches as well, the derivation of the feasible trans-
mission rates for such schemes poses an (information-
theoretic) problem by itself, and moves beyond the scope
of the present paper.

The remainder of the paper is organized as follows.
In Section II we present a detailed model description,
and describe how networks of coordinated BS’s may be
modeled in the general context of queueing systems with
interacting service resources. In Section III we examine
the stability region and introduce the notion of network
capacity. We also show that simple adaptive scheduling
strategies achieve the maximum capacity. These results
are applied to ‘TDMA networks’ in Section IV. Sec-
tion V is devoted to the numerical experiments and
Section VI concludes the paper.
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II. MODEL DESCRIPTION

We consider the downlink of a network of BS’s ��������	�
�
�	����
whose transmission resources (power, band-

width, codes, etc) are shared by a dynamic population
of data flows. Flows arrive at random and leave the
network once the corresponding data transfer has been
completed. Each flow is characterized by its size (in bits)
and its data rate that depends on the user’s location,
which is assumed to be fixed throughout the entire flow
duration, and the way the transmission resources are
allocated among active flows. Without loss of generality,
we consider a set of classes ��� �����
�	�
�	����

such that
flows of any given class have the same size statistics and
rate characteristics, as described below. We denote by ���
the number of class- � flows and by ��������� �
�	�
�	� ��� � the
network state.

A. Traffic characteristics

The traffic model is allowed to be very general. We
simply assume that class- � flows arrive as a stationary
and ergodic marked point process of intensity ! � , with
marks corresponding to the flow sizes. Let "#� be the
mean size of class- � flows (in bits). The traffic intensity
of class � is then defined by $%�&�'!(��)*"+� (in bits/s). We
denote by $,���-$#� �
�
�	�	� $�� � the traffic intensity vector, by. �0/ ��21�� $3� the total traffic intensity, and by 4#�&�5$3�76 .
the proportion of the total traffic intensity generated by
class � .
B. Resource allocation

The service capabilities of the network are described
by a set of available transmission ‘profiles’ 8 ������	�
�
�	�:9;

. Each of the profiles corresponds to a partic-
ular allocation of the transmission resources among the
various classes. At any point in time, one of the available
profiles can be selected for operating the network.

When profile < is selected, the class- � flows share a
data rate =>� � ? , which is equal to zero when class � is
not served in profile < . Evidently, the set of available
profiles and the corresponding service rates strongly
depend on the degree of flexibility in deploying the
transmission resources. For now, however, we do not
make any specific assumptions on the service rates, nor
are we concerned how exactly the service rate of a class
is shared among the active flows.

When profile < is used a fraction of the time @ ? , the
resulting service rate of class � is A �&�0/ ?	B�C @ ? =>� � ? . We
assume that the switching between transmission profiles
can be executed with sufficiently fine time granularity
compared to the flow dynamics so that the flows expe-
rience a constant service rate A � .

The time allocation @D�E�-@F� �	�
�
�	� @HG(� is termed the
scheduling strategy. In the following, we denote by I the
set of non-negative vectors @ such that / ?	B�C @ ? � �

.
When the time fractions are independent of the network
state, the scheduling strategy is referred to as static. The
strategy is called adaptive when the time fractions do
depend on the network state. The set of achievable rate
vectors AJ���-A � �
�	�
�
� A � � is referred to as the rate region:

K � LMON AQP�R(@TSUI �WV �FSX� � A	�;Y[Z?	B\C @ ? =>� � ?
]O^
_ �

Remark 2.1: The above-described model falls in the
general framework of queueing systems with interacting
service resources. Such models were introduced in the
early nineties for evaluating the performance of parallel
systems and wireless networks [7], [29], and have more
recently been analyzed in [4], [5], [6], [28].

III. STABILITY REGION AND NETWORK CAPACITY

We are interested in determining the stability region
of the network, i.e., the set of traffic intensity vectors $
such that there exists a scheduling strategy for which
the network state � has a finite stationary distribution.
In addition, we are interested in finding stable scheduling
strategies, i.e., scheduling strategies that stabilize the
network whenever possible. We first characterize the sta-
bility region and discuss the stability of some scheduling
strategies. We then introduce the key notion of network
capacity, defined for given traffic proportions of the
classes �`4a� �
�	�
�	� 4��
� as the maximum traffic intensity .
compatible with stability.

A. Stability region

The stability region has been characterized in [4], [5].
It coincides with the interior of the rate region

K
.

Proposition 3.1: There exists a scheduling strategy
for which the network is stable if and only if $bS cK ,
with:

cK � LM N AQP�R(@TSUI �WV �FSX� � A	�;d[Z?	B\C @ ? =>� � ?
] ^
_ �

The necessary condition follows trivially from the
observation that the carried traffic vector must belong to
the interior of the rate region. The sufficient condition
readily follows from the fact that if $eSfcK , then there
exists a time allocation @ such that:V �FSX� � $ � d Z?	B�C @ ? = � � ? �
Under that static strategy, the network behaves as a set
of

�
independent stable queues.
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B. Stability of some scheduling strategies

1) Static scheduling: We just observed that for any
vector in the stability region there exists a static schedul-
ing strategy @ for which the network is stable. For any
given static scheduling strategy @ , on the other hand, the
network is stable if and only if $��;d A	� for all �FSX� , withA	� � / ?	B�C @ ? =>� � ? . The corresponding stability region
is a strict subset of cK , except in the trivial case where
the set 8 reduces to a single transmission profile. We
conclude that static scheduling strategies are not stable,
in contrast to some adaptive strategies presented below.

When the traffic proportions among classes� 4a� �
�	�
�	� 4��
� are fixed, however, there exists a unique
static scheduling strategy @ that stabilizes the network
whenever possible. It is obtained by solving the linear
program:

minimize Z?	B\C � ? (1)

subject to � ? ��� � Z?	B�C � ? =>� � ? � 4�� �
The solution of this linear program ��� corresponds to
the minimum amount of time needed to transmit 4#� bits
of class � , for all �FSX� . Thus the maximum total traffic
intensity is

� 6 ��� , and the fraction of time that profile <
is used is @ ? � � �? 6 � � .

2) Traffic-based scheduling: A natural adaptive
scheduling strategy consists in selecting the transmission
profile based on traffic variables like the workload or
the number of active flows. Armony & Bambos [4],
[5] studied a particular class of traffic-based scheduling
strategies that they refer to as ‘MaxProjection’ schedulers
where a profile < is selected that corresponds to the
maximum rate vector � = � � ? �	�
�	�	� = � � ? � in the direction of
the workload vector. They proved that such a scheduling
strategy is stable. Since the workload is generally not
known in practice, we consider a slightly modified
strategy which may be interpreted as a continuous-time
analogue of the ‘MaxWeight’ strategy in [22] where
the scheduling decision is based on the number of
flows. Specifically, in state � a profile < is selected that
maximizes: Z � B	�


 ��� � � = � � ? � (2)

where

 ���`� denotes any increasing, strictly concave

function on �� . The next proposition is proved in the
appendix for a fairly general class of functions described
in Mo & Walrand [25].

Proposition 3.2: The traffic-based scheduling strat-
egy (2) is stable.

3) Utility-based scheduling: A further adaptive
scheduling strategy is based on the notion of utility
which has been widely adopted in the context of wireline
networks [23]. Let � ��� � be an increasing, strictly concave
function on  � representing per-flow utility. For any
given state � , the scheduling strategy is such that the
rate vector A is a solution of the optimization problem:

maximize Z � B�� � � � �-A � 6 � � � (3)

subject to A S K �
The next proposition is proved in the appendix for the
class of utility functions introduced in [25].

Proposition 3.3: The utility-based scheduling strat-
egy (3) is stable.

Note that the maximization problem (3) is not easy to
solve in general, unlike (2) which can be solved through
a simple scan of the transmission profiles. Under time-
slotted operation, the ‘gradient’ scheduling algorithm in-
troduced by Stolyar [28] provides a means for solving (3)
that reduces to a scan of the transmission profiles in
every time slot. Specifically, in time slot � , the gradient
algorithm selects a transmission profile <���� � and a set of� � class- � flows � � ��� ��� �����	�
�
�	� ���  that maximizeZ� B	� ���
B���� ��� �� � � � �!����� ) = � � ? 6 � � �
where  � � � �!��� denotes the exponentially smoothed
throughput received by the

�
-th class- � flow, given for

some fixed coefficient " ,
� d#"DY �

, by:

 � � � �!��$ � � ��� ��% " �& � � � ������$'" �
� B(����)+*!, = � � ? 6 � � �

For any fixed network state, this algorithm converges to
the solution of the optimization problem (3) as �.-0/
and "�1 � .
C. Network capacity

Given some fixed traffic proportions of the various
classes � 4&� �	�
�
�	� 4�� � , it is natural to define the net-
work capacity as the maximum admissible total traffic
intensity . , i.e., the maximum value of 2 such that
the network is stable whenever . d32 . By virtue of
Proposition 3.1, the network capacity can be expressed as
the optimal value of the following optimization problem:

maximize 2
subject to �`4 � �
�
�	�	� 4��
�42 S K �

In view of 5 III-B.1, the solution 2 � of this optimization
problem is equal to

� 6 � � , where � � is the solution of the
linear program (1). Thus evaluating the network capacity
is equivalent to finding the optimal static scheduling
strategy.
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IV. INTER-CELL SCHEDULING IN TDMA NETWORKS

In the analysis of the stability region and the net-
work capacity we allowed the set of available profiles
to be completely general, providing great flexibility in
deploying the transmission resources. In the remainder
of the paper we will focus on interference avoidance
in a specific scenario where (i) each class is associated
with a unique serving BS and (ii) each BS, when active,
transmits to a single user at full power. We will fix
the traffic proportions of the various classes, and then
examine the gain in terms of network capacity resulting
from interference avoidance.

It is worth observing that, although it is sufficient to
focus on the optimal static scheduling strategy as de-
termined by (1) to evaluate the network capacity, such a
scheduling strategy is not stable and therefore vulnerable
from a practical perspective. In view of Propositions 3.2
and 3.3, the same capacity gains are achievable through
more robust, adaptive strategies such as traffic-based or
utility-based scheduling algorithms.

We now specify the model in greater detail, then
proceed to consider the illustrative case of a two-cell
network and derive the network capacity for a class of
symmetric networks.

A. Transmission profiles for TDMA networks

As mentioned above, we assume each class to be as-
sociated with a unique serving BS. Let ���X� � � �
�	�
�	��� � 
be the set of flow classes served by BS � . The � -th
class served by BS � is referred to as class � � , � S ��� .
Denote by 4 � � the proportion of the total traffic intensity
generated by class � � .

We further assumed that each BS, when active, trans-
mits to a single user at full power. Thus, any transmission
profile < is determined by a set of active BS’s

�
and a set

of classes
� � � S � ��� � S � 

served by the active BS’s.
Denote by 2�� � � � the ‘feasible’ rate of any class- � � flow
when the set of active BS’s is

� �e� , i.e., the effective
data rate of such a flow when served by BS � and the set
of active BS’s is

�
. By convention, 2 � � � � � �

if �
	S �
.

The service rate of class � � when profile < is used is
then = � � � ? � 2�� � � � if � S �

and �,� � � , = � � � ? � �
otherwise.

B. A two-cell network

We first consider the illustrative example of a network
with just two BS’s � � � ������

. For compactness, denote
by 2 � � � ���� 2 � � � � � � ��� and 2 � � � �� � 2 � � � � � � the feasible
rate of class- � � flows when the other BS is on and off,
respectively.

1) No interference avoidance: In order to determine
the capacity gain from interference avoidance, we first
evaluate the network capacity in the absence of such
a mechanism, i.e., each of the BS’s with at least one
active flow transmits at full power, independently of
the network state. Such networks have been considered
in [11]. In case of two BS’s and a single class per BS, the
model corresponds to a coupled-processors system [17].
Let �

�X� Z� B����
$ � �
2 � � � �� �

and define �2>� � � �
� 2>� � � �� $[� ��% �

� � 2 � � � �� if
�
� d �

,�2 � �>� � � 2 � � � �� $ � � % � � � 2 � � � �� if
� � d �

. Assuming
that the capacity is fairly shared among active flows, the
stability condition then reads:� � d �

and Z� B	���
$ � ��2 � � d � �

or �
� d �

and Z� B	���
$�� �
�2>� � d � �

We derive the network capacity as in 5 III-C. In case of
homogeneous loads,

�
�

� � � �
� , the stability condition

reduces to
� d �

. The network capacity then equals
���

,
where

�
denotes the per-cell capacity:

� � Z� B����
4 � �
2 � � � �� �

2) Interference avoidance: The network capacity re-
sulting from interference avoidance is given by

� 6 � � ,
with ��� denoting the solution of the linear program (1).
In case of two BS’s, this linear program reads as follows:

minimize � � � �� $ � � � �� $ � � �  � (4)

subject to 2�� � � �� � � � � �� $ 2 � � � �� � � � �  � � 4!� ��FSX� � � � � � �"���� �Z � 1�� � � � � �� � � �Z � 1�� � � � � �� � � ��� �Z � 1�� � � � � �� � � � �  � � � �Z � 1�� � � � � �� � � � �  �
� � � � �� � � � � � �� � � � S*��� � � � � �"���

with � � � � �� and � � � � �� representing the amount of time
that class � � is served at BS � while the other BS is on
and off, respectively.

To solve the above linear program, observe that classes
with a large ratio 2 � � � �� 6 2 � � � �� enjoy significantly
higher rates when the other BS is switched off. Thus,
it is advantageous to serve such classes when the other
BS is inactive, and serve the classes with a smaller ratio
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when both BS’s are active. This is confirmed by the next
proposition. Without loss of generality, we assume that
the flow classes are indexed in such a way that:

2 � � � ��2 � � � �� Y 2 � � � ��2 � � � �� Y �
�	� Y 2 �\� � � ��2��\� � � �� � � � ���"���
(5)

Proposition 4.1: There exist a solution of (4) and � � S�����	�
�
�	��� � $ � 
, � � � �"�

, such that the following two
properties hold: (i) � � � � �� � �

for all �*d � � , and (ii)� � � � �� � �
for all ���b� � .

Proof. Let � � �������
� � � P � � � � �� � �

for all �Fd � �  , then
property (i) follows by definition.

To prove property (ii), assume that � � � � �� �
�

for
some ��� � � . By definition, 2 � � � �� bits of class �
are transmitted when BS � serves class � during
one second when the other BS is active as well.
If BS � serves class � � instead, then 2 � � � � �� bits
are transmitted. Since � � � � �  � �

�
, we may assume

that these bits are transmitted while the other BS is
active in the original scheduling scheme. Therefore, an
amount of time 2 � � � � �� 6 2 � � � �  � becomes available for
transmitting to class � while the other BS is inactive.
The number of transmitted bits of class � is then
2 � � � � �� 6 2 � � � �  � ) 2 � � �  � , which is larger than or equal
to 2 � � � �� by assumption (5). Thus, either � � � � �� or� � � � � �� may be reduced to zero without increasing the
total amount of transmission time, from which the
desired statement follows. 	

Let ��� � � � be indices satisfying the properties (i) and (ii)
of Proposition 4.1. It then follows that

� �� �[Z��
+� � � � � � �� �[Z��
+� � � � � � ��
and

� � �  � � Z��+� � � � � � ��
� � � � �� � Z��+� � � � � � ��

�
withV �Fd � � � � � � � �� � 4!� �

2 � � � �� � V ��� � � � � � � �  � � 4!� �
2 � � � �� �

It remains to determine � � and � � � � � �� � � � � � �  � , � � �����
,

which follows from the above equalities and the next
proposition.

Proposition 4.2: There exists a solution of (4) such
that

� � � � � �� � � � � � �� � �
and

2>� � � � ��2 � � � � �� $ 2 � � � � ��2 � � � � �� Y ���
or ���J� � � $ �

or � � � �
� $

�
. In addition, one of the

following three properties holds:

(i) � � � � � �� � � � � � � �� � �
and either ��� �5� � � �

or � � � � � � � � � � 2>� � ��� � � ��2 � � ��� � � �� $ 2 � � ��� � � ��2 � � ��� � � �� � � �

(ii) � � � � � �� � � � � � � � � �� � �
and � � � ���

2>� � � � ��2 � � � �  � $ 2 � � ��� � � ��2 � � ��� � � �� � � �
(iii) � � � � � �� � � � � � � � � �� � �

and � � � � �
2>� � � � � � ��2 � � ��� � �  � $ 2 � � � � ��2 � � � � �� � � �

Proof. We prove the first assertion only. The proof of the
second assertion follows in a similar fashion.

Let � � � � � be maximum indices satisfying the
properties (i) and (ii) of Proposition 4.1. Assume that��� Y � � and � � Y �

� . We then have � � � � �  � �
�

for� � �����
. Hence, it is not disadvantageous to serve

classes � � sequentially rather than simultaneously. Thus
we can choose either � � � � � �� � �

or � � � � � �� � �
. In

addition, 2 � � � � �� bits of class � � would be transmitted
if BS’s � served classes � � simultaneously during
one second. When each BS � individually serves
class � � instead when the other BS is inactive,
transmitting these bits requires an amount of time
2 � � � � �� 6 2 � � � �  � $ 2 � � � � �� 6 2 � � � � �� . We deduce that the
latter quantity does not exceed 1. 	

It is worth observing that all classes are served in a
single profile, except for class � � in case (ii) and class � �
in case (iii). In symmetric conditions �H��� � � , 4a� � �4 � � , 2>� � � �� � 2 � � � �� and 2 � � � �� � 2 � � � �� , all classes are
served in a single profile.

C. Symmetric networks

We have characterized the optimal scheduling strategy
for two-cell networks using the class ordering (5). For
networks with more than two cells, classes cannot be or-
dered in such a way and the optimal scheduling strategy
becomes very difficult to characterize. We now define
a class of symmetric networks for which the network
capacity can be easily evaluated.

We consider a network with a finite number of BS’s� � � ���	�
�	�	� ��
. The approach has a straightforward

generalization for an infinite number of BS’s, as shown
in the examples of Section V. We implicitly consider
modulo-

�
indices so that BS 0 coincides with BS

�
.

Definition 1 (Symmetric network): We say that a net-
work is symmetric if the BS’s serve equivalent sets of
classes ��� � �;� � �
�
� � ��� and these classes have the
same rate and traffic characteristics in the sense that for
all �FSX� � � � �T� � � S �

:

2�� � � � � 2 � � � ��� � � $ � �&�5$�� � �
Thus all cells are equivalent for a symmetric network.

In the following, we consider a reference BS, say BS 0,
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and simply write

2 � � � � 2 � � � � � $%� � $�� � � 4#� � 4 � � �
1) No interference avoidance: In the absence of

interference avoidance, the stability condition can be
easily derived due to the fact that all cells are equally
loaded [11]. It simply reads:Z� B	� � $%�

2 � � � d � �
We obtain the network capacity as

� �
, where

�
denotes

the per-cell capacity without interference avoidance:

� � � Z� B�� � 4 �
2 � � ��� �

� �
2) Interference avoidance: In order to evaluate the

capacity gain from interference avoidance, we make the
additional assumption that the admissible transmission
profiles are symmetric in the sense of the definitions
below. This assumption ensures that the optimal static
scheduling strategy has a simple structure. We verified in
the examples of Section V that asymmetric transmission
profiles do not further improve the network capacity.

Definition 2 (Symmetric set of BS’s): We say that a
set

� � � containing the reference BS is symmetric
if there exists a permutation " of � � such that for all� S*� � and

� S�� :

2 � � � � 2	��
 ) � , � ��� � 
 � $%�a�5$��
 ) � , � (6)

where
� � � � � S��  denotes the successive elements

of
�

, with � �Q� �
. We refer to

� " � �-� � � � S��  as the
set of classes ‘associated’ with � .

Definition 3 (A base of symmetric sets of BS’s): We
say that the sets

��� � � , � S�� , constitute a base of
symmetric sets of BS’s if there exists a permutation "
of ��� such that (6) is satisfied for all sets

���
, ��S�� .

Consider the transmission profiles generated by the
sets of active BS’s

� ��� % � � �&S�� � � S*� 
, where the

sets
��� �e� , � S�� , constitute a base of symmetric sets

of BS’s. The network capacity can be evaluated using
the following algorithm:
For each class � S,��� :

1) Evaluate 2 �� � � ��� � � � B ��� 2 � � ��� � � for each ��S�� ;
2) Evaluate 2 �� ��� � �

� B���� � ) 2 �� � � , where � � denotes
the density of the set

���
, i.e., the number of

elements of
���

divided by
�

.
Proposition 4.3: The network capacity is equal to� � � , where

� � denotes the per-cell capacity:

� � � � Z� B	� � 4��
2 �� � � � �

Proof. For any �WS ��� and �HS�� , each active BS in the
set

���
can serve either class � or a class associated with �

at the maximum rate 2 �� � � . By symmetry, the optimal
scheduler uses the sets of active BS’s

��� % � � � SU� ,
the same fraction of time. Since each BS is active a
fraction of time � � , we deduce that the set of classes
associated with � can be fairly served at the maximum
rate � � ) 2 �� � � . Since all classes associated with � have
the same traffic intensity, an optimal scheduling strategy
consists in serving these classes in a single transmission
profile � , that that maximizes � � ) 2 �� � � . The corresponding
rate is 2 �� and the minimum time required to transmit4�� bits of class � is given by 4#� 6 2 �� . We deduce that the
minimum time required to transmit 4#� bits of class � for
all �FSX��� is given by:

� � � Z� B�� � 4��
2 �� �

	

V. NUMERICAL EXPERIMENTS

We now apply the previous results to evaluate the
potential capacity gain due to interference avoidance in
TDMA networks with canonical topologies like linear
and hexagonal networks. We first specify the propagation
model. Unless stated otherwise, we assume a uniform
traffic distribution across the entire network.

A. Radio environment

We consider a continuous setting where the feasible
rate of a user located at � is 2 � � � when the set of active
BS’s is

�
. We assume that the feasible rate depends

on the signal-to-noise ratio (SNR) through the Shannon
formula:

2	� � � �"!$#&%�' � � � $ SNR � � � � �
where ! represents the bandwidth and SNR � � � is the
SNR of a user located at � when the set of active BS’s
is

�
. The Shannon formula provides a reasonable ap-

proximation of most real systems, up to a multiplicative
constant. Let (�� be the location of BS � . For any � in the
cell of the reference BS, say BS 0, we get for isotropic
radio propagation:

SNR � � � � )+* �-, � % ( � ,O��
� $ ) / � B � � �/.1 � * �-, � % ( � ,O� �

where ) denotes the common transmit power of the
BS’s,

�
� is the background noise level and * is the

path loss. For the numerical results, we take values
representative of 3G wireless networks: ) �10 � dBm,



8

�
� � % � � �

dBm, * ��A%�H� % ��� � %���� #&%�' � � �-A3� dBm withA in kilometers. Note that this corresponds to a path loss
exponent of 3.5.

Remark 5.1: The path loss * �-A3� becomes larger than 1
for very small values of A , say AXd 30 cm. We verified
that the precise value of the path loss at such small
distances does not affect the network capacity.

The above model is valid for non-directional antennas,
which will be the default assumption. For directional
antennas, the path loss * is multiplied by a function � ���3�
representing the antenna gain in direction � , the angle
to the center of the beam. We then take the following
standard function [1]:

�T���3� � %
�
	��  � ��� � ������ � �"� ���

dBm
�

B. Coordinating two BS’s

We first consider the case of two BS’s, separated by
a distance

� = and serving users located on the segment
between these BS’s. Each user is served by the closest
BS. Classes are indexed by the distance A to the BS,A Y[= . We denote by 2�� � �� and 2 � � �� the feasible rate
of a user at distance A of the BS when the other BS is
on and off, respectively. In view of Proposition 4.2, the
optimal static scheduler serves users at distance A when
the opposite BS is on if and only if AQd A � , where A � is
defined by 2 ��� � �� � 2 � � �  � 6 � (see Figure 1).

R r*

BS 1 BS 2

active BS
inactive BS
service zones

Fig. 1. Optimal static scheduling strategy for a two-cell symmetric
network, ����� � ! km.

The cell capacity is then given by:

� � � �#" � �
�

� A2�� � �� $ �$"&%��� � A2 � � �� � � � �
Figure 2 compares the cell capacity obtained with and
without interference avoidance.

Remark 5.2: The gain due to interference avoidance
can be extremely large for small cells. This is due to the
fact that the ratio 2 � � �� 6 2�� � �� is very high for all AQY = .
More generally, it is most often advantageous to switch
on BS’s one at a time in a very dense network with a
finite number of BS’s.

Now assume traffic is not uniformly distributed, but
proportional to the distance to BS 1, so the total traffic
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Fig. 2. Capacity of a two-cell symmetric network.

load in cell 2 is three times that in cell 1. Besides the cell
capacity obtained with and without interference avoid-
ance, we are interested in the impact of load balancing
where the cell radii = � � = � , with = � $ = � � � = , are set
to equalize the cell loads:"&% �

�
A � A2�� � �� � "&% � � % �% �

A � A2�� � �� �
The corresponding cell capacity with and without in-
terference avoidance can be derived from the results
of 5 IV-B. We observe in Figure 3 that load balancing
increases the capacity of large cells where interference
has a limited effect. On the other hand, load balancing
is inefficient for small cells where interference is strong,
and can even have a negative impact in this case. This is
due to the fact that load balancing tends to maximize the
use of the transmission resources, that is to use all BS’s
at the same time, which in turn maximizes interference.
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Fig. 3. Capacity of a two-cell asymmetric network.

This example highlights the fact that load balancing
and interference avoidance are somewhat contradictory
schemes. While load balancing tends to make all BS’s
active to maximize the use of their transmission re-
sources, interference avoidance aims at forcing some
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BS’s to be idle to limit the impact of interference on
edge users. Thus, while load balancing is most efficient
in sparse, noise-limited networks, interference avoidance
is most efficient in dense, interference-limited networks.

C. Coordinating three BS’s

Consider now a network of three BS’s as represented
in Figure 4. This is a symmetric network with classes
indexed by ��A � �3� , the distance A to the BS and the angle� to the center of the beam. A base of symmetric sets of
BS’s is given by

� � � �����"��� ��
,
�

� � ��������
,
� � � � � 

,
with respective densities � �J� �

, � � � � 6 � , � � � � 6 � ,
and permutation "F�-A � �3� ���-A � % �3� .

θ
r

2R

Fig. 4. A three-cell symmetric network.

Figure 5 gives the optimal static scheduling strategy,
i.e., the transmission profiles and the corresponding
service zones for = � � � �

km and = � � � �
km (up

to symmetry relations, i.e., the set of all transmission
profiles is obtained by symmetry). Figure 6 compares
the cell capacity obtained with and without interference
avoidance.

R = 0.2 km

R = 0.5 km

Fig. 5. Optimal static scheduling strategy for a three-cell network.

D. Coordinating three facing sectors in tri-sectorized
hexagonal networks

We now consider an infinite tri-sectorized hexagonal
network and we quantify the gain resulting from the
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Fig. 6. Capacity of a three-cell network.

coordination of three facing sectors. The only difference
with the three-cell network lies in the interference term.
For the sake of simplicity, we assume that all the BS’s
except the three considered BS’s are always active. We
consider a directional antenna with a beam centered at
angle �J� �

, see Figure 4.
Figure 7 gives the optimal static scheduling strategy,

(again, up to symmetry relations). We verified that the
optimal scheduling strategy is roughly insensitive to the
cell radius for sufficiently small cells, =[d � � �

km say.

R < 0.5 km

Fig. 7. Optimal static scheduling strategy for a tri-sectorized
hexagonal network.

Figure 8 compares the cell capacity obtained with and
without interference avoidance. The capacity gain may
be as high as

� ���
for dense networks, a high value given

the limited degree of coordination between the BS’s.

E. Linear networks

Consider now an infinite linear network as depicted
in Figure 9. Two successive BS’s are separated by a
distance

� = .
This is a symmetric network with classes indexed byA S � % = � = � . The sets

� � ? � � < � � � S �  , < � �
,

and
�

� ? � � < � � < � $ � � � S��  , < � �
, form a base of

symmetric sets of active BS’s with respective densities� � ? � � 6:< , � � ? � � 6	< and permutation "F��A%�H� % A .
It turns out that the optimal static scheduling strategy

uses two transmission profiles only: that where all BS’s



10

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0  0.5  1  1.5  2  2.5  3

C
el

l c
ap

ac
ity

 (
bi

t/s
/H

z)

Cell radius (km)

With inter-cell scheduling
Without inter-cell scheduling

Fig. 8. Capacity of a tri-sectorized hexagonal network.

R < 0.5 km

Fig. 9. Optimal static scheduling strategy for a linear network.

are active, corresponding to the set
� � � , and that where

the closest interfering BS is turned off, corresponding
to the set

�
� � . A class A is served when all BS’s are

on if and only if A d A � , with A � such that 2 �� � � � � �� 6 � ) 2 �� � � ��� . We observed that the ratio A � 6\= is almost
constant and approximately equal to 0.54 for sufficiently
small cells, = d � � �

km say. Figure 9 shows the
corresponding scheduling strategy, Figure 10 gives the
cell capacity with and without interference avoidance.
The capacity gain may be as high as

� � �
for dense

networks.
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F. Hexagonal networks

Finally, we consider an infinite hexagonal network.
This is a symmetric network with classes indexed by

�-A � �3� as in 5 V-C. All ‘connex’ components of any
symmetric set of BS’s have the same number of ele-
ments, possibly infinite. When finite, one can verify that
this number is equal to 1, 2, 3 or 6, in which case
the connex components are singletons, two neighboring
BS’s, triangles and hexagons, respectively. If infinite, the
symmetric set is either the whole network, a ‘stripe’ set
or one of the three ‘star’ sets depicted in Figure 11,
where the stripe set of highest density is also represented.
The permutation defining the base of symmetric sets is"F��A � �3�H���-A � �.$ � 6 � � .

Star set 1 Star set 2

Stripe setStar set 3

Fig. 11. Star and stripe sets of respective densities 6/7, 3/4, 2/3, 2/3
and the corresponding potential service zones.

Again, it turns out that the optimal static scheduling
strategy uses two transmission profiles only: that where
all BS’s are active and that where the closest interfering
BS is turned off, corresponding to the star set 1. The
optimal scheduling strategy is again roughly the same
for sufficiently small cells, and represented in Figure 12.

R < 0.5 km

Fig. 12. Optimal static scheduling strategy for a hexagonal network.

Figure 13 gives the cell capacity with and without
interference avoidance. The capacity gain may be as high
as

� � �
for dense networks.
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VI. CONCLUSION

We have evaluated the potential capacity gains from
inter-cell scheduling in a dynamic setting, and specifi-
cally focused on interference avoidance in ‘TDMA net-
works’. Numerical experiments indicate that interference
avoidance yields the largest gains in dense, interference-
limited networks, ranging from 25 to 50%, depending on
the network topology. In sparse, noise-limited networks,
the gains from interference avoidance alone are far
smaller, but load balancing does help increase capacity in
case of heterogeneous loads. Thus, the relative efficacy
of interference avoidance vs. load balancing critically
depends on the network configuration.

Another key observation is that, in all considered
examples, the optimal capacity is attained by the use
of two transmission profiles only: that where all BS
are on, and that where only the first interfering BS
is switched off. This suggests that a limited degree
of coordination is sufficient in practice to achieve the
expected capacity gains. The design of the corresponding
distributed scheduling schemes opens research perspec-
tives of considerable practical interest.

APPENDIX

In this appendix, we prove Propositions 3.2 and 3.3 by
means of fluid limit techniques [18]. For convenience,
we assume Poisson flow arrivals and i.i.d. exponentially
distributed flow sizes so that the network state � ��� �
at time � constitutes a Markov process. The proof can
be easily extended to more general traffic characteris-
tics [18].

Proof of Proposition 3.2

As in [4], we consider the fluid limits obtained when
the initial number of flows grows to infinity:

� ��� �H� #�	 ������ �;��� ���� with

�Z �21�� ����� � �H��� �
Denote by � ? ����� the cumulative amount of time that
profile < is used in the interval � � � � � and define:

 ? �!���H� #�	 ��	��� � ? �
� ���� �
The evolution of the class- � ‘fluid’ volume

� � �!��� is
determined by the following differential equation. For
all � such that

� � ������� �
,� � �� � �0!(� % �
"+� ) Z?	B � ) � , = � � ? �  ?� � �

where Q�-� � � ��� ' � � � ?	B�C / � B	� 
 �-��� � =>� � ? . Note that
the set  ��� � is not necessarily restricted to a single
profile < . By continuity, we have:

Z?	B � ) � , �  ?� � � ���
and for all �TSUI ,

Z � B�� Z?	B\C

 � � �7� =>� � ? � ? Y Z � B	� Z?	B � ) � ,


 � � �7� =>� � ? �  ?� � �
Now assume


 ��� � belongs to the class of utility
functions introduced by Mo & Walrand [25]:


 �-� � � � � �����% � � � �
� � � 	� � �

and consider the Lyapunov function:� ��� �H� Z � B��

 ���#� � "+�-��� �

If $ S cK , then there exists � d �
and �TSUI such that:$3�&� �WZ?	B�C � ? =>� � ? �

We deduce:� � � � �� � � � Z � B��

 � � �7� � � �� �

� � Z � B��

 � � �7� �� $3� % Z?	B � ) � , =>� � ? �  ?� �

��

Y � ��� % � � Z � B�� Z?	B\C

 � � � ��� ? = � � ?

Y �
� ��� % � ��Z � B	�


 � � �7�
Y �

� � ��� % � � � � � ����� � � �
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for some constants
� � � � � � � � � � � � � . We conclude that there

exists a finite ��� such that
� � � ����� � � �

for all � � � � .
The fluid system is stable, which implies the ergodicity
of the Markov process � ��� � . 	

Proof of Proposition 3.3

Consider utility functions of the form:

� �-� � � � � �����% � � � �
� � � 	� � �

as introduced by Mo & Walrand [25]. The proof follows
as in [13] by introducing the Lyapunov function:

� �-� � � Z � B	� "+�-$ ���� � � � ��� $ � �
Note that the result can be extended to more general
utility functions as in [32]. 	
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