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This article is a survey of issues concerning the measurement of agreement among corpus
annotators. It exposes the mathematics and underlying assumptions of agreement coefficients
such as Cohen’s kappa and Krippendorff’s alpha; relates these coefficients to explicit models of
annotator error; discusses the use of coefficients in several annotation tasks; and argues that
weighted, alpha-like coefficients, traditionally less used than kappa-like measures in Computa-
tional Linguistics, may be more appropriate for many corpus annotation tasks – but that their
use makes the interpretation of the value of the coefficient even harder.

1. Introduction and Motivations

Ever since the mid-Nineties, increasing effort has gone into putting semantics and
discourse research on the same empirical footing as other areas of Computational Lin-
guistics (CL). This soon led to worries about the subjectivity of the judgments required
to create annotated resources, much greater for semantics and pragmatics than for the
aspects of language interpretation of concern to the first resource creation efforts such
as the creation of the Brown corpus (Francis and Kucera 1982), the British National
Corpus (Leech, Garside, and Bryant 1994) or the Penn Treebank (Marcus, Santorini, and
Marcinkiewicz 1993). Problems with early proposals for assessing coders’ agreement
on discourse segmentation tasks (such as Passonneau and Litman 1993) led Carletta
(1996) to suggest the adoption of the K coefficient of agreement, a variant of Cohen’s κ
(Cohen 1960), as this had already been used for similar purposes in content analysis for
a long time.1 Carletta’s proposals were enormously influential, and K quickly became
the de-facto standard for measuring agreement in Computational Linguistics not only
in work on discourse (Carletta et al. 1997; Core and Allen 1997; Hearst 1997; Stolcke et al.
1997; Poesio and Vieira 1998; Di Eugenio 2000; Carlson, Marcu, and Okurowski 2003)
but also for other annotation tasks (e.g., Véronis 1998; Bruce and Wiebe 1998; Stevenson
and Gaizauskas 2000; Craggs and McGee Wood 2004; Nenkova and Passonneau 2004;
Mieskes and Strube 2006). During this period, however, a number of questions have

1 As we will see below, there are lots of terminological inconsistencies in the literature. Carletta uses the
term kappa for the coefficient of agreement, referring to Krippendorff (1980) and Siegel and Castellan
(1988) for an introduction, and using Siegel and Castellan’s terminology and definitions. However, Siegel
and Castellan’s statistic, which they call K, is actually Fleiss’s generalization to more than two coders of
Scott’s π, not of the original Cohen’s κ; to confuse matters further, Siegel and Castellan use the term κ to
indicate the parameter which is estimated by K (i.e. a function of K with an approximately normal
distribution which can be used to estimate the significance of the value of K obtained). In what follows,
we will use the term κ to indicate coefficients that calculate chance agreement by looking at individual
coder marginals – Cohen’s original coefficient and its generalization to more than two coders – and use
the term K for the coefficient discussed by Siegel and Castellan.

© 2007 Association for Computational Linguistics



Extended version of submitted article July 5, 2007

also been raised about K and similar coefficients – some already in Carletta et al.’s own
work (Carletta et al. 1997) – ranging from simple questions about the way the coefficient
is computed (e.g., whether it is really applicable when more than two coders are used),
to debates about which levels of agreement can be considered ‘acceptable’ (Di Eugenio
2000; Craggs and McGee Wood 2005) to the realization that K is not appropriate for
all types of agreement (Poesio and Vieira 1998; Marcu, Romera, and Amorrortu 1999;
Di Eugenio 2000; Stevenson and Gaizauskas 2000). Di Eugenio (2000) raised the issues
of the effect of skewed distributions on the value of K and pointed out that the
original κ developed by Cohen (1960) is based on very different assumptions about
coder bias from K of Siegel and Castellan (1988), which is typically used in CL. This
issue of annotator bias was further debated in Di Eugenio and Glass (2004) and Craggs
and McGee Wood (2005). Di Eugenio and Glass (2004) pointed out that the choice
of calculating chance agreement by using individual coder marginals (κ) or pooled
distributions (K) can lead to reliability values falling on different sides of the dreaded
0.67 threshold, and recommended reporting both values. Craggs and McGee Wood
(2005), by contrast, argued, following Krippendorff (2004a,b) that measures like Co-
hen’s κ are inappropriate for measuring agreement. Finally, Passonneau has been ad-
vocating the use of Krippendorff’s α (Krippendorff 1980, 2004a) for coding tasks in CL
which do not involve nominal and disjoint categories, including anaphoric annotation,
wordsense tagging, and summarization (Passonneau 2004, 2006; Passonneau, Habash,
and Rambow 2006; Nenkova and Passonneau 2004).

Now that more than ten years have passed since Carletta’s original presentation at
the workshop on Empirical Methods in Discourse, we feel it is the time to reconsider
the use of coefficients of agreement in CL in a systematic way. In this article, a survey
of coefficients of agreement and their use in CL, we have three main goals. First of
all, we discuss in some detail the mathematics and underlying assumptions of the
coefficients used or mentioned in the CL or the content analysis literature. Secondly, we
also cover in some detail Krippendorff’s α, often mentioned but never really discussed
in detail in previous CL literature other than the papers by Passonneau just mentioned.
Third, we review the past ten years of experience with coefficients of agreement in CL,
reconsidering the issues that have been raised also from a mathematical perspective.

2. Coefficients of Agreement

2.1 Agreement, reliability and validity

To begin with, a quick recap of what agreement studies can and cannot achieve. The
following section is inspired by Krippendorff (2004a, Section 11.1).

Researchers that wish to use hand-coded data, that is, data in which items are
labeled with categories, whether to support an empirical claim or to develop and test
a computational model, need to show that such data are reliable. The fundamental
assumption behind the methodologies discussed in this paper is that data are reliable if
coders can be shown to agree on the categories assigned to units to an extent determined
by the purposes of the study (Krippendorff 2004a; Craggs and McGee Wood 2005). If
different coders produce consistently similar results, then we can infer that they have
internalized a similar understanding of the annotation guidelines, and we can expect
them to perform consistently under this understanding.

Reliability is thus a prerequisite for demonstrating the validity of the coding
scheme – that is, to show that the coding scheme captures the ‘truth’ of the phenomenon
being studied, in case this matters: if the annotators are not consistent then either some
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of them are wrong or else the annotation scheme is inappropriate for the data. (Just as
in real life, the fact that witnesses to an event disagree with each other makes it difficult
for third parties to know what actually happened.) However, it is important to keep in
mind that achieving good agreement cannot ensure validity: two observers of the same
event may well share the same prejudice while still being objectively wrong.

The last point to keep in mind is that the term ‘reliability’ can be used in three
different ways, depending on how agreement is tested. First of all, we may want to test
stability, or intra-coder agreement: the extent to which the coding process yields the
same results when repeated over time, typically measured by observing how much the
same coder agrees with her or his previous coding at a distance of time. Measuring
stability is often the first step towards assessing the reliability of data. A stronger
test is measuring reproducibility: the degree to which different coders achieve the
same coding when working independently. This is the type of test required for large
annotation efforts employing multiple coders. Finally, accuracy is the degree to which a
coding process yields the results specified by a gold standard, when one such exists.

2.2 A common notation

It is useful to think of a reliability study as involving a set of items (markables), a set of
categories, and a set of coders (annotators) who assign to each item a unique category
label. The discussions of in the literature often use different notations to express these
concepts. We will introduce a uniform notation, which we hope will make the relations
between the different coefficients of agreement clearer.

• The set of items is { i | i ∈ I } and is of cardinality i.

• The set of categories is { k | k ∈ K } and is of cardinality k.

• The set of coders is { c | c ∈ C } and is of cardinality c.

Confusion also arises from the use of the letter P, which is used in the literature with at
least three distinct interpretations, namely “proportion”, “percent”, and “probability”.
We will use the following notations uniformly throughout the article.

• We will use the notation Ao (observed agreement) and Do (observed
disagreement) to indicate the observed agreement and disagreement.

• The notation Ae and De will be used to indicate expected agreement and
expected disagreement, respectively. The relevant coefficient will be
indicated with a superscript when an ambiguity may arise (for example,
Aπ

e is the expected agreement used for calculating π, and Aκ
e is the

expected agreement used for calculating κ).

• The notation P(·) will be reserved for the probability of a variable, and
P̂(·) will be used for an estimate of such probability from observed data.

Finally, we will use n with a subscript parameter to indicate the number of judgments
of a particular type:

• nik is the number of coders who assigned item i to category k;

• nck is the number of items assigned by coder c to category k;
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Table 1
A simple example of agreement on dialogue act tagging.

CODER A
STAT IREQ TOTAL

STAT 20 20 40
CODER B IREQ 10 50 60

TOTAL 30 70 100

• nk is the total number of items assigned by all coders to category k.

2.3 Unsatisfactory Measures of Agreement

Why are new coefficients to measure agreement necessary? Couldn’t existing measures
such as percentage agreement or traditional statistics like χ2 do the job? Although this
question has already been addressed a number of times in the literature, it is useful to
consider it again, in part for completeness’ sake, but also to clarify the problems that
kappa-like measures are meant to solve.

Percentage Agreement. The simplest measure of agreement between two coders is per-
centage of agreement or observed agreement, defined for example by Scott (1955,
page 323) as “the percentage of judgments on which the two analysts agree when coding
the same data independently”. This is the number of items on which the coders agree
divided by the total number of items. More precisely, and looking ahead to the discus-
sion below, observed agreement is the arithmetic mean of the agreement value agri for
all items i ∈ I, defined as follows:

agri =
{

1 if the two coders assign i to the same category
0 if the two coders assign i to different categories

Observed agreement over the values agri for all items i ∈ I is then:

Ao =
1
i ∑

i∈I
agri

For example, let us assume we have a very simple annotation scheme for dialogue acts
in information-seeking dialogues making a binary distinction between the categories
statement and info-request , as in the DAMSL dialogue act scheme (Allen and Core
1997), and that two coders classify 100 utterances according to this scheme as shown in
Table 1. Percentage agreement for this data set is obtained by summing up the cells on
the diagonal and dividing by the total number of items: Ao = (20 + 50)/100 = 0.7

Observed agreement enters in the computation of all the measures of agreement we
consider, but on its own it does not yield values that can be compared across studies,
since some agreement is due to chance, and the amount of chance agreement is affected
by two factors that vary from one study to the other. First of all, as Scott (1955, page 322)
points out, “[percentage agreement] is biased in favor of dimensions with a small num-
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ber of categories”. In other words, given two coding schemes for the same phenomenon,
the one with fewer categories will result in higher percentage agreement just by chance.
If two coders randomly classify utterances in a uniform manner using the scheme of
Table 1, we would expect an equal number of items to fall in each of the four cells in
the table, and therefore pure chance will cause the coders to agree on half of the items
(the two cells on the diagonal: 1

4 + 1
4 ). But suppose we want to refine the simple binary

coding scheme by introducing a new category, check , as in the MapTask coding scheme
(Carletta et al. 1997). If two coders randomly classify utterances in a uniform manner
using the three categories in the second scheme, they would only agree on a third of
the items ( 1

9 + 1
9 + 1

9 ). The second reason percentage agreement can not be trusted is
that is does not correct for the distribution of items among categories: we expect a
higher percentage agreement when one category is much more common than the other.
This problem, already raised by Hsu and Field (2003, page 207) among others, can be
illustrated using the following example (Di Eugenio and Glass 2004, example 3, pages
98–99). Suppose 95% of utterances in a particular domain are statement , and only 5%
are info-request . We would then expect by chance that 0.95 × 0.95 = 0.9025 of the
utterances would be classified as statement by both coders, and 0.05× 0.05 = 0.0025
as info-request , so the coders would agree on 90.5% of the utterances. Under such
circumstances, a seemingly high observed agreement of 90% is actually worse than
expected by chance.

The conclusion reached in the literature is that in order to get figures that are com-
parable across studies, observed agreement has to be adjusted for chance agreement.
We will not look at the variants of percentage agreement used in CL work on discourse
before the introduction of kappa, such as percentage agreement with an expert and
percentage agreement with the majority; see Carletta (1996) for discussion and criticism.
We will review various ways of correcting percentage agreement for chance, starting in
section 2.4. But first, we will look at other chance-adjusted measures and show why they
are inadequate for measuring agreement – hence the need to develop specific agreement
coefficients.

Measures of association. The χ2 statistic is also inappropriate as a measure of agreement.
As pointed out by Cohen (1960, page 39), χ2 is a measure of association rather than
agreement – which means that we get a high value of χ2 whenever a particular cooc-
currence of judgments is different from the expected value. This may happen not just
when we find good agreement, but also when we have systematic disagreement. The
agreement matrix in Table 2 reports the results of an annotation experiment in which
again coder A and coder B classify utterances as either statement , info-request ,
or check . The value of χ2 for this table is 64.59, which is highly significant. But this
strong association does not indicate agreement: the highest contribution comes from the
utterances classified by A as info-request and by B as check , where the observed
value 0.15 is much higher than the expected value 0.06 – a case of disagreement.

Correlation Coefficients. A point perhaps not sufficiently emphasized in the CL literature
on agreement is that κ and related measures of agreement such as α or π are not
primarily statistics in the sense of t, χ2 or F, which are (functions associated with)
probability distributions whose value specifies the significance of the result obtained.
The title of Cohen’s classic article is very illuminating in this respect: π, κ, α, etc.
are ‘coefficient(s) of agreement for nominal scales’. What this means is that they are
coefficients taking values between −1 and +1, just like Pearson’s product-moment
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Table 2
High association but low agreement (adapted from Cohen 1960).

CODER A
STAT IREQ CHCK TOTAL

STAT 0.25 0.13 0.12 0.50
IREQ 0.12 0.02 0.16 0.30

CODER B CHCK 0.03 0.15 0.02 0.20

TOTAL 0.40 0.30 0.30 1

Table 3
Correlation need not indicate agreement.

EXP 1 EXP 2
ITEM

A B C D

a 1 1 1 2
b 2 2 2 4
c 3 3 3 6
d 4 4 4 8
e 5 5 5 10

r = 1.0 r = 1.0

coefficient r or Spearman’s rank-correlation coefficient rs, but intended for nominal
scales, and for measuring agreement rather than association. Thinking of the kappa-
like measures of agreement as coefficients is illuminating in certain respects, as they
have some of the formal properties of correlation coefficients (Krippendorff 1970a),
and the problem of deciding whether a particular value of, say, κ indicates a sufficient
degree of agreement is similar to the problem of determining whether a particular
value of r expresses a strong enough association. However, neither product-moment
correlation r nor rank order correlation rs are good measures of agreement (Bartko and
Carpenter 1976, page 309). This is not just because these coefficients are specified for real
values rather than nominal scales; correlation is not the same thing as agreement, and a
strong correlation may exist even when coders disagree. The problem is illustrated by
Table 3 (adapted from Bartko and Carpenter 1976). Suppose we have a coding scheme
according to which coders give each item a rating between 1 and 10 (this might be
a marking scheme for student essays, for example), and we ran two experiments to
test the scheme. In the first experiment, coders A and B (whose marks are shown in
the second and third columns) are in complete agreement; while in the second, coders
C and D (whose marks are shown in the fourth and fifth columns) disagree on all items,
but assign marks that are linearly correlated. Exactly the same product-moment value
will be obtained in both experiments, even though there is perfect agreement between
A and B, but no agreement at all between C and D.
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2.4 Chance-corrected coefficients for measuring agreement between two coders

All of the coefficients of agreement discussed in this article correct for chance on the
basis of the same idea. First we find how much agreement is expected by chance: let us
call this value Ae. The value 1 − Ae will then measure how much agreement over and
above chance is attainable; whereas the value Ao −Ae will tell us how much agreement
beyond chance was actually found. The ratio between Ao −Ae and 1−Ae will then tell
us which proportion of the possible agreement beyond chance was actually observed.
This idea is expressed by the following formula.

S, π, κ =
Ao −Ae

1−Ae

The three best-known coefficients, S (Bennett, Alpert, and Goldstein 1954), π (Scott
1955) and κ (Cohen 1960), and their generalizations, all use this formula; whereas
Krippendorff’s α is based on a related formula expressed in terms of disagreement
(see section 2.6). All three coefficients therefore yield values of agreement between
−Ae/1−Ae (no observed agreement) and 1 (observed agreement = 1), with the value 0
signifying chance agreement (observed agreement = expected agreement). Note also
that whenever agreement is less than perfect (Ao < 1), chance-corrected agreement will
be strictly lower than observed agreement, since some amount of agreement is always
expected by chance.

Observed agreement Ao is easy to compute, and is the same for all three coef-
ficients – the proportion of items on which the two coders agree. But the notion of
chance agreement, or the probability that two coders will classify an arbitrary item as
belonging to the same category by chance, requires a model of what would happen if
coders’ behavior was only by chance. All three coefficients assume independence of the
two coders – that is, that the chance of c1 and c2 agreeing on any given category k is the
product of the chance of each of them assigning an item to that category: P(k|c1) ·P(k|c2)
(the independence assumption has been the subject of much criticism, for example by
John S. Uebersax).2 Expected agreement is then the probability of c1 and c2 agreeing on
any category, that is, the sum of the above product over all categories:

AS
e = Aπ

e = Aκ
e = ∑

k∈K
P(k|c1) · P(k|c2)

The difference between S, π and κ lies in the assumptions leading to the calculation of
P(k|ci), the chance that coder ci will assign an arbitrary item to category k (Zwick 1988;
Hsu and Field 2003).

S: This coefficient is based on the assumption that if coders were operating
by chance alone, we would get a uniform distribution: that is, for any two
coders cm, cn and any two categories k j, kl , P(k j|cm) = P(kl |cn). (Put it
another way: chance does not distinguish between categories and coders.)

π: If coders were operating by chance alone, we would get the same
distribution for each coder: for any two coders cm, cn and any category k,

2 http://ourworld.compuserve.com/homepages/jsuebersax/agree.htm .
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P(k|cm) = P(k|cn). (i.e., chance distinguishes between categories, but not
coders.)

κ: If coders were operating by chance alone, we would get a separate
distribution for each coder: chance distinguishes between both categories
and coders.

A further complication, explained perhaps most clearly by Krippendorff (1980), is a
problem that is all too familiar in CL: the lack of independent prior knowledge of
the distribution of items among categories. The distribution of categories (for π) and
the priors for the individual coders (for κ) therefore have to be estimated from the
observed data. We begin here by giving detailed examples on how the coefficients are
calculated for two coders; we will discuss a variety of proposed generalizations starting
in section 2.5.

All categories are equally likely: S. The simplest way of discounting for chance is the one
adopted to compute the coefficient S, also known in the literature as C, κn, G, and RE
(see Zwick 1988; Hsu and Field 2003). As said above, the computation of S is based on an
interpretation of chance as a random choice of category from a uniform distribution –
that is, all categories are equally likely. If coders classify the items into k categories,
then the chance P(k|ci) of any of any coder assigning an item to category k under the
uniformity assumption is 1

k ; hence the total agreement expected by chance is

AS
e = ∑

k∈K

1
k
· 1

k
= k ·

(
1
k

)2
=

1
k

For example, the value of S for the coding example in Table 1 is as follows (where Ao =
0.7, see above).

AS
e = 2×

(
1
2

)2
= 0.5

S =
0.7− 0.5
1− 0.5

= 0.4

The coefficient S is problematic in many respects. The value of the coefficient can
be artificially increased simply by adding spurious categories which the coders would
never use (Scott 1955, pages 322–323). In the case of CL, for example, S would reward
designing extremely fine-grained tagsets, provided that most tags are never actually
encountered in real data. Additional limitations are noted by Hsu and Field (2003). It has
been argued that uniformity is the best model for a chance distribution of items among
categories if we have no independent prior knowledge of the distribution (Brennan and
Prediger 1981). However, a lack of prior knowledge does not mean that the distribution
cannot be estimated post-hoc. A uniform distribution is not a very plausible model for
annotation in CL, as in pretty much all tagging tasks, from POS tags (Francis and Kucera
1982; Mieskes and Strube 2006) to wordsenses (Fellbaum, Grabowski, and Landes 1997;
Bruce and Wiebe 1998; Véronis 1998) to dialogue acts (Carletta et al. 1997; Core and
Allen 1997) we find substantial differences in the distribution of tags. For these reasons
the S coefficient has never really found much use in CL, and studying it does not
contribute to the points we develop in this article, so we will not discuss it further.
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A single distribution: π. All of the other methods for discounting chance agreement
we discuss in this article attempt to overcome the limitations of S’s strong uniformity
assumption using an idea first proposed by Scott (1955): use the actual behavior of the
coders to estimate the prior distribution of the categories. As said above, Scott based his
characterization of π on the assumption that random assignment of categories to items,
by any coder, is governed by the distribution of items among categories in the actual
world; the best estimate of this distribution is P̂(k), the observed proportion of items
assigned to category k by both coders.3

P(k|c1) = P(k|c2) = P̂(k)

P̂(k), the observed proportion of items assigned to category k by both coders, is the
total number of assignments to k by both coders nk, divided by the overall number of
assignments, which for the two-coder case is twice the number of items i:

P̂(k) =
nk
2i

Given the assumption that coders act independently, expected agreement is computed
as follows.4

Aπ
e = ∑

k∈K
P̂(k) · P̂(k) = ∑

k∈K

(nk
2i

)2
=

1
4i2 ∑

k∈K
n2

k

The value of π for the experiment in Table 1 is calculated as follows.

P(Stat | Coder A) = P(Stat | Coder B) = P̂(Stat) = 0.35

P(IReq | Coder A) = P(IReq | Coder B) = P̂(IReq) = 0.65

Aπ
e = 0.352 + 0.652 = 0.1225 + 0.4225 = 0.545

π =
0.7− 0.545
1− 0.545

=
0.155
0.455

≈ 0.341

It is easy to show that for any set of coding data, Aπ
e ≥ AS

e and therefore π ≤ S, with
the limiting case (equality) obtaining when the observed distribution of items among
categories is uniform.

Individual coder distributions: κ. The method proposed by Cohen (1960) to calculate ex-
pected agreement Ae in his κ coefficient assumes that random assignment of categories
to items is governed by prior distributions that are unique to each coder, and which

3 The same method is used to compute the K coefficient discussed by Siegel and Castellan (1988), which is
why we consider K to be a generalization of π rather than κ; this has already been pointed out by
Di Eugenio and Glass (2004).

4 We should note that Aπ
e is a biased estimator which overestimates the expected agreement. This is

because Aπ
e is calculated from a single sample, and items in a sample tend to be somewhat closer together

than items in the entire population (which amounts to the loss of one “degree of freedom”). Thus, while
P̂(k) is an unbiased estimator of the distribution of items in the entire population, Aπ

e is a biased
estimator of the expected agreement in the entire population; an unbiased estimator would be
(2iAπ

e − 1)/(2i− 1), as used for Krippendorff’s α (section 2.6).
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reflect individual annotator bias. An individual coder’s prior distribution is estimated
by looking at her actual distribution: P(k|ci), the probability that coder ci will classify
an arbitrary item into category k, is estimated by using P̂(k|c), the proportion of items
actually assigned by coder ci to category k; this is the number of assignments to k by c,
nck, divided by the number of items i.

P(k|ci) = P̂(k|ci) =
ncik

i

As in the case of S and π, the probability that the two coders c1 and c2 assign an item to
a particular category k ∈ K is the joint probability of each coder making this assignment
independently. For κ this joint probability is P̂(k|c1) · P̂(k|c2); expected agreement is then
the sum of this joint probability over all the categories k ∈ K.5

Aκ
e = ∑

k∈K
P̂(k|c1) · P̂(k|c2) = ∑

k∈K

nc1k

i
·

nc2k

i
=

1
i2 ∑

k∈K
nc1knc2k

The value of κ for the experiment in Table 1 is as follows.

P(Stat | Coder A) = 0.3 P(Stat | Coder B) = 0.4

P(IReq | Coder A) = 0.7 P(IReq | Coder B) = 0.6

Aκ
e = 0.3× 0.4 + 0.6× 0.7 = 0.12 + 0.42 = 0.54

κ =
0.7− 0.54
1− 0.54

=
0.16
0.46

≈ 0.348

It is easy to show that for any set of coding data, Aπ
e ≥ Aκ

e and therefore π ≤ κ, with the
limiting case (equality) obtaining when the observed distributions of the two coders are
identical. The relationship between κ and S is not fixed.

What is measured by Pi and Kappa. The difference between π and κ has been the subject of
much contention in the literature, both in CL where it has surfaced recently (Di Eugenio
and Glass 2004; Craggs and McGee Wood 2005) and in other fields where it constitutes
a long-standing debate (Byrt, Bishop, and Carlin 1993; Fleiss 1975; Krippendorff 1978,
2004b). We will discuss this difference in more detail in section 3.1, where we also prove
that the values of π and κ get closer as the number of coders grows. At this point
we only wish to point out that by averaging the individual distributions, π reflects
our expectations for arbitrary coders, whereas κ relates specifically to the coders who
performed the annotation (since it takes their individual distributions as a basis for
calculating chance agreement). When generalization is desired (as in most reliabiliy
studies), π is therefore more appropriate. Generalizing to arbitrary coders introduces
additional variability, so it is not surprising that π ≤ κ for any particular set of data,
with equality obtaining when the coders are indistinguishable.

A numerical comparison of S, Pi and Kappa. Zwick (1988) provides a particularly clear
illustration of the effect of differences between the coders’ observed distributions (coder

5 Since Aκ
e is calculated from two independent samples, it is an unbiased estimator of the expected

agreement of the two specific coders on the entire population of items.
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Table 4
The effect of coder marginals on coefficient values.

CODER A
STAT IREQ IAFA CSFA TOTAL

Case 1: Marginals uniform
S = 0.467, π = 0.467, κ = 0.467

STAT 0.20 − − 0.05 0.25
IREQ − 0.10 0.15 − 0.25
IAFA − 0.15 0.10 − 0.25

CODER B CSFA 0.05 − − 0.20 0.25

TOTAL 0.25 0.25 0.25 0.25 1.00

Case 2: Marginals equal but not uniform
S = 0.467, π = 0.444, κ = 0.444

STAT 0.20 0.10 0.10 − 0.40
IREQ 0.10 0.10 − − 0.20
IAFA 0.10 − 0.10 − 0.20

CODER B CSFA − − − 0.20 0.20

TOTAL 0.40 0.20 0.20 0.20 1.00

Case 3: Marginals unequal
S = 0.467, π = 0.460, κ = 0.474

STAT 0.20 0.05 0.05 0.10 0.40
IREQ − 0.10 0.05 0.05 0.20
IAFA − 0.05 0.10 0.05 0.20

CODER B CSFA − − − 0.20 0.20

TOTAL 0.20 0.20 0.20 0.40 1.00

marginals) on the values of S, κ, and π. We reproduce one of her examples here,
recasting her example in a CL setting.

Let us assume a dialogue act classification scheme, again adapted from DAMSL,
with four categories for forward-looking function: statement , info-request ,
influencing-addressee-future-action , and committing-speaker-
future-action . Let us again assume we have two coders, coder A and coder B. In
Table 4 we find three illustrations of the three situations that may arise, in all of which
the observed agreement Ao = 0.60.

Case 1 is an example of the case in which the coders assign equal proportions
of items to all categories; in this case, all three coefficients of agreement have the
same value. Case 2 exemplifies the situation in which coder A and coder B, while not
assigning equal proportions of items to all categories, still end up assigning items to
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categories in identical proportions: both judge 40% of items to be statement , 20% to
be info-request , and so forth. In this situation, κ and π still have the same value.
Finally, Case 3 is an example of the situation in which Coder A and Coder B do not even
agree on the proportion of items belonging to a given category: in this case, κ and π
may have different values. Notice also that in Case 2 we get lower values of κ and π
than in Case 3 – that is, when observed agreement is held constant, agreement on the
marginals results in lowered coefficient values (Feinstein and Cicchetti 1990; Cicchetti
and Feinstein 1990; Di Eugenio and Glass 2004).

2.5 More than two coders

In corpus annotation practice, measuring reliability with only two coders is seldom
considered enough, except for small-scale studies. The coefficients π and κ, presented
above with their original definitions for two coders, can be generalized to reliability
studies with more than two coders. Due to historical accident, the terminology here
becomes confusing. Fleiss (1971) proposed a coefficient of agreement for multiple coders
and called it κ, even though it calculates expected agreement based on the cumulative
distribution of judgments by all coders and is thus better thought of as a generalization
of Scott’s π. This unfortunate choice of name was the cause of much confusion in sub-
sequent literature: often, studies which claim to give a generalization of κ to more than
two coders actually report Fleiss’s coefficient (e.g. Bartko and Carpenter 1976; Siegel and
Castellan 1988; Di Eugenio and Glass 2004). Since Carletta (1996) introduced reliability
to the CL community based on the definitions of Siegel and Castellan (1988), the term
“kappa” has been usually associated in this community with Siegel and Castellan’s K,
which is in effect Fleiss’s coefficient, that is a generalization of Scott’s π.

We will call Fleiss’s coefficient multi-π, reserving the name multi-κ for a proper
generalization of Cohen’s κ (Davies and Fleiss 1982). We will drop the multi- prefixes
when no confusion is expected to arise.

Fleiss’s multi-π. With more than two coders, the observed agreement Ao can no longer be
defined as the percentage of items on which there is agreement, since inevitably there
will be items on which some coders agree and others disagree. We therefore measure
pairwise agreement: Fleiss (1971) defines the amount of agreement on a particular item as
the proportion of agreeing judgment pairs out of the total number of judgment pairs for
that item.

Another problem with multiple coders is that when the number of coders c is
greater than two, judgments cannot be shown in a contingency table like Table 1 or
Table 2, since each coder has to be represented in a separate dimension. Fleiss (1971)
therefore uses a different type of table which lists each item with the number of judg-
ments it received for each category; Siegel and Castellan (1988) use a similar table, which
Di Eugenio and Glass (2004) call an agreement table. Table 5 is an example of such an
agreement table, in which the same 100 utterances from Table 1 are labeled by three
coders instead of two. Di Eugenio and Glass (2004, page 97) note that compared to
contingency tables like Tables 1 and 2, agreement tables like Table 5 lose information
because they do not say which coder gave each judgment. This information is not
used in the calculation of π, but is necessary for determining the individual coders’
distributions in the calculation of κ. (Agreement tables also add information compared
to contingency tables, namely the identity of the items that make up each contingency
class, but this information is not used in the calculation of either κ or π.)

12
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Table 5
Agreement table with three coders.

STAT IREQ

Utt1 2 1
Utt2 0 3

...
Utt100 1 2

TOTAL 90 (0.3) 210 (0.7)

Let nik stand for the number of times an item i is classified in category k (i.e. the
number of coders that make such a judgment): for example, given the distribution in
Table 5, nUtt1Stat = 2 and nUtt1IReq = 1. Each category k contributes

(nik
2

)
pairs of agreeing

judgments for item i; the amount of agreement agri for item i is the sum of
(nik

2

)
over all

categories k ∈ K, divided by
(c

2
)
, the total number of judgment pairs per item.

agri =
1(c
2
) ∑

k∈K

(
nik
2

)
=

1
c(c− 1) ∑

k∈K
nik(nik − 1)

For example, given the results in Table 5, we find the agreement value for Utterance 1.

agr1 =
1(3
2
) ((nUtt1Stat

2

)
+
(

nUtt1IReq

2

))
=

1
3

(1 + 0) ≈ 0.33

The overall observed agreement is the mean of agri for all items i ∈ I.

Ao =
1
i ∑

i∈I
agri =

1
ic(c− 1) ∑

i∈I
∑
k∈K

nik(nik − 1)

(Notice that the above definition of observed agreement is equivalent to the mean of the
two-coder obeserved agreement values from section 2.4 for all coder pairs.)

If observed agreement is measured on the basis of pairwise agreement (the propor-
tion of agreeing judgment pairs), it makes sense to measure expected agreement in terms
of pairwise comparisons as well, i.e., as the probability that any pair of judgments for
an item would be in agreement – or, said otherwise, the probability that two arbitrary
coders would make the same judgment for a particular item by chance. This is the
approach taken by Fleiss (1971). Like Scott, Fleiss interprets ‘chance agreement’ as the
agreement expected by a single distribution which reflects the combined judgments of
all coders, meaning that expected agreement is calculated using P̂(k), the overall pro-
portion of items assigned to category k, which is the total number of such assignments
by all coders nk divided by the overall number of assignments. The latter, in turn, is the
number of items i multiplied by the number of coders c.

P̂(k) =
1
ic

nk
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The probability that two arbitrary coders assign an item to a particular category k ∈ K is
assumed to be the joint probability of each coder making this assignment independently,
that is (P̂(k))2. The expected agreement is the sum of this joint probability over all the
categories k ∈ K.6

Aπ
e = ∑

k∈K

(
P̂(k)

)2 = ∑
k∈K

(
1
ic

nk

)2
=

1
(ic)2 ∑

k∈K
n2

k

Multi-π is the coefficient that Siegel and Castellan (1988) call K.

Multi-κ. It is fairly straightforward to adapt Fleiss’s proposal to generalize Cohen’s κ
proper to more than two coders; the development below is our own, but an identical
proposal can be found in Davies and Fleiss (1982).

For multi-κ, we calculate a separate probability distribution for each annotator: the
probability of assigning an item to category k by coder c is the observed proportion of
such assignments P̂(k|c), which is the number of such assignments nck divided by the
number of items i.

P̂(k|c) =
1
i

nck

The probability that two arbitrary coders assign an item to a particular category k ∈ K
is the joint probability of each coder making this assignment independently. The joint
probability for two particular coders cm and cn is P̂(k|cm)P̂(k|cn), and since all coders
judge all items, the joint probability for an arbitrary pair of coders is the arithmetic
mean of P̂(k|cm)P̂(k|cn) over all coder pairs cm, cn. Again, the expected agreement is the
sum of this joint probability over all the categories k ∈ K.

Aκ
e = ∑

k∈K

1(c
2
) c−1

∑
m=1

c

∑
n=m+1

P̂(k|cm)P̂(k|cn)

It is easy to see that Aκ
e for multiple coders is the mean of the two-coder Aκ

e values from
section 2.4 for all coder pairs.

2.6 Krippendorff’s α and other weighted agreement coefficients

A serious limitation of both π and κ is that they treat all disagreements equally. For
some coding tasks, however, disagreements are not all alike. Even in the simpler case of
dialogue act tagging, a disagreement between an accept and a reject interpretation
of an utterance is clearly more serious than a disagreement between an info-request
and a check ; for tasks such as anaphora resolution, where reliability is determined by
measuring agreement on sets (coreference chains), allowing for degrees of disagreement
becomes essential (see section 4.4). Under such circumstances, π and κ yield extremely
low values and are thus not very useful; instead, what is needed are coefficients that can
take into account the magnitude of the disagreements.

6 As in the two-coder case, multiple-coder Aπ
e is a biased estimator calculated from a single sample; an

unbiased estimator would be (icAπ
e − 1)/(ic− 1).
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In this section we discuss α (Krippendorff 1980, 2004a) – a coefficient defined in a
general way that is appropriate for use with multiple coders, different magnitudes of
disagreement, and also missing values, and based on assumptions similar to those of
π – and weighted kappa κw (Cohen 1968), a generalization of κ.

2.6.1 Krippendorff’s α. The coefficient α (Krippendorff 1980, 2004a) is an extremely
versatile agreement coefficient. It is based on assumptions similar to π, namely that
expected agreement is calculated by looking at the overall distribution of judgments
without regard to which coders produced these judgments. It applies to multiple coders,
and it allows for different magnitudes of disagreement. When all disagreements are
considered equal it is nearly idenical to multi-π, correcting for small sample sizes by
using an unbiased estimator for expected agreement. In this section we will present
Krippendorff’s α and relate it to the other coefficients discussed in this article, but we
will start with α’s origins as a measure of variance, following a long tradition of using
variance to measure reliability (see citations in Rajaratnam 1960; Krippendorff 1970b).

Variance is a useful concept if the coders assign numerical values to the items (as in
magnitude estimation tasks). We follow the standard definition of a sample’s variance s2

as the sum of square differences from the mean SS = ∑(x − x̄)2 divided by the degrees
of freedom df . Each item in a reliability study can be considered to be a separate level
in a single-factor analysis of variance: the smaller the variance around each level, the
higher the reliability. In order to be comparable across studies, the variance within
the levels (s2

within) needs to be scaled with respect to the expected variance, which
is estimated by the overall variance of the data (s2

total). The ratio s2
within/s2

total has the
following properties.

• s2
within/s2

total = 0 when agreement is perfect (no variance within the levels).

• s2
within/s2

total = 1 when agreement is the result of chance.

• s2
within/s2

total > 1 when there is systematic disagreement.

Subtracting the ratio s2
within/s2

total from 1 gives a coefficient with the same “anchors”
as the ones from the previous sections, namely the value 1 signifies perfect agreement
while 0 signifies chance agreement.

α = 1−
s2

within
s2

total
= 1−

SSwithin/df within
SStotal/df total

We also note that the ratio s2
within/s2

total cannot exceed 2: SSwithin ≤ SStotal by definition,
and df total < 2 df within because each item has at least two judgments. The lower bound
for α is therefore −1.

We can unpack the formula for α to bring it to a form which is similar to the other
coefficients we have looked at, and which will allow generalizing α beyond simple
numerical values. The first step is to get rid of the notion of arithmetic mean which lies at
the heart of the measure of variance. We observe that for any set of numbers x1, . . . , xN
with a mean x̄ = 1

N ∑N
n=1 xn, the sum of square differences from the mean SS can be

expressed as the sum of square of differences between all the (ordered) pairs of numbers,
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scaled by a factor of 1/2N.

SS =
N

∑
n=1

(xn − x̄)2 =
1

2N

N

∑
n=1

N

∑
m=1

(xn − xm)2

For calculating α we considered each item to be a separate level in an analysis of
variance; the number of levels is thus the number of items i, and since each coder
marks each item, the number of observations for each item is the number of coders c.
Within-level variance is the sum of the square differences from the mean of each item
SSwithin = ∑i ∑c(xic − x̄i)2, divided by the degrees of freedom df within = i(c− 1). We can
express this as the sum of the squares of the differences between all of the judgments
pairs for each item, summed over all items and scaled by the appropriate factor. We use
the notation xic for the value given by coder c to item i, and x̄i for the mean of all the
values given to item i.

s2
within =

SSwithin
df within

=
1

i(c− 1) ∑
i∈I

∑
c∈C

(xic − x̄i)
2 =

1
2ic(c− 1) ∑

i∈I

c

∑
m=1

c

∑
n=1

(xicm − xicn )
2

The total variance is the sum of the square differences of all judgments from the grand
mean SStotal = ∑i ∑c(xic − x̄)2, divided by the degrees of freedom df total = ic − 1. This
can be expressed as the sum of the squares of the differences between all of the judg-
ments pairs without regard to items, again scaled by the appropriate factor. The notation
x̄ is the overall mean of all the judgments in the data.

s2
total =

SStotal
df total

=
1

ic− 1 ∑
i∈I

∑
c∈C

(xic − x̄)2 =
1

2ic(ic− 1)

i

∑
j=1

c

∑
m=1

i

∑
l=1

c

∑
n=1

(xijcm − xilcn )
2

Now that we have removed reference to means from our formulas, we can abstract over
the measure of variance. We define a distance function d which takes two numbers and
returns the square of their difference.

dab = (a− b)2

We also simplify the computation by counting all the identical value assignments
together. Each unique value used by the coders will be considered a category k ∈ K.
We use nik for the number of times item i is given the value k, that is the number of
coders that make such judgment. For every (ordered) pair of distinct values ka, kb ∈ K
there are nika nikb

pairs of judgments of item i, whereas for non-distinct values there
are nika (nika − 1) pairs. We use this notation to rewrite the formula for the within-level
variance. Dα

o, the observed disagreement for α, is defined as twice the variance within
the levels in order to get rid of the factor 2 in the denominator; note also that the formula
below incorrectly counts the number of pairs of identical judgments, but there’s no need
to correct for this because dkk = 0 for all k.

Dα
o = 2 s2

within =
1

ic(c− 1) ∑
i∈I

k

∑
j=1

k

∑
l=1

nikj
nikl

dkjkl
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We do the same simplification for the total variance, where nk stands for the total num-
ber of times the value k is assigned to any item by any coder. The expected disagreement
for α, Dα

e , is twice the total variance.

Dα
e = 2 s2

total =
1

ic(ic− 1)

k

∑
j=1

k

∑
l=1

nkj
nkl

dkjkl

Since both expected and observed disagreement are twice the respective variances, the
coefficient α retains the same form when expressed with the disagreement values.

α = 1− Do

De

Now that α has been expressed without explicit reference to means, differences, and
squares, it can be generalized to a variety of coding schemes in which the labels cannot
be interpreted as numerical values: all one has to do is to replace the square difference
function d with a different distance function. Krippendorff (1980, 2004a) offers distance
metrics suitable for nominal, interval, ordinal and ratio scales. Of particular interest is
the function for nominal categories, that is a function which considers all distinct labels
equally distant from one another.

dab =
{

0 if a = b
1 if a 6= b

It turns out that with this distance function, the observed disagreement Dα
o is exactly the

complement of the observed agreement of Fleiss’s multi-π, 1 − Aπ
o , and the expected

disagreement Dα
e differs from 1−Aπ

e by a factor of (ic − 1)/ic; the difference is due to
the the fact that π uses a biased estimator of the expeceted agreement in the popula-
tion whereas α uses an unbiased estimator. The following equation shows that given
the correspondence between observed and expected agreement and disagreement, the
coefficients themselves are nearly equivalent.

α = 1− Dα
o

Dα
e
≈ 1− 1−Aπ

o
1−Aπ

e
=

1−Aπ
e − (1−Aπ

o )
1−Aπ

e
=

Aπ
o −Aπ

e
1−Aπ

e
= π

For nominal data, the coefficients π and α approach each other as either the number of
items or the number of coders approaches infinity.

Krippendorff’s α will work with any distance metric, provided that identical cat-
egories always have a distance of zero (dkk = 0 for all k). Another useful constraint
is symmetry (dab = 0 for all a, b). This flexibility affords new possibilities for analysis,
which we will illustrate in section 4. We should also note, however, that the flexibility
also creates new pitfalls, especially in cases where it is not clear what the natural dis-
tance metric is. For example, there are different ways to measure dissimilarity between
sets, and any of these measures can be justifiably used when the category labels are
sets of items (as in the annotation of anaphoric relations). The different distance metrics
yield different values of α for the same annotation data, making it difficult to interpret
the resulting values. We will return to this problem in section 4.4.
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2.6.2 Cohen’s κw. A weighted variant of Cohen’s κ is presented in Cohen (1968). The
implementation of weights is similar to that of Krippendorff’s α – each pair of cate-
gories ka, kb ∈ K is associated with a weight dkakb

, where a larger weight indicates more
disagreement (Cohen uses the notation v; he does not place any general constraints on
the weights – not even a requirement that a pair of identical categories have a weight
of zero, or that the weights be symmetric across the diagonal). The coefficient is defined
for two coders: the disagreement for a particular item i is the weight of the pair of
categories assigned to it by the two coders, and the overall observed disagreement is
the (normalized) mean disagreement of all the items. Let k(cn, i) denote the category
assigned by coder cn to item i; then the disagreement for item i is disagri = dk(c1,i)k(c2,i).
The observed disagreement Do is the mean of disagri for all items i, normalized to the
interval [0, 1] through division by the maximal weight dmax.

Dκw
o =

1
dmax

1
i ∑

i∈I
disagri =

1
dmax

1
i ∑

i∈I
dk(c1,i)k(c2,i)

If we take all disagreements to be of equal weight, that is dkaka = 0 for all categories ka
and dkakb

= 1 for all ka 6= kb, then the observed disagreement is exactly the complement
of the observed agreement as calculated in section 2.4: Dκw

o = 1−Aκ
o.

Like κ, the coefficient κw interprets expected disagreement as the amount expected
by chance from a distinct probability distribution for each coder. These individual
distributions are estimated by P̂(k|c), the proportion of items assigned by coder c to
category k, that is the number of such assignments nck divided by the number of items i.

P̂(k|c) =
1
i

nck

The probability that coder c1 assigns an item to category ka and coder c2 assigns it to
category kb is the joint probability of each coder making this assignment independently,
namely P̂(ka|c1)P̂(kb|c2). The expected disagreement is the mean of the weights for
all (ordered) category pairs, weighted by the probabilities of the category pairs and
normalized to the interval [0, 1] through division by the maximal weight.

Dκw
e =

1
dmax

k

∑
j=1

k

∑
l=1

P̂(k j|c1)P̂(kl |c2)dkjkl
=

1
dmax

1
i2

k

∑
j=1

k

∑
l=1

nc1kj
nc2kl

dkjkl

If we take all disagreements to be of equal weight then the expected disagreement is
exactly the complement of the expected agreement for κ as calculated in section 2.4:
Dκw

e = 1−Aκ
e .

Finally, the coefficient κw itself is the ratio of observed disagreement to expected
disagreement, subtracted from 1 in order to yield a final value in terms of agreement.

κw = 1− Do

De

2.7 The Coefficient Cube

The agreement coefficients we have seen can all be thought of as modifications of
Scott’s π along three different dimensions. One dimension is the calculation of expected
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Figure 1
Generalizing π along three dimensions

agreement using separate probability distributions for the individual coders, as done
by κ. Another dimension is a generalization of the original two-coder definitions to
multiple coders, resulting in multi-π (Fleiss’s κ) and multi-κ (Davies and Fleiss 1982). A
third dimension is the introduction of weighted agreement coefficients – α for multiple
coders with a single distribution, and κw for two coders with separate distributions. The
relations between the various coefficients are depicted in Figure 1.

What is missing from the picture is a coefficient that generalizes π along all three
dimensions – an agreement coefficient that is weighted, applies to multiple coders,
and calculates expected agreement using a separate probability distribution for each
coder. Such a coefficient can be thought of as a generalization of κw to multiple coders,
or alternatively as a modification of α which uses individual coders’ distributions for
determining chance agreement. We now develop such a coefficient, calling it ακ which
should serve as a reminder that it is shares properties of both κ and α. (In a previous
version of this paper we called this coefficient β).

Like the other weighted coeficients, ακ measures the observed and expected dis-
agreement, whose ratio is subtracted from one.

ακ = 1− Do

De

The observed disagreement is the same as for the other weighted measures, that is the
mean disagreement per item, where the disagreement per item is the mean distance
between all the judgment pairs pertaining to it (section 2.6).

The expected disagreement is the expected distance for an arbitrary judgment pair,
which is the arithmetic mean of all possible distances between category pairs weighted
by the probabilities for choosing particular pairs. We estimate the probability that
coder c assigns an item to category k as the total number of such assignments nck divided
by the overall number of assignments for this coder, which is the number of items i.

P̂(k|c) =
1
i

nck

The probability that two particular coders cm and cn assign an item to two distinct
categories ka and kb is P̂(ka|cm)P̂(kb|cn) + P̂(kb|cm)P̂(ka|cn). Since all coders judge all
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items, the probability that an arbitrary pair of coders assign an item to ka and kb is the
arithmetic mean of P̂(ka|cm)P̂(kb|cn) + P̂(kb|cm)P̂(ka|cn) over all coder pairs.

P̂(ka, kb) =
1(c
2
) c−1

∑
m=1

c

∑
n=m+1

P̂(ka|cm)P̂(kb|cn) + P̂(kb|cm)P̂(ka|cn)

=
1

i2
(c

2
) c−1

∑
m=1

c

∑
n=m+1

ncmka ncnkb
+ ncmkb

ncnka

The expected disagreement is the mean of the distances for all distinct category pairs,
weighted by the above probabilities (recall that identical category pairs contribute a
distance of zero, so it does not matter if and how they are counted).

Dακ
e =

k−1

∑
j=1

k

∑
l=j+1

P̂(k j, kl)dkjkl

=
1(c
2
) k−1

∑
j=1

k

∑
l=j+1

c−1

∑
m=1

c

∑
n=m+1

(
P̂(k j|cm)P̂(kl |cn) + P̂(kl |cm)P̂(k j|cn)

)
dkjkl

=
1(c
2
) k

∑
j=1

k

∑
l=1

c−1

∑
m=1

c

∑
n=m+1

P̂(k j|cm)P̂(kl |cn)dkjkl

=
1

i2
(c

2
) k

∑
j=1

k

∑
l=1

c−1

∑
m=1

c

∑
n=m+1

ncmkj
ncnkl

dkjkl

It is easy to see that Dακ
e is the mean of the Dκw

e values (section 2.6) over all coder pairs. If
we take all disagreements to be of equal weight, that is dkakb

= 1 for all ka 6= kb, then this
measure of expected disagreement is exactly the complement of the expected agreement
for multi-κ as calculated in section 2.5: Dακ

e = 1−Aκ
e .

2.8 An Integrated Example

We end this section with an example illustrating how all of the agreement coefficients
discussed above are computed. To facilitate comparisons, all computations will be based
on the annotation statistics in Table 6. This confusion matrix reports the results of an
experiment where two coders classify a set of utterances into three categories.

The unweighted coefficients. Observed agreement for all of the unweighted coefficients –
S, κ, and π – is calculated by counting the items on which the coders agree (the figures
on the diagonal of the confusion matrix in Table 6) and dividing by the total number of
items.

Ao =
46 + 32 + 10

100
= 0.88
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Table 6
An integrated coding example.

CODER A
STAT IREQ CHCK TOTAL

STAT 46 6 0 52
IREQ 0 32 0 32

CODER B CHCK 0 6 10 16

TOTAL 46 44 10 100

Expected agreement for S is the reciprocal of the number of categories, or 1
3 ; S is the

observed agreement, discounted by this fraction.

AS
e =

1
3

S =
Ao −AS

e
1−AS

e
=

0.88− 1
3

1− 1
3

= 0.82

Expected agreement for π is the sum over all categories of the square of the mean of the
individual coders’ proportions; π is the observed agreement, discounted by this value.

Aπ
e =

(
46 + 52
2× 100

)2
+
(

44 + 32
2× 100

)2
+
(

10 + 16
2× 100

)2
= 0.492 + 0.382 + 0.132 = 0.4014

π =
Ao −Aπ

e
1−Aπ

e
=

0.88− 0.4014
1− 0.4014

≈ 0.7995

Expected agreement for κ is the sum over all categories of the product of the individual
coders’ proportions; κ is the observed agreement, discounted by this value.

Aκ
e =

46
100

× 52
100

+
44

100
× 32

100
+

10
100

× 16
100

= 0.396

κ =
Ao −Aκ

e
1−Aκ

e
=

0.88− 0.396
1− 0.396

≈ 0.8013

We see that the values of π and κ are very similar, which is to be expected when
agreement is high, since this implies similar marginals. Notice that Aκ

e < Aπ
e , hence

κ > π; this reflects a general property of κ and π, already mentioned in section 2.4,
which will be elaborated in section 3.1.

Weighted coefficients. Suppose we notice that while Statements and Info-Requests
are clearly distinct classifications, Checks are somewhere between the two. We there-
fore opt to weigh the distances between the categories as follows (recall that 1 denotes
maximal disagreement, and identical categories are in full agreement and thus have a
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distance of 0).

Statement–Statement: 0 Statement–Info-Request: 1
Info-Request–Info-Request: 0 Statement–Check: 0.5
Check–Check: 0 Info-Request–Check: 0.5

The observed disagreement is calculated by summing up all the cells in the contingency
table, multiplying each cell by its respective weight, and dividing the total by the
number of items (in the calculation below we ignore cells with zero items).

Do =
46× 0 + 6× 1 + 32× 0 + 6× 0.5 + 10× 0

100
=

6 + 3
100

= 0.09

The only sources of disagreement in the coding example of Table 6 are the six utterances
marked as Info-Requests by coder A and Statements by coder B, which receive the
maximal weight of 1, and the six utterances marked as Info-Requests by coder A and
Checks by coder B, which are given a weight of 0.5.

Expected disagreement for α is the sum over all category pairs of the product of
the sum of the individual coders’ judgments, weighted by the distance and by the total
number of items 2 × 100 times the degrees of freedom 2 × 100 − 1; α is the observed
disagreement, discounted by this value and subtracted from 1.

Dα
e = (46+52)×(46+52)

2×100×(2×100−1) × 0 + (44+32)×(46+52)
2×100×(2×100−1) × 1 + (10+16)×(46+52)

2×100×(2×100−1) × 0.5

+ (46+52)×(44+32)
2×100×(2×100−1) × 1 + (44+32)×(44+32)

2×100×(2×100−1) × 0 + (10+16)×(44+32)
2×100×(2×100−1) × 0.5

+ (46+52)×(10+16)
2×100×(2×100−1) × 0.5 + (44+32)×(10+16)

2×100×(2×100−1) × 0.5 + (10+16)×(10+16)
2×100×(2×100−1) × 0

=
1

39800
× (2× 98× 76 + 2× 98× 26× 0.5 + 2× 76× 26× 0.5) ≈ 0.4879

α = 1− Do

Dα
e
≈ 1− 0.09

0.4879
≈ 0.8156

Finally, expected disagreement for ακ is the sum over all category pairs of the products
of the individual coders’ proportions, weighted by the distance; ακ is the observed
disagreement, discounted by this value and subtracted from 1.

Dακ
e = 46

100 ×
52

100 × 0 + 44
100 ×

52
100 × 1 + 10

100 ×
52

100 × 0.5

+ 46
100 ×

32
100 × 1 + 44

100 ×
32

100 × 0 + 10
100 ×

32
100 × 0.5

+ 46
100 ×

16
100 × 0.5 + 44

100 ×
16

100 × 0.5 + 10
100 ×

16
100 × 0

= 0.49

ακ = 1− Do

Dακ
e

= 1− 0.09
0.49

≈ 0.8163
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3. Bias and prevalence

Two issues with agreement coefficients, recently brought to light by Di Eugenio and
Glass (2004), concern the behavior of the coefficients when the annotation data are
severely skewed. One issue, which Di Eugenio and Glass call the bias problem, is that
π and κ yield quite different numerical values when the annotators’ marginal distribu-
tions are widely divergent; the other issue, the prevalence problem, is the exceeding
difficulty in getting high agreement values when most of the items fall under one
category. Looking at these two problems in detail is useful to understand the differences
between the coefficients.

3.1 Annotator bias

The difference between the coefficients on the ‘left’ face and the ‘right’ face of the
coefficient cube (Figure 1 in section 2.7) lies in the interpretation of the notion of chance
agreement, whether it is the amount expected from the the actual distribution of items
among categories (π) or from individual coder priors (κ). As mentioned in section 2.4,
this difference has been the subject of much debate (Byrt, Bishop, and Carlin 1993;
Craggs and McGee Wood 2005; Di Eugenio and Glass 2004; Fleiss 1975; Hsu and Field
2003; Krippendorff 1978, 2004b; Zwick 1988).

A claim often repeated in the literature is that single-distribution coefficients like
π and α are based on the assumption that different coders produce similar distributions
of items among categories, with the implication that these coefficients are inapplicable
when the annotators show substantially different distributions. Thus, Zwick (1988)
suggests testing the individual coders’ distributions using the modified χ2 test of Stuart
(1955), and discarding the annotation as unreliable if significant systematic discrep-
ancies are observed. In response to this, Hsu and Field (2003, page 214) recommend
reporting the value of κ even when the coders produce different distributions, because
it is “the only [index] . . . that could legitimately be applied in the presence of marginal
heterogeneity”. Likewise, Di Eugenio and Glass (2004, page 96) recommend using κ
in “the vast majority . . . of discourse- and dialogue-tagging efforts”, where the in-
dividual coders’ distributions tend to vary. However, these proposals are based on a
misconception: that single-distribution coefficients require similar distributions by the
individual annotators in order to work properly. This is not the case. Both π-style and
κ-style coefficients assume that the annotators code the data according to properties
inherent in the data, and that variation arises from various sources, some systematic
and some arbitrary. The difference is only in the understanding of the notion of “chance
agreement”. Therefore, regardless of how divergent the actual coders are, both kinds of
coefficients are applicable; they just differ in meaning.

Another common claim is that individual-distribution coefficients like κ reward
annotators for disagreeing on the marginal distributions. For example, Di Eugenio
and Glass (2004, page 99) say that κ suffers from what they call the bias problem,
described as “the paradox that κCo [our κ] increases as the coders become less similar”.
Similar reservations about the use of κ have been noted by Brennan and Prediger (1981)
and Zwick (1988). We feel, however, that the bias problem is less paradoxical than it
sounds. While it is true that for a fixed observed agreement, a higher difference in
coder marginals implies a lower expected agreement and therefore a higher κ value,
the conclusion that κ penalizes coders for having similar distributions is unwarranted.
This is because observed agreement and expected agreement are not independent:
both are drawn from the same set of observations. What κ does is discount some of
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the disagreement resulting from different coder marginals by incorporating it into the
expected agreement. Whether this is desirable depends on the application for which the
coefficient is used.

The most common application of agreement measures in CL is to infer the reliability
of a large-scale annotation, where typically each piece of data will be marked by just
one coder, by measuring agreement on a small subset of the data which is annotated
by multiple coders. In order to make this generalization, the measure must reflect the
reliability of the annotation procedure, which is independent of the actual annotators
used. Reliability, or reproducibility of the coding, is reduced by all disagreements – both
random and systematic. The most appropriate measures of reliability for this purpose
are therefore single-distribution coefficients like π and α, which generalize over the
individual coders and exclude marginal disagreements from the expected agreement.
(This argument has been presented recently in much detail by Krippendorff [2004b]
and reiterated by Craggs and McGee Wood [2005].)

At the same time, individual-distribution coefficients like κ provide important in-
formation regarding the trustworthiness (validity) of the data on which the annotators
agree. As an intuitive example, think of a person who consults two analysts when
deciding whether to buy or sell certain stocks. If one analyst is an optimist and tends
to recommend buying while the other is a pessimist and tends to recommend selling,
they are likely to agree with each other less than two more neutral analysts, so overall
their recommendations are likely to be less reliable – less reproducible – than those that
come from a population of like-minded analysts. This reproducibility is measured by π.
But whenever the optimistic and pessimistic analysts agree on a recommendation for
a particular stock, whether it is “buy” or “sell”, the confidence that this is indeed the
right decision is higher than the same advice from two like-minded analysts. This is
why κ rewards biased annotators, and it is not a matter of reproducibility (reliability)
but rather of trustworthiness (validity).

Having said this, we should point out that, first, in practice the difference between
π and κ doesn’t often amount to much (see discussion in section 4). Moreover, the
difference becomes smaller as agreement increases, because all the points of agreement
contribute toward making the coder marginals similar (it took a lot of experimentation
to create data for Table 6 so that the values of π and κ would straddle the conventional
cutoff point of 0.80, and even so the difference is very small). Finally, one would expect
the difference between π and κ to diminish as the number of coders grows; a formal
proof is given by Artstein and Poesio (2005) and repeated below.7

We define B, the overall annotator bias in a particular set of coding data, as the
difference between the expected agreement according to (multi)-π and the expected
agreement according to (multi)-κ. Note that annotator bias is not related to sampling
bias (the source of difference between π and α), nor is it the same as the Bias Index BI of
Byrt, Bishop, and Carlin (1993). Annotator bias is a measure of variance: if we take c to
be a random variable with equal probabilities for all coders, then the annotator bias B
is the sum of the variances of P̂(k|c) for all categories k ∈ K, divided by the number of
coders c less one (shown as part of the proof in appendix A).

B = Aπ
e −Aκ

e =
1

c− 1 ∑
k∈K

σ2
P̂(k|c)

7 Craggs and McGee Wood (2005) also suggest increasing the number of coders in order to overcome
individual annotator bias, but without proof.
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Annotator bias can be used to express the difference between κ and π.

κ − π =
Ao − (Aπ

e − B)
1− (Aπ

e − B)
− Ao −Aπ

e
1−Aπ

e
= B · (1−Ao)

(1−Aκ
e)(1−Aπ

e )

This allows us to make the following observations about the relationship between
π and κ.

1. For any particular coding data, Aπ
e ≥ Aκ

e , because B is the sum of
non-negative numbers.

2. For any particular coding data, κ ≥ π, because the difference between
them is the product of non-negative numbers.

3. The difference between κ and π grows as the annotator bias grows: for a
constant Ao and Aπ

e , a greater B implies a greater value for κ − π.

It is also easy to show that the following holds:

Observation. The greater the number of coders, the lower the annotator bias B, and hence
the lower the difference between κ and π, because the variance of P̂(k|c) does not increase in
proportion to the number of coders.

In other words, provided enough coders are used, it should not matter whether a
single-distribution or individual-distribution coefficient is used. This is not to imply that
multiple coders increase reliability: the variance of the individual coders’ distributions
can be just as large with many coders as with few coders, but its effect on the value of κ
decreases as the number of coders grows, and becomes more similar to random noise.

The same holds for weighted measures too. To show this we define a coefficient αb,
which is just like α except that it uses a biased estimator for expected disagreement,
that is Dαb

e = (ic − 1)Dα
e /ic. Now, for any particular coding data, Dακ

e ≥ Dαb
e , and con-

sequently ακ ≥ αb; the greater the number of coders, the lower the difference between
ακ and αb (for proof see appendix B). It is easy to see that α and αb approach each other
as either the number of items or the number of coders grows, and therefore α and ακ

also converge with more coders. This means that the more coders we have, the less
important the choice of coefficient among α, αb, and ακ . In an annotation study with
18 subjects (Poesio and Artstein 2005) we calculated all three coefficients and found
that their values never differed beyond the third decimal point: for example, we found
α = 0.69115, αb = 0.69091, and ακ = 0.69111 for the condition of full chains with Dice
distance metric (see section 4.4 for an explanation of the various conditions).

In summary, our views concerning the difference between π-style and κ-style coef-
ficients are as follows: (i) Reporting two coefficients, as suggested by Di Eugenio and
Glass (2004), is unlikely to help. Instead, the appropriate coefficient should be chosen
based on the task (not on the observed differences between coder marginals). When
the coefficient is used to assess reliability, a single-distribution coefficient like π or α
should be used; this is indeed already the practice in CL, since Siegel and Castellan’s K
is identical to π. If the coefficient is used in order to assess the correctness of data points
agreed upon by two coders (or more), then Cohen’s κ or its generalizations κw or ακ may
be more appropriate. (ii) However, the numerical difference between single-distribution
coefficients (π) and individual-distribution coefficients (κ) is often not very large, espe-
cially in cases of high agreement. (iii) Further, the numerical difference decreases as the
number of annotators grows.
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Table 7
A simple example of agreement on dialogue act tagging.

CODER A
COMMON RARE TOTAL

COMMON 1− (δ + 2ε) ε 1− (δ + ε)

CODER B RARE ε δ δ + ε

TOTAL 1− (δ + ε) δ + ε 1

3.2 Prevalence

We touched upon the matter of skewed data in section 2.3 when we motivated the need
for chance correction: if a disproportionate amount of the data falls under one category,
then the expected agreement is very high, so in order to demonstrate high reliability
an even higher observed agreement is needed. This leads to the so-called “paradox”
that observed agreement is very high, yet chance-corrcted agreement is low (Feinstein
and Cicchetti 1990; Cicchetti and Feinstein 1990; Di Eugenio and Glass 2004). Moreover,
when the data are highly skewed in favor of one category, the high agreement also
corresponds to high accuracy: if, say, 95% of the data fall under one category label, then
random coding would cause two coders to jointly assign this category label to 90.25% of
the items, and on average 95% of these labels would be correct, for an overall accuracy
of at least 85.7%. This leads to the surprising result that when data are highly skewed,
coders may agree on a high proportion of items while producing annotations that are
indeed correct to a high degree, yet the reliability coefficients remain low.

This surprising result is, however, correct and justified. Reliability implies the abil-
ity to distinguish between categories, but when one category is very common, high
accuracy and high agreement can also result from indiscriminate coding. The test for
reliability in such cases is the ability to agree on the rare categories (regardless of
whether these are the categories of interest). Indeed, chance-corrected coefficients are
sensitive to agreement on rare categories. This is easiest to see with a simple example
of two coders and two categories – one common and the other one rare; to further
simplify the calculation we also assume that the coder marginals are identical, so that
π and κ yield the same values. We can thus represent the judgments in a contingency
table with just two parameters: ε is half the proportion of items on which there is
disagreement, and δ is the proportion of agreement on the Rare category. Both of
these proportions are assumed to be small, so the bulk of the items (a proportion
of 1 − (δ + 2ε)) are labeled with the Common category by both coders (Table 7). From
this table we can calculate the observed agreement Ao = 1− 2ε and the expected agree-
ment Ae = 1− 2(δ + ε) + 2(δ + ε)2, as well as π and κ.

π, κ =
1− 2ε− (1− 2(δ + ε) + 2(δ + ε)2)

1− (1− 2(δ + ε) + 2(δ + ε)2)
=

δ

δ + ε
− ε

1− (δ + ε)

When ε and δ are both small, the fraction after the minus sign is small as well, so π and κ
are approximatly δ/(δ + ε), that is the value we get if we take all the items marked by
one particular coder as Rare, and calculate what proportion of those items were labeled
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Rare by the other coder. This is indeed a measure of the ability to agree on the rare
category, so it is a good measure of reliability.

We therefore do not agree with the recommendation of Di Eugenio and Glass
(2004) to report an additional coefficient when one of the categories is very common
(Di Eugenio and Glass recommend reporting 2Ao − 1, which is the value of S when there
are exactly two categories). If reliability is a concern, then the appropriate reliability
coefficient should be reported, and S does not reflect reliability precisely because it is
insensitive to the difference between common and rare categories. If reliability turns out
to be low but it is still of interest to note that overall agreement was high, then it is best
to report the raw observed agreement Ao, since this value is easier to interpret than S.
The reporting of raw agreement figures should be accompanied by a note explaining
that these figures are not corrected for chance and therefore do not reflect reliability.

4. Using agreement measures for CL annotation tasks

We will now review the use of intercoder agreement measures in CL ever since Carletta’s
original paper in the light of the discussion in the previous sections. We begin with
a summary of Krippendorff’s recommendations about measuring reliability (Krippen-
dorff 2004a, chapter 11), then discuss how coefficients of agreement have been used
in CL to measure the reliability of annotation, focusing in particular on the types of
annotation where there has been some debate concerning the most appropriate mea-
sures of agreement. To our knowledge the relative merits of biased versus unbiased
measures have only been discussed by Di Eugenio and Glass (2004) and Craggs and
McGee Wood (2005), but there has been some debate concerning the use and merit of
weighted coefficients.

We will also try to highlight examples of good practice. Krippendorff (2004a, chap-
ter 11) bemoans the fact that reliability is discussed in only around 69% of studies
in content analysis; in CL as well, not all annotation projects include a formal test of
intercoder agreement. Some of the best known annotation efforts in CL, such as the
creation of the Penn Treebank (Marcus, Santorini, and Marcinkiewicz 1993) and the
British National Corpus (Leech, Garside, and Bryant 1994), do not report reliability
results as they predate the Carletta paper; but even among the more recent efforts, many
only report percentage agreement, as for the creation of the PropBank (Palmer, Dang,
and Fellbaum 2007) or the ongoing OntoNotes annotation (Hovy et al. 2006). We are
not aware of any annotation effort in CL that applies a methodology as rigorous as that
envisaged by Krippendorff and discusses it next to a study of the reliability of their
coding scheme, but we will highlight a few studies that are particularly sound, focusing
on the methodology and the coefficients used rather than on the scores.

4.1 Methodological recommendations from Content Analysis

An extensive discussion of the methodology to be followed in carrying out a reliability
study can be found in chapter 11 of Krippendorff (2004a). We summarize here his main
recommendations as a preliminary for the discussion of CL practice.

4.1.1 Generating data to measure reproducibility. Krippendorff’s recommendations
are intended to apply to the field of Content Analysis, where coding is a preliminary
step used to draw conclusions from the texts. A coded corpus is thus akin to the result
of a scientific experiment, and it can only be considered valid if it is reproducible –
that is, if the same coded results can be replicated in an independent coding exercise.
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Krippendorff therefore argues that any study using observed agreement as a measure
of reproducibility must satisfy the following requirements:

• It must employ an exhaustively formulated, clear, and usable coding
scheme together with step-by-step instructions on how to use it;

• It must use clearly specified criteria concerning the choice of coders (so as
others may use such criteria to reproduce the data);

• It must ensure that the coders that generate the data used to measure
reproducibility work independently of each other.

Some practices that are common in CL do not satisfy the above requirements. The first
requirement is violated by the practice of expanding the written coding instructions
and including new rules as the data get generated. The second requirement is often
violated by using experts as coders, particularly long-term collaborators, as such coders
may agree not because they are carefully following written instructions, but because
they know the purpose of the research very well – which makes it virtually impossible
for others to reproduce the results on the basis of the same coding scheme (the prob-
lems arising when using experts were already discussed at length in Carletta [1996]).
Practices which violate the third requirement (independence) include asking coders to
discuss their judgments with each other and reach their decisions by majority vote, or
to consult with each other when problems not foreseen in the coding instructions arise.
Any of these practices make the resulting data unusable for measuring reproducibility.

Krippendorff’s own summary of his recommendations is that to obtain usable re-
producibility data a researcher must use data generated by three or more coders, chosen
according to some clearly specified criteria, and working independently according to
a written coding scheme and coding instructions fixed in advance. Krippendorff also
discusses the criteria to be used in the selection of the sample, from the minimum
number of units (obtained using a formula from Bloch and Kraemer [1989], reported
in Krippendorff [2004a, page 239]) to how to make the sample representative of the data
population (each category should occur in the sample often enough to yield at least
five chance agreements) to how to ensure the reliability of the instructions (the sample
should contain examples of all the values for the categories). These recommendations
are particularly relevant in light of the comments of Craggs and McGee Wood (2005,
page 290), which discourage researchers from testing their coding instructions on data
from more than one domain. Given that the reliability of the coding instructions de-
pends to a great extent on how complications are dealt with, and that every domain
displays different complications, the sample should contain sufficient examples from
all domains which have to be annotated according to the instructions.

4.1.2 Establishing significance. In hypothesis testing, it is common to test for the
significance of a result against a null hypothesis of chance behavior; for an agreement
coefficient this would mean rejecting the possibility that a positive value of agreement
is nevertheless due to random coding. We can rely on the statement by Siegel and
Castellan (1988, section 9.8.2) that when sample sizes are large, the sampling distri-
bution of K (Fleiss’s multi-π) is approximately normal and centered around zero – this
allows testing the obtained value of K against the null hypothesis of chance agreement
by using the z statistic. It is also easy to test Krippendorff’s α with the interval distance
metric against the null hypothesis of chance agreement, because the hypothesis α = 0 is
identical to the hypothesis F = 1 in an analysis of variance.
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Table 8
Kappa values and strength of agreement according to Landis and Koch (1977).

KAPPA VALUES STRENGTH OF AGREEMENT

< 0.00 Poor
0.00–0.20 Slight
0.21–0.40 Fair
0.41–0.60 Moderate
0.61–0.80 Substantial
0.81–1.00 Perfect

However, a null hypothesis of chance agreement is not very interesting, and demon-
strating that agreement is significantly better than chance is not enough to establish
reliability. This has already been pointed out by Cohen (1960, page 44):

. . . to know merely that κ is beyond chance is trivial since one usually expects much
more than this in the way of reliability in psychological measurement.

The same point has been repeated and stressed in many subsequent works (e.g. Posner
et al. 1990; Di Eugenio 2000; Krippendorff 2004a): the reason for measuring reliability is
not to test whether coders perform better than chance, but to ensure that the coders do
not deviate too much from perfect agreement (Krippendorff 2004a, page 237).

The relevant notion of significance for agreement coefficients is therefore a con-
fidence interval. Cohen (1960, pages 43-44) implies that when sample sizes are large,
the sampling distribution of κ is approximately normal for any true population value
of κ, and therefore confidence intervals for the observed value of κ can be determined
using the usual multiples of the standard error. Donner and Eliasziw (1987) propose
a more general form of significance test for arbitrary levels of agreement. In contrast,
(Krippendorff 2004a, section 11.4.2) states that the distribution of α is unknown, so
confidence intervals must be obtained by bootstrapping; a software package for doing
this is described in Hayes and Krippendorff (2007).

4.1.3 Interpreting the value of kappa-like coefficients. Even after testing significance
and establishing confidence intervals for agreement coefficients, we are still faced with
the problem of interpreting the meaning of the resulting values. Suppose, for example,
we establish that for a particular task, K = 0.78 ± 0.05. Is this good or bad? Unfortu-
nately, deciding what counts as an adequate level of agreement for a specific purpose
is still little more than a black art: as we will see, different levels of agreement may be
appropriate for resource building and for more linguistic purposes.

The problem is not unlike that of interpreting the values of correlation coefficients,
and in the area of medical diagnosis, the best known conventions concerning the value
of kappa-like coefficients, those proposed by Landis and Koch (1977) and reported in Ta-
ble 8, are indeed similar to those used for correlation coefficients, where values above 0.4
are also generally considered adequate (Marion 2004). Many medical researchers feel
that these conventions are appropriate, and in language studies, a similar interpretation
of the values has been proposed by Rietveld and van Hout (1993). In CL, however, most
researchers follow the more stringent conventions from Content Analysis proposed by
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Krippendorff (1980, page 147), as reported by Carletta (1996, page 252): “content analy-
sis researchers generally think of K > .8 as good reliability, with .67 < K < .8 allowing
tentative conclusions to be drawn” (Krippendorff was discussing values of α rather
than K, but the coefficients are nearly equivalent for categorical labels). As a result,
ever since Carletta’s enormously influential paper, CL researchers have attempted to
achieve a value of K (more seldom, of α) above the magical 0.8 threshold, or, failing
that, the 0.67 level allowing for “tentative conclusions”. However, we should point
out that the description of the 0.67 boundary in Krippendorff (1980) was actually
“highly tentative and cautious”, and in later work Krippendorff clearly considers 0.8
the absolute minimum value of α to accept for any serious purpose: “Even a cutoff
point of α = .800 . . . is a pretty low standard. . . ” (Krippendorff 2004a, page 242). Recent
Content Analysis practice seems to have settled for even more stringent requirements: a
recent textbook, Neuendorf (2002), analyzing several proposals concerning ‘acceptable’
reliability, concludes that “reliability coefficients of .9 or greater would be acceptable to
all, .8 or greater would be acceptable in most situations, and below that, there exists
great disagreement.”

This is clearly a fundamental issue – there is little point in running a reliability study
if then we can’t interpret the results, that is, decide whether we have reached enough
agreement for our purposes – but as we will see in the rest of this section, practical
experience with using these coefficients in CL hasn’t helped in settling the matter. In
fact, we will see in the rest of this section that weighted coefficients, while arguably
more appropriate for many annotation tasks, make the issue of deciding when the value
of a coefficient indicates sufficient agreement even more complicated. We will return to
the issue of interpreting the value of the coefficients at the end of this article.

4.2 Labeling units with a common and predefined set of categories

The most basic and most common coding in CL involves labeling segments of text
with a limited number of linguistic categories: examples include part of speech tagging,
dialogue act tagging, and named entity tagging. The practices used to test reliability for
this type of annotation tend to be based on the assumption that the categories used in
the annotation are mutually exclusive and equidistant; this assumption seems to have
worked out well in practice, but we will also consider studies that question it.

4.2.1 Part-of-speech tagging. The simplest type of linguistic annotation is the annotation
of parts of speech. Historically, this was also the first type of annotation to be carried
out over a 1-million-word corpus, the Brown corpus (Francis and Kucera 1982), and
then over a 100-million-word corpus, the British National Corpus (Leech, Garside, and
Bryant 1994).8 None of these early efforts involved systematic tests of the reliability
of the annotation. Such studies were however carried out for later efforts, such as
the annotation of the TIGER corpus of German (Brants and Plaehn 2000), in which
however only percentage agreement was computed. Agreement studies using chance-
corrected measures were carried out for the annotation of the GENIA corpus (Tateisi
and Tsuji 2004) and by Mieskes and Strube (2006), among others. In both these studies
an unweighted, unbiased measure was used, K. These studies generally report very
high levels of agreement, particularly for so-called ‘interactive’ mode of annotation
where annotators correct the output of an automatic POS tagger, pioneered by the BNC

8 http://www.natcorp.ox.ac.uk/docs/gramtag.html
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annotation and which is at the moment the standard method for this type of annotation
(for example, Mieskes and Strube report K = 0.96 for this mode).

This considerable experience with POS annotation gives the field confidence that
current tagsets are adequate for the purpose of creating large-scale POS-annotated
corpora, at least for English. It is worth noting however that it not clear from the
literature whether any of these agreement studies satisfies the three requirements laid
out by Krippendorff. It is equally clear that from a linguistic perspective, treating all dis-
tinctions between POS tags as having the same weight is a considerable simplification.
For instance, even a coarse-grained tagset like the Penn Treebank POS tagset makes a
distinction between singular and plural nouns; yet intuitively, disagreeing on whether,
say, a particular instance of the word deer should be tagged as a plural noun (tag NNS)
or a singular one (tag NN) is less of a disagreement than disagreeing on whether, say,
a particular word should be classified as a determiner or a noun. This intuition is
supported by the analysis carried out in the one detailed study of human performance at
POS tagging we are aware of, by Babarczy, Carroll, and Sampson (2006). In analyzing the
disagreements between two (highly experienced) annotators using the SUSANNE part
of speech tagset, the authors examined three types of disagreement: fine disagreement,
coarse disagreement, and major parts of speech disagreement. Fine disagreement is the
case in which the annotators chose two distinct POS tags from the Susanne tagset (which
contains around 300 tags). Coarse disagreements are those obtained when using the
simplified tagset that has been used for automatic annotation, obtained by collapsing
some of the tags by removing the final character of the tag label (for example, replacing
NN1c – the SUSANNE tag for singular count nouns – with NN1; this left around 180
categories). Finally, major parts of speech disagreements are those between categories
such as N (noun), V (verb), etc. (only 18 labels). Babarczy, Carroll, and Sampson found,
naturally, that percentage agreement was greater over major parts of speech (98.5%),
slightly lower (98.0%) in the case of coarse comparisons, and lower still in the case of fine
comparisons (97.4%). No chance-corrected agreement results were reported. Moreover,
Babarczy, Carroll, and Sampson observed that many of the disagreements were among
close categories: for example, 32% of the disagreements involved classification of proper
names (the fine-grained version of the SUSANNE scheme requires making distinctions
between surnames and organizations, for instance), and 15.8% of the disagreements
were caused by the coders disagreeing on whether words like training should be tagged
as nouns or participles in contexts like noun-noun compounds (e.g., training centre).
As we will see, this idea of identifying and separating levels of annotation requiring
progressively more complex decisions has been proposed for many types of annotation
tasks.

4.2.2 Dialogue act tagging. Dialogue act tagging is another type of linguistic annotation
with which by now the CL community has had extensive experience. Dialogue-act-
annotated spoken language corpora include MapTask (Carletta et al. 1997), Switchboard
(Stolcke et al. 1997), Verbmobil (Jekat et al. 1995) and Communicator (e.g., Doran et al.
2001), among others. Historically, dialogue act annotation was also one of the types
of annotation that motivated the introduction in CL of chance-corrected coefficients of
agreement (Carletta et al. 1997) and, as we will see, it has been the type of annotation
that has originated the most discussion concerning annotation methodology and mea-
suring agreement.

A number of coding schemes for dialogue acts have achieved values of K over 0.8
and have therefore been assumed to be reliable: for example, K = 0.83 for the 13-tag
MapTask coding scheme (Carletta et al. 1997), K = 0.8 for the 42-tag Switchboard-
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DAMSL scheme (Stolcke et al. 1997), K = 0.90 for the smaller 20-tag subset of the CSTAR
scheme used by Doran et al. (2001). All of these tests were based on the same two
assumptions that underlied the tests of agreement on part of speech tagging discussed
earlier: that every unit (utterance) is assigned to exactly one category (dialogue act),
and that these categories are distinct (the number of dialogue act tags tends to be much
smaller than the number of POS tags). Therefore, again, unweighted measures, and in
particular K, tend to be used to measure inter-coder agreement.9

However, a rather more serious challenge to these assumptions has arisen in the
case of dialogue act tagging, from theories of dialogue acts based on the observation
that utterances tend to have more than one function at the dialogue act level (Traum
and Hinkelman 1992; Bunt 2000; Allen and Core 1997); for a useful survey, see Popescu-
Belis (2005). An assertion performed in answer to a question, for instance, typically
performs at least two functions at different levels: asserting some information – the
dialogue act that we called Statement in section 2.3, operating at what Traum and
Hinkelman called the ‘core speech act’ level – and confirming that the question has
been understood, a dialogue act operating at the ‘grounding’ level and usually known
as Acknowledgment, Ack . In some systems, the fact that an utterance is performed to
‘answer’ a particular question is also marked – for example, by tagging it as a reply-XX
in the MapTask coding scheme, as expressing a ‘backward communicative function’
in DAMSL (Allen and Core 1997), or by using an ‘answerhood’ rhetorical relation in
the system of Traum and Hinkelman. In older dialogue act tagsets, acknowledgments
and statements were treated as alternative labels at the same ‘level’, forcing coders to
choose one or the other when an utterance performed a dual function, according to a
well-specified set of instructions (see for example the explain and acknowledge tags
in the MapTask coding scheme). By contrast, in the annotation schemes inspired from
these newer theories such as DAMSL (Allen and Core 1997), coders are allowed to assign
tags at different levels.

This solution also addresses another problem with the older schemes: for in addi-
tion to performing dialogue acts at different levels, utterances can also perform multiple
functions at the very same level – for example, the core level (in DAMSL parlance, they
can perform more than one ‘forward communication function’). Utterances such as (1),
for instance, perform both what in DAMSL would be called a info-request dialogue
act and some sort of suggestion (called open-option in DAMSL), or perhaps even a
directive .

(1) Could we meet at the Wigmore Hall at 11 am?

So-called ‘checks’ might be viewed as another example of utterances performing
multiple core functions: For example, utterances 5.4–5.6 below might be viewed as
expressing both a statement and an info-request : M is at the same time stating his
or her belief that one boxcar of oranges is sufficient to make a tanker, and requesting S
to confirm this belief (TRAINS 1991 [Gross, Allen, and Traum 1993], dialogue d91-2.2).10

(2) 5.4 M: I assume one
5.5 one boxcar
5.6 of oranges is enough to make a tanker
6.1 S: yeah

9 To our knowledge, Carletta et al. (1997) were the only group among those carrying out these early studies
who considered using α for measuring agreement on dialogue act annotation.

10 ftp://ftp.cs.rochester.edu/pub/papers/ai/92.tn1.trains_91_dialogues.txt
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In the MapTask scheme, checks are treated as a separate class of dialogue acts, which
may be one of the reasons why the number one source of confusion found by Carletta
et al. was that between the tags check and query-yn ; collapsing all question-type tags
into one resulted in an increase of the agreement from K = 0.83 to K = 0.89.11 In DAMSL,
by contrast, coders are allowed to annotate more than one forward communicative
function.

Two annotation experiments with the DAMSL scheme were reported in Core and
Allen (1997) and Di Eugenio et al. (1998). In both studies, coders were allowed to
mark each (Forward and Backward) communicative function independently – that
is, they were allowed to choose for each utterance one of the Statement tags (or
possibly none), one of the Influencing-Addressee-Future-Action tags, and so
forth – and agreement was evaluated separately for each dimension using (unweighted)
K. Core and Allen (1997) found values of K ranging from 0.76 for answer to 0.42
for agreement to 0.15 for Committing-Speaker-Future-Action . Using different
coding instructions and on a different corpus, Di Eugenio et al. (1998) observed higher
agreement, ranging from K = 0.93 (for other-forward-function ) to 0.54 (for the
backward function agreement ).

Core and Allen found that many disagreements resulted from some of the coders
choosing different subsets of communicative functions: for example, one of the main
sources of disagreement was the difficulty for coders to tell whether an utterance is
an acceptance or simply an acknowledgment, two types of Backward Communicative
Function treated as separate dimensions. They also observed a problem with checks:
some coders would mark an utterance like 5.4–5.6 in (2) as having both a statement
and an info-request function, whereas others would mark it as expressing only a
statement , or only an info-request . Because agreement was measured for each
communicative function independently, partial agreement on the overall ‘label’ (the
entire set of labels assigned to an utterance in all dimensions) could not be taken into
account in such cases. In cases in which annotations overlapped (as in the case of an
utterance which one of the coders marked both a statement and an info-request ,
whereas the other coder only marked an info-request ), Core and Allen would get
perfect agreement along one dimension (statement ), but no agreement at all along
the Influencing-Addressee-Future-Action dimension. It might be argued that
in such cases, using a weighted coefficient measuring agreement over the entire set of
labels assigned to an utterance in all dimensions might provide a better indication of
the actual agreement on the interpretation of that utterance.

These problems led many researchers to return to ‘flat’ tagsets for dialogue acts after
experimenting with multidimensional ones, incorporating however in their schemes
some of the insights motivating the work on schemes such as DAMSL. The best known
example of this type of approach is the development of SWITCHBOARD-DAMSL by
Jurafsky, Shriberg, and Biasca (1997), who annotated the Switchboard corpus in order
to study the interaction of dialogue acts and speech recognition (Stolcke et al. 1997).
Jurafsky, Shriberg, and Biasca started by running an annotation pilot using the DAMSL
scheme. They found that only 220 of the possible combination of tags occurred in the
corpus, but also that agreement was not very high. A new tagset called SWITCHBOARD-
DAMSL was then developed consisting of only 42 tags, on which good agreement was

11 Specifically, checks are defined as “[Questions asking] for confirmation of material which the speaker
believes might be inferred, given the dialogue context” – Carletta et al. (1997, Figure 1). Carletta et al.
point out that in practice the coders used the check tag to mark utterances querying information that the
speaker believed had been told, as in: G: Ehm, curve round slightly to your right. F: to my right?
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found. This new tagset incorporates many ideas from the ‘multi-dimensional’ theories
of dialogue acts, but does not allow marking an utterance as both an acknowledgment
and a statement; a choice has to be made. Similarly, Doran et al. (2001) decided not to
adopt the DAMSL scheme on grounds of complexity (without running a pilot), adopting
instead a simplified version of the tagset developed by the CSTAR consortium, in part
because it seemed more appropriate for the task.

Interestingly, subsequent developments of SWITCHBOARD-DAMSL backtracked on
some of these decisions. The ICSI-MRDA tagset developed for the annotation of the ICSI
Meeting Recorder corpus reintroduces some of the DAMSL ideas, in that annotators
are allowed to assign multiple SWITCHBOARD-DAMSL labels to utterances (Shriberg
et al. 2004). Shriberg et al. only achieved a comparable reliability to that obtained with
SWITCHBOARD-DAMSL when using a tagset of only five ‘class-maps’. This aspect of the
ICSI-MRDA was further developed in the MALTUS scheme proposed by Popescu-Belis
(2005), in which further constraints are introduced in the composition of class maps
so as to greatly reduce the number of theoretically possible multi-labels from around
7 million to around 200.

In addition, Shriberg et al. (2004) also introduced a hierarchical organization of tags
to improve reliability. The dimensions of the DAMSL scheme can be viewed as ‘super-
classes’ of dialogue acts which share some aspect of their meaning. For instance, the
dimension of Influencing-Addressee-Future-Action (IAFA) includes the two
dialogue acts Open-option (used to mark suggestions) and Directive mentioned
earlier, both of which bring into consideration a future action to be performed by the
addressee. At least in principle, an organization of this type opens up the possibility for
coders to mark an utterance such as (1) with the superclass (IAFA) in case they do not
feel confident that the utterance satisfies the additional requirements for Open-option
or Directive . This, in turn, would do away with the need to make a choice between
these two options. This possibility wasn’t pursued in the studies using the original
DAMSL that we are aware of (Core and Allen 1997; Di Eugenio 2000; Stent 2001), but
was tested by Shriberg et al. (2004) and subsequent work, in particular Geertzen and
Bunt (2006), who were specifically interested in the idea of using hierarchical schemes
to measure partial agreement and in addition experimented with weighted measures of
agreement – specifically, κw – for measuring agreement over their hierarchical tagging
scheme. There are a number of problems with the Geertzen and Bunt proposal, ranging
from the hierarchy they propose to the equations given in the paper for computing the
distance metric d, but we feel nevertheless that the work is worth discussing as one of
the few examples of use of weighted measures of agreement in CL.

Geertzen and Bunt were testing intercoder agreement with Bunt’s DIT++ (Bunt
2005), a scheme with 11 dimensions that builds on ideas from DAMSL and from Dynamic
Interpretation Theory (Bunt 2000). In DIT++, tags can be hierarchically related: for
example, the class information-seeking is viewed as consisting of two classes,
yes-no question (ynq ) and wh-question (whq). The hierarchy is explicitly introduced to
allow coders to leave some aspects of the coding undecided. For example, the difficult
case repeatedly mentioned in this section, check , is treated as a subclass of ynq in
which, in addition, the speaker has a weak belief that the proposition that forms the
belief is true. A coder who is not certain about the dialogue act performed using an
utterance may simply choose to tag it as ynq . This organization is shown in Figure 2.

The distance metric d proposed by Geertzen and Bunt is based on the criterion that
two communicative functions are related (d(c1, c2) < 1) if they stand in an ancestor-
offspring relation within a hierarchy. Furthermore, they argue, the magnitude of
d(c1, c2) should be proportional to the distance between the functions in the hierarchy.
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information-seeking
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Figure 2
Hierarchical tags from Geertzen and Bunt (2006)

A level-dependent correction factor is also proposed so as to leave open the option to
make disagreements at higher levels of the hierarchy matter more than disagreements at
the deeper level (for example, the distance between information-seeking and ynq
might be considered greater than the distance between check and positive-check ).
The result is the following distance metric.12

d(ci, cj) = 1− h(ci, cj)× a∆(ci ,cj) × bΓ(ci ,cj)

Here, h(ci, cj) is 1 if ci and cj are identical or stand in an ancestor relation in the hierarchy,
and 0 if they don’t; 0 < a < 1 is a constant expressing the amount of disagreement
associated with a certain distance between levels in the hierarchy and ∆(ci, cj) is the
difference in depth between the levels of ci and cj; and 0 < b ≤ 1 is the depth-dependent
correction factor and Γ(ci, cj) is the minimal depth of ci and cj.13 For example, assuming
the tree in Figure 2, and given the values a = 0.75 and b = 1 as in Geertzen and Bunt
(2006), we get the following values for d.

d(ynq , whq) = 1− 0× 0.750 × 1 = 1

d(ynq , ynq ) = 1− 1× 0.750 × 1 = 0

d(ynq , check ) = 1− 1× 0.751 × 1 = 0.75

The results of an agreement test with two annotators run by Geertzen and Bunt are
shown in Table 9. The first two columns give the values for κ and κw; the third column
is the number of pairs on which the coefficients were computed; the fourth column is
the AP ratio for each dimension – the proportion of cases which were marked on that
dimension by both annotators out of the number of cases which were marked by at
least one annotator. As the table shows, taking into account partial agreement leads to
values of κw that are higher than the values of κ for the same categories, particularly for

12 Geertzen and Bunt define a measure of closeness, δ(c1, c2), and then modify the equation for κw. We
changed things slightly to relate the proposal more closely to the equations seen in section 2.6.

13 h(ci , cj) was omitted by mistake from the version of this equation in the paper in the SIGDIAL proceedings
(Harry Bunt, personal communication). Also, as far as we can see, identical categories have a distance
of 0 only when b = 1.
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Table 9
A comparison of κ and κw agreement values for the DIT++ annotation (excerpt from Geertzen
and Bunt 2006, Table 2)

Dimension κ κw #pairs AP ratio

contact management 1.00 1.00 8 0.17
own comm. management 1.00 1.00 2 0.08
social obl. management 1.00 1.00 61 0.80
turn management 0.82 0.82 115 0.18
dialog str. management 0.74 0.74 15 0.31
time management 0.58 0.58 68 0.72
allo feedback 0.42 0.58 17 0.14
auto feedback 0.21 0.57 127 0.34

feedback, a class for which Core and Allen (1997) got low agreement. Of course, even
assuming that the values of κw and κ were directly comparable – we remark elsewhere
on the difficulty of interpreting the values of weighted coefficients of agreement – it
remains to be seen whether these higher values are a better indication of the extent of
agreement between coders than the values of unweighted κ.

This discussion of coding schemes for dialogue acts and the best way of measuring
agreement on this type of annotation was quite long, but it introduced issues that we
will see discussed in the case of other CL annotation tasks as well. There are by now
a number of well-established schemes for large-scale dialogue act annotation based on
the assumption of mutual exclusivity between dialogue act tags, whose reliability is also
well-known; if one of these schemes is appropriate for modeling the communicative
intentions found in a task, the most prudent recommendation at this point would be
to use it. The readers should however be aware that the mutual exclusivity assumption
is very dubious, and that multi-dimensional or hierarchical dialogue act tagsets need
not automatically result in lower reliability or in an explosion in the number of labels.
If a hierarchical tagset is used, readers should be aware that weighted coefficients do
capture partial agreement. But none of these decisions would be unproblematic. A
hierarchical scheme designed on the basis of our intuitions about intentions may not
reflect genuine annotation difficulties: for example, in the case of DIT++, one might
argue that it is more difficult to confuse yes-no questions with wh-questions than with
statements. And once we start using weighted coefficients, interpreting the value we
obtain becomes even more of a black art. We will return to both of these problems in
what follows.

4.2.3 Named Entities. Named entity recognition is the task of identifying mentions
of individuals and assigning them a type – e.g., finding and labeling all mentions of
people or proteins in a text. It is only recently that this aspect of semantic interpretation
has been identified as a separate and useful task in CL, but it has quickly grown in
importance thanks to its inclusion among the information extraction subtasks first in
the MUC and then in the ACE initiatives. We discuss it here as yet another example of a
task originally defined as a basic labeling.

In the MUC guidelines for named entity tagging (Chinchor 1997), named entity
recognition was viewed as a basic labeling task in the sense used in this section. Five
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types of named entities were identified as being particularly relevant, and annotated:
person, location, organization, temporal expression, and numerical expressions (e.g.,
“15 dollars”). We are not aware of a reliability study being carried out for the MUC an-
notation. With ACE (Doddington et al. 2000), the definition of the task was extended by
allowing for seven types of entities instead of five (person, organization, geo-political,
location, facility, vehicle, and weapon) and by introducing subtypes (such as ‘building’
or ‘bridge’ for the type ‘facility’).

This view of general-purpose named entity tagging as a simplified form of on-
tological labeling is quite natural, and efforts following ACE have tended to pursue
this direction. Sekine, Sudo, and Nobata (2002) developed an Extended Named Entity
Hierarchy, a taxonomy of types currently consisting of around 200 types. In named
entity annotation for the biomedical domain, arguably the most common version of
named entity tagging at the moment, named entity annotation according to an ontology
was already the method adopted for the annotation of the GENIA corpus (Tateisi et al.
2000). Ontology-based annotation is becoming more common in connection with work
on the Semantic Web (Cimiano and Handschuh 2003; Handschuh 2005) but we are not
aware of any studies of agreement.

We are not aware of any study of intercoder agreement for named entity tagging
which reports chance-corrected measures. The ACE 2003 annotation of the English
named entity labeling task reported 88% percent intercoder agreement, whereas in the
case of biomedical annotation, Tateisi et al. (2000) reported an F-measure14 of 75.85 on
a set of 4 tags (protein, dna, rna, source), and Vlachos et al. (2006) report 91% percent
agreement on gene names. What makes named entity tagging interesting from the per-
spective of this article is that it is a simplified version of the much more complex prob-
lem of wordsense tagging discussed later. On the one hand, the categories are usually
clearly distinct, which suggests that the disjointness assumption behind unweighted
measures such as K may be appropriate, except perhaps in the case of metonymy (for
example in Vietnam was the source of much soul-searching in the USA, where ‘Vietnam’
could refer to the country or the war). On the other hand, even more than in the case
of wordsense tagging, it is natural to view the set of labels as having a taxonomic or-
ganization (e.g., depending on the annotator’s knowledge, an organization may be
classified as a company or as a governmental organization or as a non-profit ),
hence different levels of precision may be reached, which suggests that weighed coeffi-
cients of agreement may be more appropriate.

4.2.4 ‘Non-linguistic’ coding tasks. Modern CL research is more and more concerned
with extracting information that is less clearly ‘linguistic’ (in the traditional sense), thus
overlapping more and more with the concerns of content analysis. One example of this
trend is the work by Craggs and McGee Wood (2004) on annotating emotions and the
work by Bruce, Wiebe and collaborators on detecting subjective judgments.

The work by Craggs and McGee Wood (2004) on developing an annotation scheme
for emotions and testing its reliability has several aspects worth mentioning. First of all,
there is the problem of the units to which to apply the labels. As Craggs and McGee
Wood point out, ‘emotional episodes’ are not associated with any specific linguistic
event, but persist for a certain amount of time, fading after a while. We’ll return later

14 F is normally used to measure performance against a gold standard. However, it has also been used in
MUC as a way of measuring agreement between two sets of results neither of which was the gold
standard.
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Figure 3
The profile of “highly certain subjective” for coder A is the vector of corresponding judgments
by coder B.

to the issue of unitizing, but we are not aware of any clear solution to this problem.
The second interesting point about this work is that it is one of the few pieces of work in
which Krippendorff’s α is used with a weighted distance metric, in this case, to measure
distance between emotions in ‘Activation-Evaluation space’. Thirdly, this is one of the
few existing studies in which coders were allowed to mark multiple labels (e.g., when a
person is conveying both fear and sadness in one utterance).

The work by Bruce and Wiebe (1999) in detecting subjective judgments is an in-
teresting, indeed a particularly sophisticated, example of analysis of the results of the
annotation to identify the reasons for the disagreement. Bruce and Wiebe had 4 subjects
(including 2 participants in the project) assign the tags subjective or objective ,
together with a certainty value, to 504 clauses from the Penn Treebank, observing a
κ value of 0.599 (using the definition of Davies and Fleiss [1982], our multi-κ). Bruce
and Wiebe then applied correspondence analysis to the pairwise confusion matrices
between the four coders. First, they used the objective/subjective tagging together
with the four-point certainty rank to create an eight-point scale ranging from “highly
certain subjective” to “highly certain objective”. Then, for each coder in a given pair
they defined the profile for each point on the scale as the vector of the other coder’s
corresponding judgments. For example, the profile of “highly certain subjective” for
coder A is an eight-point vector whose value at each point is the number of items labeled
as such by coder B (see Figure 3). Finally, Bruce and Wiebe compared the coders’ profiles
in order to determine which points on the scale resulted in similar judgment patterns.

Already this allowed Bruce and Wiebe to observe, for instance, that there was
much more agreement among their coders on highly certain values than on the highly
uncertain ones, and more agreement on marking a clause as “subjective” than “ob-
jective”. They then applied a combination of techniques for testing the significance of
these differences. These techniques allowed them to conclude that although the judges
disagreed, strong patterns of ‘quasi-symmetry’ could be detected, which in turn led
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them to explore the use of latent class models (Goodman 1974; Dempster, Laird, and
Rubin 1977) to identify what Bruce and Wiebe call the “bias-corrected versions of the
judges’ original classifications”. Bruce and Wiebe apply these techniques to identify the
‘latent categories’ (‘Latent Subjective’ and ‘Latent Objective’) for each item, and propose
to use these latent categories as the final classification of the items.

4.3 Marking boundaries and unitizing

Before labeling as just discussed can take place, the units of annotation, or markables,
need to be identified – a process Krippendorff (1995, 2004a) calls unitizing. The practice
in CL for the forms of annotation discussed in the previous subsection is to assume
that the units are linguistic constituents which can be easily identified, such as words
for POS tagging, utterances, or noun phrases, and therefore there is no need to check
the reliability of this process. We are only aware of few exceptions to this assumption,
such as Carletta et al. (1997) on unitization for move coding and our own work on the
GNOME corpus (Poesio 2004b). In other cases however, such as text segmentation and
prosodic annotation, the identification of units is as important as their labeling, if not
more important, and therefore checking agreement on unit identification is essential.
In this section we discuss current CL practice with reliability testing of these two
types of annotation, before briefly summarizing Krippendorff’s proposals concerning
measuring reliability for unitizing.

4.3.1 Segmentation and Topic Marking. The analysis of discourse structure – and
especially the identification of discourse segments – is a very important area of research
in discourse analysis and computational linguistics, and the type of annotation that
more than any other led CL researchers to look for ways of measuring reliability and
agreement, as it made them aware of the extent of disagreement on even quite simple
judgments (Passonneau and Litman 1993; Kowtko, Isard, and Doherty 1992; Carletta
et al. 1997; Hearst 1997). Subsequent research identified a number of issues with dis-
course structure annotation, above all the fact that segmentation, though problematic,
is still much easier than identifying more complex aspects of discourse structure, such
as identifying the most important segments or the ‘rhetorical’ relations between seg-
ments of different granularity. As a result, many efforts to annotate discourse structure
concentrate only on segmentation. We focus on segmentation in this section.

Discourse segments are portions of text that constitute a unit either because they
are about the same ‘topic’ or because they have to do with achieving the the same
intention (Grosz and Sidner 1986) or performing the same ‘dialogue game’ (Carletta
et al. 1997).15 The annotation of texts into segments related to the same topic (Hearst
1997; Reynar 1998) is by now a common form of annotation, carried out on a fairly
large scale, for example as part of the TREC and then TDT initiatives (Voorhees and
Harman 1998; Wayne 2000). These annotation efforts tend to focus on broader analyses
such as the division of streams of broadcast news into items about different events, but
more fine-grained analyses have also been attempted. For example, Carlson, Marcu,
and Okurowski (2003) annotated so-called discourse units as the first step of their
annotation of discourse structure. An interesting cross between topic-based and rhetor-

15 The notion of ‘topic’ is notoriously difficult to define and many competing theoretical proposals exist
(Reinhart 1981; Vallduví 1993). As it is often the case with annotation, fairly simple definitions tend to be
used in discourse annotation work: For example, in TDT topic is defined for annotation purposes as ‘an
event of activity together with all related events and activities’.
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ical structure-based analysis is the identification of argumentative zones carried out
by Teufel, Carletta, and Moens (1999), who segment scientific text according to its role
in a scientific text (background, own claims, other people’s claims, etc). Carletta et al.
(1997) carried out a form of segmentation based on the version of conversational games
theory proposed by Sinclair and Coulthard (1975), identifying the boundaries of games
and transactions. Intention-based annotations in the Grosz and Sidner sense have also
been attempted, although typically on a smaller scale, for example by Passonneau and
Litman (1993) and Nakatani et al. (1995), as well as as a part of RDA-style annotations
(Moser and Moore 1996; Moser, Moore, and Glendening 1996).

The agreement results in these efforts tend to be on the lower end of the scale
proposed by Krippendorff and adopted by Carletta, even for topic-based segmentation.
Hearst (1997), for instance, found K = 0.647 for the boundary / not boundary distinc-
tion; Reynar (1998), measuring agreement between his own annotation and the TREC
segmentation of broadcast news, reports K = 0.764 for the same task; Ries (2001) reports
even lower agreement of K = 0.36. Teufel, Carletta, and Moens (1999) found higher re-
liability (K = 0.81) for their three main zones (own, other, background) although lower
for the whole scheme (K = 0.71). For intention-based segmentation, Passonneau and
Litman (1993) in the pre-K days reported an overall percentage agreement with majority
opinion of 89%, but the agreement on boundaries was only 70%. For conversational
games segmentation, Carletta et al. (1997) reported “promising but not entirely reassur-
ing agreement on where games began (70%) . . . ,” whereas the agreement on transaction
boundaries was K = 0.59. Exceptions are two segmentation efforts carried out as part of
annotations of rhetorical structure. Moser, Moore, and Glendening achieved an agree-
ment of K = 0.9 for the highest level of segmentation of their RDA annotation (Poesio,
Patel, and Di Eugenio 2006). Carlson, Marcu, and Okurowski (2003) managed to achieve
very high agreement over unit boundaries (agreement was measured at several times;
the initial results were already of K = 0.87, and the final result K = 0.97). This however
was achieved by employing experienced annotators, and with considerable training.

One important reason why most agreement results on segmentation are on the
lower end of the reliability scale is the fact, known to researchers in discourse analysis
from as early as Levin and Moore (1978), that while analysts generally agree on the
‘bulk’ of segments, they tend to disagree on their exact boundaries. This phenomenon
was also observed in more recent studies: see for example the discussion in Passonneau
and Litman (1997), the comparison of the annotations produced by seven coders of the
same text in Figure 5 of Hearst (1997, page 55), or the discussion by Carlson, Marcu, and
Okurowski (2003), who point out that the boundaries between elementary discourse
units tend to be ‘very blurry’. See also Pevzner and Hearst (2002) for similar comments
made in the context of topic segmentation algorithms.

The fact that topic annotation efforts which were only concerned with roughly
dividing a text into segments (Passonneau and Litman 1993; Carletta et al. 1997; Hearst
1997; Reynar 1998; Ries 2001) generally reported lower agreement than the studies
whose goal was to identify smaller discourse units is most likely due to the fact that
when disagreement is mostly concentrated in one class (‘boundary’ in this case), if the
total number of units to annotate remains the same then expected agreement on this
class is lower when a greater proportion of the units to annotate belongs to this class.
Suppose we are testing the reliability of two different segmentation schemes – into
broad ‘discourse segments’ and into finer ‘discourse units’ – on a text of 50 utterances
(say, one of the shorter TRAINS dialogues) and we obtain the results in Table 10.

The first case would be a situation in which Coder A and Coder B agree that the
text consists of two segments, obviously agree on its initial and final boundaries, but
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Table 10
Fewer boundaries, higher expected agreement

Case 1: Broad segments
Ao = 0.96, Ae = 0.89, K = 0.65

CODER A
BOUNDARY NO BOUNDARY TOTAL

BOUNDARY 2 1 3
CODER B NO BOUNDARY 1 46 47

TOTAL 3 47 50

Case 2: Fine discourse units
Ao = 0.88, Ae = 0.53, K = 0.75

CODER A
BOUNDARY NO BOUNDARY TOTAL

BOUNDARY 16 3 19
CODER B NO BOUNDARY 3 28 31

TOTAL 19 31 50

disagree by 1 position on the intermediate boundary – say, one of them places it at
utterance 25, the other at utterance 26. Nevertheless, because expected agreement is
so high – the coders agree on the classification of 98% of the utterances – the value
of K is fairly low. In case 2, the coders disagree on three times as many utterances,
but K is higher than in the first case because expected agreement is substantially lower
(Ae = 0.53).

The fact that coders mostly agree on the the ‘bulk’ of discourse segments, but tend
to disagree on their boundaries, makes it likely that an all-or-nothing coefficient like K
calculated on individual boundaries would underestimate the degree of agreement,
suggesting low agreement even among coders whose segmentations are mostly similar.
A weighted coefficient of agreement like α might produce values more in keeping
with intuition, but we are not aware of any attempts at measuring agreement on
segmentation using weighted coefficients. We see two main options. We suspect that
the methods proposed by Krippendorff (1995) for measuring agreement on unitizing
(see section 4.3.3 below) may be appropriate for the purpose of measuring agreement
on discourse segmentation. A second option would be to measure agreement not on
individual boundaries but on windows spanning several units, as done in the meth-
ods proposed to evaluate the performance of topic detection algorithms such as Pk
(Beeferman, Berger, and Lafferty 1999) or WINDOWDIFF (Pevzner and Hearst 2002).
Both of these methods aim at assigning partial credit to near misses, and both also
specify a metric of disagreement which is additive – that is, the overall disagreement
is obtained by adding disagreement over all ‘categories’ assigned to ‘units’. They differ
from the methods discussed so far in that the goal of assigning partial credit is achieved
by computing pairwise disagreements over the number of boundaries present in a
window sliding through the segment; if we allow for these windows to be our ‘units’,
then the way disagreements are computed can be reinterpreted in terms of agreement
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coefficients. For instance, we can view Pk as assigning one of two category labels to
a window: same if both ends of the window are in the same segment, different
otherwise. The measure Pk now becomes the percentage of windows on which two or
more coders agree – that is, observed agreement Ao. Similarly, WINDOWDIFF can be
viewed as observed agreement when the category label assigned to each window is the
number of boundaries in the window. This highlights the fact that Pk and WINDOWDIFF
are simple percentage measures which are not corrected for chance; this can be remedied
by reporting K or α instead of observed agreement

Yet another possiblity might be to develop a measure based on the methods used
in our own studies of agreement on the antecedents of discourse deixis, which are
discourse segments (section 4.4.3 below).

4.3.2 Prosody. Prosodic annotation, like topic marking, crucially involves a step of
(prosodic) boundary identification in addition to a step of labeling the units, and mea-
suring agreement on boundaries is as crucial as measuring agreement on the labels. The
most important difference from text segmentation is that different types of boundaries
exist (Pierrehumbert and Hirschberg 1990). Systematic studies of reliability on both
boundary marking and prosodic phrases labeling have been conducted by, among
others, Pitrelli, Beckman, and Hirschberg (1994); Syrdal and McGorg (2000); Buhmann
et al. (2002). An important difference between these studies is that whereas Syrdal and
McGorg (2000) used coders with lots of training, Buhmann et al. (2002) set out to make
sure that the annotation could be done reliably by students working at different sites.
As in the case of text segmentation, agreement on prosodic segmentation is measured
by comparing whether coders classify a word as a boundary or not, and the type of
boundary assigned. Syrdal and McGorg (2000) measured agreement between their four
expert coders separately on male and female voices, reporting 74% percent agreement
on boundaries, for a value of κ of 0.65 for females and 0.62 for males. Buhmann et al.
(2002), who tested eight students, do not provide percent agreement, but report κ ‘in the
range from 0.70 to 0.88’ (presumably measured pairwise).

4.3.3 Unitizing (or, agreement on markable identification). It is often assumed in CL
annotation practice that the units of analysis are ‘natural’ linguistic objects, and there-
fore there is no need to check agreement on their identification. As a result, agreement is
usually measured on the labeling of units rather than on the process of identifying them
(unitizing, Krippendorff 1995). We have just seen however two coding tasks for which
the reliability of unit identification is a crucial part of the overall reliability, and the
problem of markable identification is more pervasive than is generally acknowledged.
For example, when the units to be labeled are syntactic constituents, it is common
practice to use a parser or chunker to identify the markables and then to allow the coders
to correct the parser’s output. In such cases one would want to know how reliable the
coders’ corrections are. We thus need a general method of testing relibility on markable
identification.

The one proposal for measuring agreement on markable identification we are aware
of is the αU coefficient proposed by Krippendorff (1995). The full proposal is too com-
plicated to cover here, so we will just present the core idea. Unitizing is conceived of as
consisting of two separate steps: identifying boundaries between units, and selecting the
units of interest. If a unit identified by one coder overlaps a unit identified by the other
coder, the amount of disagreement is the square of the lengths of the non-overlapping
segments (see Figure 4); if a unit identified by one coder does not overlap any unit
of interest identified by the other coder, the amount of disagreement is the sqare of
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Coder A

Coder B
s−� - s� - s+� -

A ∩ B� -

A ∪ B� -

Figure 4
The difference between overlapping units is d(A, B) = s2

− + s2
+ (adapted from Krippendorff

1995, Figure 4, page 61)

the length of the whole unit. This distance metric is used in calculating observed and
expected disagreement, and αU itself. We refer the reader to Krippendorff (1995) for
details.

Krippendorff’s αU is not applicable to all CL tasks. For example, it assumes that units
may not overlap in a single coder’s output, yet in practice there are many annotation
schemes which require coders to label nested syntactic constituents. Nevertheless, we
feel that when the non-overlap assumption holds, testing the reliabilty of unit identifica-
tion may prove beneficial. Specifically, segmentation (section 4.3.1) can be thought of as
a special case of unitizing where all units are of interest, so αU may serve as a reliability
measure for segmentation. To our knowledge, this has never been tested in CL.

4.4 Anaphora

The annotation tasks discussed so far involve assigning a specific label to each category,
which allows the various agreement measures to be applied in a straightforward way.
Anaphoric annotation differs from the previous tasks since annotators do not assign
labels, but rather create links between anaphors and their antecedents. It is therefore
not clear what the ‘labels’ should be for the purpose of calculating agreement. One
possibility would be to consider the intended referent (real-world object) as the label,
as in named entity tagging, but it wouldn’t make sense to predefine a set of ‘labels’
applicable to all texts, since different objects are mentioned in different texts. An al-
ternative is to use the marked antecedents as ‘labels’. However, we do not want to
count as a disagreement every time two coders agree on the discourse entity realized
by a particular noun phrase but just happen to mark different words as antecedents.
Consider the reference of the underlined pronoun it in the following dialogue excerpt
(TRAINS 1991, dialogue d91-3.2).

(3) 1.1 M: ....
1.4 first thing I’d like you to do
1.5 is send engine E2 off with a boxcar to Corning to

pick up oranges
1.6 as soon as possible
2.1 S: okay
3.1 M: and while it’s there it should pick up the tanker

Some of the coders in a study we recently carried out (Poesio and Artstein 2005)
indicated engine E2 as antecedent for the second it in utterance 3.1, whereas others
indicated the immediately preceding pronoun, which they had previously marked as
having engine E2 as antecedent. Clearly, we do not want to consider these coders to be
in disagreement.
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A solution to this dilemma has been proposed by Passonneau (2004): use the
emerging coreference sets as the ‘labels’ for the purpose of calculating agreement.
This requires using weighted measures for calculating agreement on such sets, and
consequently it raises serious questions about weighted measures – in particular, about
the interpretability of the results, as we will see shortly.

4.4.1 Passonneau’s proposal. The most reasonable solution to the problem of measuring
agreement on anaphoric annotation proposed in the literature is to use as ‘labels’ the
sets of mentions of discourse entities, that is, anaphoric / coreference chains (Passon-
neau 2004). This proposal is in line with the methods developed to evaluate anaphora
resolution systems (Vilain et al. 1995). But using anaphoric chains as labels would not
make unweighted measures such as K a good measure for agreement. This is because
K only offers a dichotomous distinction between agreement and disagreement, whereas
practical experience with anaphoric annotation suggests that except when a text is very
short, few annotators will catch all mentions of a discourse entity: most will forget to
mark a few, with the result that agreement as measured with K is always very low. What
is needed is a coefficient that also allows for partial disagreement between judgments,
when two annotators agree on part of the coreference chain but not on all of it.

Passonneau (2004) suggests to solve the problem by using α with a distance metric
that allows for partial agreement among anaphoric chains. Passonneau proposes a dis-
tance metric based on the following rationale: two sets are minimally distant when they
are identical and maximally distant when they are disjoint; between these extremes, sets
that stand in a subset relation are closer (less distant) than ones that merely intersect.
This leads to the following distance metric between two sets A and B.

dP =


0 if A = B

1/3 if A ⊂ B or B ⊂ A
2/3 if A ∩ B 6= ∅, but A 6⊂ B and B 6⊂ A
1 if A ∩ B = ∅

Alternative distance metrics take the size of the anaphoric chain into account, based
on measures used to compare sets in Information Retrieval such as the coefficient of
community of Jaccard (1912) and the coincidence index of Dice (1945) (Manning and
Schuetze 1999).

dJ = 1− |A ∩ B|
|A ∪ B|

(Jaccard)

dD = 1− 2 |A ∩ B|
|A|+ |B|

(Dice)

In later work, Passonneau (2006) offers a refined distance metric which she called MASI
(Measuring Agreement on Set-valued Items), obtained by multiplying Passonneau’s
original metric dP by the metric derived from Jaccard dJ .

dM = dP × dJ

4.4.2 Experience with α for anaphoric annotation. In the experiment mentioned above
(Poesio and Artstein 2005) we used 18 coders to tested α and K under a variety of
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Chain K α

None 0.628 0.656
Partial 0.563 0.677
Full 0.480 0.691
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no partial full
chain chain chain

Figure 5
A comparison of the values of α and K for anaphoric annotation

conditions. We found that even though our coders by and large agreed on the inter-
pretation of anaphoric expressions, virtually no coder ever identified all the mentions
of a discourse entity. As a result, even though the values of α and K obtained by using
the ID of the antecedent as label were pretty similar, the values obtained when using
anaphoric chains as labels were drastically different. The value of α increased, because
examples like (3) would no longer be considered as disagreements. However, the value
of K was drastically reduced, because hardly any coder identified all the mentions of
discourse entities (Figure 5).

The study also looked at the matter of individual annotator bias, and as mentioned
in section 3.1, we did not find differences between α and ακ beyond the third decimal
point. This similarity is what one would expect, given the result about annotator bias
from section 3.1 and given that in this experiment we used 18 annotators. These very
small differences should be contrasted with the differences resulting from the choice of
distance metrics, where values for the full-chain condition ranged from α = 0.642 using
Jaccard as distance metric, to α = 0.654 using Passonneau’s metric, to the value for Dice
reported in Figure 5, α = 0.691. These differences raise an important issue concerning
the application of α-like measures for CL tasks: using α is going to make it even more
difficult to compare the results of different annotation experiments, in that a ‘poor’ value
or a ‘high’ value might result from ‘too strict’ or ‘too generous’ distance metrics, making
it even more important to develop a methodology to identify appropriate values for
these coefficients. This issue was further emphasized by the study reported next.

4.4.3 Discourse Deixis. A second annotation study we carried out (Artstein and Poesio
2006) shows even more clearly the possible side effects of using weighted coefficients.
This study was concerned with the annotation of the antecedents of references to ab-
stract objects, such as the example of the pronoun that in (4), utterance 7.6 (TRAINS 1991,
dialogue d91-2.2).

(4) 7.3 : so we ship one
7.4 : boxcar
7.5 : of oranges to Elmira
7.6 : and that takes another 2 hours
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Previous studies of discourse deixis annotation showed that these are extremely diffi-
cult judgments to make (Navarretta 2000; Eckert and Strube 2001; Byron 2002), except
perhaps for identifying the type of object (Poesio and Modjeska 2005), so we simplified
the task by only requiring our participants to identify the boundaries of the area of text
in which the antecedent was introduced. Even so, we found a great variety in how these
boundaries were marked: exactly as in the case of discourse segmentation discussed
earlier, our participants broadly agreed on the area of text, but disagreed on its exact
boundary: for example, in the case of (4), some marked the text segment as starting
with the word so, some started with we, some with ship, and some with one.

We tested a number of ways to measure partial agreement on this task, and obtained
widely different results. First of all, we tested three set-based distance metrics inspired
by the Passonneau proposals that we just discussed: we considered discourse segments
to be sets of words, and computed the distance between them using Passonneau’s
metric, Jaccard, and Dice. Using these three metrics, we obtained α values of 0.55 (with
Passonneau’s metric), 0.45 (with Jaccard), and 0.55 (with Dice). We should note that
since antecedents of different expressions rarely overlapped, the expected disagreement
was close to 1 (maximal), so the value of α turned out to be very close to the complement
of the observed disagreement as calculated by the different distance metrics.

Next, we considered methods based on the position of words in the text. The first
method computed differences between absolute boundary positions: each antecedent
was associated with the position of its first or last word in the dialogue, and agreement
was calculated using α with the interval distance metric. This gave us α values of
0.998 for the beginnings of the antecedent-evoking area and 0.999 for the ends. This is
because expected disagreement is exceptionally low: coders tend to mark discourse an-
tecedents close to the referring expression, so the average distance between antecedents
of the same expression is smaller than the size of the dialogue by a few orders of
magnitude. The second method associated each antecedent with the position of its
first or last word relative to the beginning of the anaphoric expression. This time we found
extremely low values of α = 0.167 for beginnings of antecedents and 0.122 for ends –
barely in the positive side. This shows that agreement among coders is not dramatically
better than what would be expected if they just marked discourse antecedents at a fixed
distance from the referring expression.

The three ranges of α that we observed – middle, high, and low – show agreement
on the identity of discourse antecedents, their position in the dialogue, and their posi-
tion relative to referring expressions, respectively. The middle range shows variability
of up to 10 percentage points depending on the distance metric chosen. The lesson is
that once we start using weighted measures we cannot anymore interpret the value of α
using traditional rules of thumb such as those proposed by Krippendorff or by Landis
and Koch. This is because depending on the way we measure agreement, we can report
α values ranging from 0.122 to 0.998 for the very same experiment! New interpretation
methods have to be developed, which will be task- and distance-metric specific. We’ll
return to this issue in the conclusions.

4.5 Summarization

Evaluating content selection in summarization is a difficult problem (Radev et al. 2003),
for which no single ‘gold standard’ can exist. (Machine translation faces a similar
problem, as do all tasks involving generation.) Even if we only consider the simpler task
of comparing summaries obtained by extracting sentences from the original document
without any rephrasing, it is extremely unlikely that any two summaries will include ex-
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Table 11
Summarization content units produced by two annotators (adapted from Passonneau 2006)

SCU produced by coder 1
Label: Americans asked Saudi officials for help
Weight: 4

Source Span
Sum1 1 Saudi Arabian officials, under American pressure
Sum2 2 sought help from Saudi officials
Sum3 3 Through the Saudis, the United States asked
Sum4 4 U.S. and Saudi Arabian requests

SCU produced by coder 2
Label: Through the Saudis, the U.S. tried to get cooperation from the Taliban
Weight: 5

Sum1 1 Saudi Arabian officials, under American pressure,
5 asked Afghan leaders

Sum3 2 sought help from Saudi officials,
7 who tried to convince Taleban leaders

Sum4 3 Through the Saudis, the United States asked
Sum5 4 U.S. and Saudi Arabian requests
Sum2 6 U.S. and Saudi officials then attempted

actly the same sentences – indeed, Lin and Hovy (2003) report that human summarizers
agree with their own previous summaries in only about 82% of the cases. The problem
is even more complex with more recent evaluation metrics for summarization, which
involve identifying the most important ‘factoids’ contained in reference summaries, and
scoring system-produced summaries against these factoids. As one might expect, the
coders identifying these common factoids are likely to miss some, just as in the case of
anaphoric annotation coders are likely to miss some anaphoric link (Passonneau 2006).
Clearly, a measure taking into account partial agreement such as α is needed to measure
the agreement between coders producing such a summary.

Indeed, α has been used to measure agreement between coders producing factoid-
like evaluation sets out of reference summaries for the DUC competition (Nenkova
and Passonneau 2004; Passonneau 2006). Nenkova and Passonneau developed the so-
called pyramid method for evaluating system-produced summaries, which is based on
comparing them with a list of hand-annotated and weighted summarization content
units (SCU), which are the ‘minimal propositions’ contained in the text. After expert
summarizers have produced reference summaries for each document, coders divide
these summaries into SCUs: an SCU is a set of text portions – at most one portion from
each reference summary – which express the same factoid. The weight of an SCU is the
number of summaries which express this factoid. Each SCU is also given a mnemonic
label which reflects the SCU’s content in plain language. Table 11 gives examples of SCUs
produced by two coders, expressing related factoids.
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The second column in the Table is an indexing of spans of words which allows
us to conveniently compare the words associated with each SCU. We see that from some
summaries the coders chose identical spans for the SCUs in Table 11 (spans 3 and 4), from
others they chose overlapping but non-identical spans (span 1 by coder 1 and spans 1
and 5 by coder 2), and from some summaries only one coder chose a contributing span
for this SCU (span 7 by coder 2). We can think of each SCU as a set of spans: coder 2’s
SCU is the set {1, 2, 3, 4, 5, 6, 7}, while coder 1’s SCU is the set {1, 2, 3, 4} (coder 1 included
spans 5 and 7 in a separate SCU, and span 6 in yet another SCU).

SCU identification can now be seen as dividing a text into sets of spans; this is
similar to anaphoric annotation, where markables are divided into sets which form
coreference chains. To measure the reliability of SCU identification, Nenkova and Pas-
sonneau (2004) use Krippendorff’s α with the distance metric of Passonneau (2004),
while Passonneau (2006) uses the newer MASI distance metric (section 4.4.1).

4.6 Word Senses

Wordsense tagging is one of the hardest annotation tasks. Whereas in the case of part-
of-speech and dialogue act tagging the same categories are used to classify all units, in
the case of wordsense tagging different categories must be used for each word, which
makes writing a single coding manual specifying examples for all categories impossible:
the only option is to rely on a dictionary. Unfortunately, different dictionaries make
different distinctions, and often coders can’t make the fine-grained distinctions that
trained lexicographers can make. The problem is particularly serious for verbs, which
tend to be polysemous rather than homonymous (Palmer, Dang, and Fellbaum 2007).

These difficulties, and in particular the difficulty of tagging senses with a fine-
grained repertoire of senses such as that provided by dictionaries or by WordNet (Fell-
baum 1998), have been highlighted by the three SENSEVAL initiatives. Already during
the first SENSEVAL, Véronis (1998) carried out two studies of intercoder agreement on
wordsense tagging in the so-called ROMANSEVAL task. One study was concerned with
agreement on polysemy – that is, the extent to which coders agreed that a word was
polysemous in a given context. Six naive coders were asked to make this judgment
about 600 French words (200 nouns, 200 verbs, 200 adjectives) using the repertoire of
senses in the Petit Larousse. On this task, a (pairwise) percentage agreement of 0.68 for
nouns, 0.74 for verbs, and 0.78 for adjectives was observed, corresponding to K values
of 0.36, 0.37 and 0.67, respectively. The 20 words from each category perceived by the
subjects in this first experiment to be most polysemous were then used in a second
study, of intercoder agreement on the sense tagging task, which involved 6 different
naive subjects. Interestingly, the coders in this second experiment were allowed to
assign multiple tags to words, although they did not make much use of this possibility;
so κw was used to measure agreement. In this experiment, Véronis observed (weighted)
pairwise agreement of 0.63 for verbs, 0.71 for adjectives, and 0.73 for nouns, correspond-
ing to κw values of 0.41, 0.41, and 0.46, but with wide variety of values when measured
per word – ranging from 0.007 for adjective correct to 0.92 for noun détention. Similarly
mediocre results for intercoder agreement between naive coders were reported in the
subsequent editions of SENSEVAL. Agreement studies for SENSEVAL-2, where WordNet
senses were used as tags, reported a percentage agreement for verb senses of around
70%, whereas for SENSEVAL-3 (English Lexical Sample Task), Mihalcea, Chklovski, and
Kilgarriff (2004) report a percentage agreement of 67.3% and average K of 0.58.

Two types of solutions have been proposed for the problem of low agreement
on sense tagging. The solution proposed by Kilgarriff (1999) is to use professional
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Table 12
Group 1 of senses of call in Palmer, Dang, and Fellbaum (2007, page 149).

SENSE DESCRIPTION EXAMPLE HYPERNYM

WN1 name, call “They nameda their son David” LABEL
WN3 call, give a quality “She called her children lazy LABEL

and ungrateful”
WN19 call, consider “I would not call her beautiful” SEE
WN22 address, call “Call me mister” ADDRESS

a The verb named appears in the original WordNet example for the verb call.

lexicographers, and arbitration. The study carried out by Kilgarriff does not therefore
qualify as a true study of replicability in the sense of the terms used by Krippendorff,
but it did show that this approach makes it possible to achieve percentage agreement of
around 95.5%. An alternative approach has been to address the problem of the inability
of naive coders to make fine-grained distinctions by introducing coarser-grained clas-
sification schemes which group together dictionary senses (Buitelaar 1998; Bruce and
Wiebe 1998; Véronis 1998; Palmer, Dang, and Fellbaum 2007). Hierarchical tagsets were
also developed, such as HECTOR (Atkins 1993) or, indeed, WordNet itself (where senses
are related by hyponymy links). In the case of Buitelaar (1998) and Palmer, Dang, and
Fellbaum (2007), the ‘supersenses’ were identified by hand, whereas Bruce and Wiebe
(1998) and Véronis (1998) used clustering methods such as those from Bruce and Wiebe
(1999) to collapse some of the initial sense distinctions. Palmer, Dang, and Fellbaum
(2007) illustrate this practice with the example of the verb call, which has 28 fine-grained
senses in WordNet 1.7: they conflate these senses into a small number of groups using
various criteria – for example, four senses can be grouped in a group they call Group 1
on the basis of subcategorization frame similarities (Table 12).

Palmer, Dang, and Fellbaum achieved for the English Verb Lexical Sense task of
SENSEVAL-2 a percentage agreement among coders of 82% with grouped senses, as
opposed to 71% with the original WordNet senses. Bruce and Wiebe (1998) found that
collapsing the senses of their test word (interest) on the basis of their use by coders and
merging the two classes found to be harder to distinguish resulted in an increase of
the value of K from 0.874 to 0.898. Using a related technique, Véronis (1998) found that
agreement on noun wordsense tagging went up from a K of around 0.45 to a K of 0.86.16

Attempts were also made to develop techniques to measure partial agreement with
hierarchical tagsets. A first proposal in this direction was advanced by Melamed and
Resnik (2000), who developed a method for computing K with hierarchical tagsets
that could be used in SENSEVAL for measuring agreement with tagsets such as HEC-
TOR. Melamed and Resnik proposed to ‘normalize’ the computation of observed and
expected agreement by taking each label which is not a leaf in the tag hierarchy and
distributing it down to the leaves in a uniform way, and then only computing agreement

16 We are not aware of any annotation effort attempting to use a tagset based on Buitelaar’s CORELEX, a
reconstruction of the WordNet repertoire of noun wordsenses according to Pustejovsky’s Generative
Lexicon theory (Buitelaar 1998).
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on the leaves. For example, with a tagset like the one in Table 12, the cases in which
the coders used the label ‘Group 1’ would be uniformly ‘distributed down’ and added
in equal measure to the number of cases in which the coders assigned each of the
four WordNet labels. The method proposed in the paper has, however, problematic
properties when used to measure intercoder agreement. For example, suppose tag A
dominates two sub-tags A1 and A2, and that two coders mark a particular item as A.
Intuitively, we would want to consider this a case of perfect agreement, but this is not
what the method proposed by Melamed and Resnik yields. The annotators’ marks are
distributed over the two sub-tags, each with probability 0.5, and then the agreement
is computed by summing the joint probabilities over the two subtags (equation 4 of
Melamed and Resnik 2000), with the result that the agreement over the item turns out
to be 0.52 + 0.52 = 0.5 instead of 1. To correct this, Dan Melamed (personal communica-
tion) suggested replacing the product in equation 4 with a minimum operator. However,
the calculation of expected agreement (equation 5 of Melamed and Resnik 2000) still
gives the amount of agreement which is expected if coders are forced to choose among
leaf nodes, which makes this method inappropriate for coding schemes that do not force
coders to do this.

One way to use Melamed and Resnik’s proposal while avoiding the discrepancy
between observed and expected agreement is to treat the proposal not as a new co-
efficient, but rather as a distance metric to be plugged into a weighted coefficient
like α. Let A and B be two nodes in a hierarchical tagset, let L be the set of all leaf
nodes in the tagset, and let P(l|T) be the probability of selecting a leaf node l given
an arbitrary node T when the probability mass of T is distributed uniformly to all the
nodes dominated by T. We can reinterpret Dan Melamed’s modification of equation 4 in
Melamed and Resnik (2000) as a metric measuring the distance between nodes A and B.

dM+R = 1− ∑
l∈L

min(P(l|A), P(l|B))

This metric has the desirable properties – it is 0 when tags A ad B are identical, 1 when
the tags do not overlap, and somewhere inbetween in all other cases. If we use this
metric for Krippendorff’s α we find that observed agreement is exactly the same as
in Melamed and Resnik (2000) with the product operator replaced by minimum (Dan
Melamed’s modification).

We can also use other distance metrics with α. For example, we could associate with
each sense an extended sense – a set es(s) including the sense itself and its grouped
sense – and then use set-based distance metrics from section 4.4, for example Passon-
neau’s dP. To illustrate how this approach could be used to measure (dis)agreement on
wordsense annotation, suppose that two coders have to annotate the use of call in the
following sentence (from the WSJ part of the Penn Treebank, section 02, text w0209):

(5) This gene, called “gametocide,” is carried into the plant by a virus that remains
active for a few days.

The standard guidelines (in SENSEVAL, say) require coders to assign a WN sense to
words. Under such guidelines, if coder A classifies the use of called in (5) as an in-
stance of WN1, whereas coder B annotates it as an instance of WN3, we would find
total disagreement (dkakb

= 1) which seems excessively harsh as the two senses are
clearly related. However, by using the broader senses proposed by Palmer, Dang, and
Fellbaum (2007) in combination with a distance metric such as the one just proposed,
it is possible to get more flexible and, we believe, more realistic assessments of the
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degree of agreement in situations such as this. For instance, in case the reliability study
had already been carried out under the standard SENSEVAL guidelines, the distance
metric proposed above could be used to identify post hoc cases of partial agreement
by adding to each WN sense its hypernyms according to the groupings proposed by
Palmer, Dang, and Fellbaum. For example, A’s annotation could be turned into a new
set label {WN1,LABEL} and B’s mark into the set {WN3,LABEL}, which would give in a
distance d = 2/3, indicating a degree of overlap. The method for computing agreement
proposed here could could also be used to allow coders to choose either a more specific
label or one of Palmer, Dang, and Fellbaum’s superlabels. For example, suppose A sticks
to WN1, but B decides to mark the use above using Palmer, Dang, and Fellbaum’s
LABEL category, then we would still find a distance d = 1/3.

An alternative way of using α for wordsense annotation was developed and tested
by Passonneau, Habash, and Rambow (2006). The approach of Passonneau, Habash,
and Rambow is to allow coders to assign multiple labels (WordNet synsets) for word-
senses, as done by Véronis (1998) and more recently by Rosenberg and Binkowski (2004)
for text classification labels and by Poesio and Artstein (2005) for anaphora. These multi-
label sets can then be compared using the MASI distance metric for α (Passonneau 2006).
The problem with this approach is that in practice, coders very seldom assign more than
one label to units (Véronis 1998; Poesio and Artstein 2005).

5. Other issues

5.1 Missing Data

An assumption that underlies all the coefficients that we have discussed is that all the
coders classify all the items in the reliability sample. In practice, however, this is not
always the case, either because of practical limitations on the experimental setup or
because some of the coders fail to classify certain items, for whatever reason. When
data points are missing, the coefficients need to be adjusted to minimize the loss.

If there are only two coders then missing data implies the existence of items with
at most one judgment, and since such singular judgments cannot be compared with
anything, the only remedy is to remove these items from the sample. We can thus only
deal with missing data when the number of coders is three or greater.

We will not attempt to deal with missing data in coefficients that model chance
using individual coder marginals (multi-κ, ακ). While this is possible in principle,
and we have done so in a previous version of this article, the formulas become very
complicated and their usefulness is quite dubious, because the values of single- and
individual-distribution coefficients converge with multiple coders (section 3.1). We will
therefore only deal with single-distribution coefficients in this section (multi-π, α). Note
also that no adjustment is needed if different items are classified by different coders, as
long as the number of coders per item is constant, because these coefficients treat coders
as interchangeable. If, however, the number of judgments per item is not constant, then
the coefficients need to be adjusted.

One solution to the missing data problem is to eliminate certain data points in order
to achieve a data set were all coders classify all items. This is probably the best practice
when the total data loss would be small. In a recent annotation experiment (Poesio and
Artstein 2005) we had a total of 151 items, and data points were missing for three of
them; eliminating these items from the analysis provided a quick solution to the missing
data problem. Another example is Fleiss (1971), which reports a psychiatric study where
each patient (item) was diagnosed by between 6 and 10 psychiatrists (coders), and
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which reduced the number of coders per patient to a constant (six) by random dropping
of diagnoses. There is no indication of how much data were lost in this pruning.

An alternative to dropping additional data is to redefine the observed and expected
agreement and disagreement so as to minimize the skewing of the coefficient values.
We will present two ways of doing this, either giving equal weight to each judgment or
to each item. The method which gives an equal weight to each judgment is advocated
by Krippendorff (2004a, pages 230–232) for use with α; it is in line with the origins of α
as a measure of variance, since the standard method of computing the F stastisic in an
analysis of variance involves giving equal weight to each data point, not to each level.
Krippendorff’s justification for giving an equal weight to each judgment is that the total
number of judgments is the best estimate of the actual distribution of items; however,
such an estimate may be skewed if judgements are missing for a systematic reason (for
example, if judgments are missing for items of one particular category). For this reason
we also provide a way to adjust the coefficients in order to give an equal weight to each
item.

We start by calculating a normalized figure for observed agreement and disagree-
ment per item. Let ni stand for the number of judgments available for a particular
item i; the total number of judgment pairs for item i is therefore

(ni
2

)
= ni(ni − 1)/2.

Normalized agreement is the total number of agreeing judgment pairs and normalized
disagreement is the total distance between the judgment pairs, both divided by the total
number of judgment pairs.

agri =
1(ni
2

) ∑
k∈K

(
nik
2

)
=

1
ni(ni − 1) ∑

k∈K
nik(nik − 1)

disagri =
1

ni(ni − 1)

k

∑
j=1

k

∑
l=1

nikj
nikl

dkjkl

If an item i receives only one judgment, then agri and disagri turn out to be 0
0 , or

undefined; indeed in such a case one cannot talk of agreeing or disagreeing pairs at
all. The overall observed (dis)agreement is calculated only on the items for which such
a value exists. Let I ′ be the set of items for which there are two or more judgments
available, let i′ be the cardinality of this set, and let N′ be the total number of judgments
available for this set. Giving an equal weight to each judgment, observed (dis)agreement
is the mean of the normalized (dis)agreement values of the individual items, weighted
by the number of judgments per item.

Aπ
o =

1
N′ ∑

i∈I′
niagri Dα

o =
1

N′ ∑
i∈I′

nidisagri

Giving an equal weight to each item, observed (dis)agreement is the unweighted mean
of the (dis)agreement values of the individual items.

Aπ
o =

1
i′ ∑

i∈I′
agri Dα

o =
1
i′ ∑

i∈I′
disagri

The formulas for expected agreement and disagreement already give equal weight
to each judgment, so the only modification necessary is to remove all singulary judg-
ments before computation. Let n′k be the total number of judgments of category k that
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come from items for which there are at least two judgments in total. Expected agreement
and disagreement then take the following shape.

Aπ
e =

1
(N′)2 ∑

k∈K
(n′k)

2 Dα
e =

1
N′(N′ − 1)

k

∑
j=1

k

∑
l=1

n′kj
n′kl

dkjkl

If we want to give equal weight to each item, we have to weight each individual
judgment by the inverse of the number of judgments in the item it comes from.

Aπ
e =

1
(i′)2 ∑

k∈K

(
∑
i∈I′

nik
ni
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N′
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1
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∑
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)
dkjkl

5.2 Error models

One of the problems with reliability coefficients is that the value they give is not easily
interpretable as a parameter of the population of items or of the coding process. It
would be desirable to replace the notion ‘amount of agreement’ with something easier
to understand, like error rate. It is not possible to determine the error rate without
knowledge of the true category labels; however, an explicit model of annotator error
can estimate error rates from the annotation data. In this section we will look at an
explicit model of annotator error proposed by Aickin (1990), and show how it can be
used to estimate error rates from agreement coefficients.

Aickin’s alpha. Aickin (1990) offers a way to measure agreement between two coders
using an explicit model with a parameter called ‘alpha’; we will designate it with the
symbol a in order to distinguish it from Krippendorff’s α. The model is based on four
assumptions, the first three of which are as follows.

1. The items are made up of two populations, one which is easy to classify
and one which is hard to classify.

2. The coders always agree on the classification of the easy items.

3. The coders classify hard items at random.

These assumptions give rise to an attractive conceptualization of the reliability problem.
From our experience, items really differ in difficulty, and while it is clearly an over-
simplification to make a dichotomous distinction between items that are classified at
100% accuracy and others that are classified at chance level, this does capture a basic
intuition about an important source of disagreement in annotation.

The population parameter a is the proportion of items which are easy to classify.
Since agreement is maximal for the easy items and at chance for the hard items, ob-
served agreement and disagreement turn out to be functions of just the propotion a and
the expected agreement or disagreement on the population of hard items (denoted by
Ahard

e and Dhard
e ).

Ao = a + (1− a)Ahard
e Do = (1− a)Dhard

e
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The above formulas can be transformed into a form which is similar to that of the
familiar coefficients.

a =
Ao −Ahard

e

1−Ahard
e

a = 1− Do

Dhard
e

The difference between this and kappa-like coefficients is that chance agreement is
calculated only on the items which are assumed to be randomly classified.

If we add to this model the assumption that Ae = Ahard
e or De = Dhard

e , we find that
a is identical to π, κ, or α, depending on how exactly expected agreement is calculated. A
natural interpretation of the assumption Ae = Ahard

e is that the distribution of judgments
for the hard items is determined by the distribution of the easy items, on which there
is agreement (for κ this also entails identical coder marginals). We thus have a new
interpretation of the agreement coefficients, namely the proportion of items which are
easy to classify under an error model consisting of the first three premises of Aickin
(1990) plus the assumption that Ae = Ahard

e or De = Dhard
e (see also Krippendorff 2004a,

page 227).
Aickin’s fourth assumption is different from our last assumption, and is intended

to achieve a property called constant predictive probability: if the coders agree on the
classification of an item, the probability that this item is easy is the same irrespective of
the category to which it was assigned (Aickin only considers annotations performed by
two coders, not more). The following assumption achieves this property.

4. constant predictive probability: Easy items are distributed among those
category pairs that denote agreement in proportion to the distribution of
the hard items among these category pairs.

With k category labels, the model has 2k − 1 parameters: two probability distributions
of the hard items (one for each coder, each characterized by k− 1 parameters), plus the
proportion of easy items a.

Aickin uses maximum-likelihood estimation to estimate the parameters of the
model, and reports the results of simulations which were conducted with identical
distributions for the two coders. The simulations show that the value of a, estimated by
maximum likelihood, tends to be higher than that of κ, except when the distributions are
uniform, in which case the two coefficients yield similar values. This is no surprise, as it
can be shown analytically that κ ≤ a in any data set generated by the model for coders
with identical distributions, with the limiting case obtaining only when the coders’
distributions are uniform (we omit the proof for lack of space). The reason for this is the
fact that Aickin’s assumption 4 introduces a nonlinear relation between the distribution
of the easy items and that of the hard items.

We feel that Aickin’s assumption 4 does not have a natural interpretation: it seems to
imply that the distribution of judgments for the hard items is determined by the square
roots of the proportions of the easy items, suggesting that the coders are somehow aware
of the method of calculating agreement by looking at their joint decisions. We also have
doubts about the constant predictive probability property, which is the driving force
behind assumption 4. The chance of spurious classification of an item into a common
category is higher than the chance of spurious classification into a rare category, and
therefore agreement on the classification of an item into a common category should
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indeed be less indicative that this agreement is genuine. This intuition, which we feel is
valid, is contrary to the constant predictive probability hypothesis.

Finally, we conjecture that simulations of an error model which replaces assump-
tion 4 with the assumption that Ao = Ahard

o would find the maximum-likelihood estima-
tor for a very similar to the values of π and κ even when the distribution of items among
categories is not uniform. We expect this at least for coding data with a substantial
amount of agreement. The error model cannot generate data with systematic disagree-
ment, and will therefore be a poor model for such data; with systematic disagreement,
π and κ can dip below zero, while zero is by definition the lower bound for a.

Randomly spread error. In the model of Aickin (1990), items are either easy or hard to
classify, and arbitrary (chance) judgments are given to all and only the hard items.
We can also construct a different error model, in which arbitrary judgments are spread
evenly over all items. For each judgment there will be a single, invariant probability p
of making a non-arbitrary (correct) classification, and a probability of 1 − p of making
an arbitrary decision according to the true distribution of items among categories
P(k1), . . . , P(kk) (the arbitrary decision can also turn out to be correct, by chance). We can
think of the coding process as going in two steps: first the true category k of an item is
determined, and then each coder classifies the item as k with probability p + (1− p)P(k),
and as any other category k′ 6= k with probability (1− p)P(k′). Under this error model,
the expected value of π is p2 – that is, it depends only on the proportion of non-arbitrary
judgments.

E(Ao) = ∑
k∈K

P(k)
(
(p + (1− p)P(k))2 + ∑

k′ 6=k
((1− p)P(k′))2

)
= ∑

k∈K
P(k)

(
p2 + 2p(1− p)P(k) + (1− p)2 ∑

k∈K
(P(k))2

)
= p2 + 2p(1− p)Aπ

e + (1− p)2Aπ
e

= p2 + (1− p2)Aπ
e

E(π) =
Ao −Aπ

e
1−Aπ

e
=

p2 + (1− p2)Aπ
e −Aπ

e
1−Aπ

e
=

p2 − p2Aπ
e

1−Aπ
e

= p2

We can compare this to the result from the discussion of Aickin’s alpha: when arbitrary
judgments are distributed in proportion to the actual distribution of items among
categories and all the arbitrary judgments concentrate on the same items, then π is
equal to the proportion of non-arbitrary judgments; if arbitrary judgments are spread
evenly among items, then π is equal to the square of the proportion of non-arbitrary
judgments. In practice we expect the arbitrary judgments to lie somewhere between
these extremes, that is to be somewhat arbitrary, with a tendency to concentrate on the
more difficult items. We thus expect the proportion of non-arbitrary judgments to be
somewhere between π and

√
π. The proportion of correct judgments will be somewhat

higher, since some arbitrary judgments will also be correct.
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6. Conclusions

We conclude this fairly long discussion by summarizing what in our view are the main
points emerging from ten years of CL experience with chance-corrected coefficients of
agreement. These points can be grouped under three main headings: methodology,
choice of coefficients, and interpretation of coefficients.

6.1 Methodology

One clear result of our survey has already been announced at the beginning of section 4:
still too few studies of the reliability of a coding scheme in CL apply a methodology as
rigorous as that envisaged by Krippendorff. All too often, agreement studies are just a
race to get a high score. It is true that the methodology adopted for large annotation ef-
forts has greatly improved: one need only compare the central role played by reliability
testing in the case of the Penn Discourse Treebank (Miltsakaki et al. 2004) or OntoNotes
(Hovy et al. 2006) with the absence of any tests in the case of the Penn Treebank (Marcus,
Santorini, and Marcinkiewicz 1993) or the British National Corpus (Leech, Garside,
and Bryant 1994). But even in the case of such large annotation efforts, only percent
agreement gets measured. There are a number of reasons for this. One is that annotation
efforts tend to be carried out by engineers (who often do not have the time for a rigorous
test) or by linguists (many of whom do not believe that untrained subjects can make
sound linguistic judgments). But the difficulty in interpreting the results also plays a
role: many researchers do not see the point in carrying out a reliability study if then they
can’t interpret its results. Still, we find this status of affairs rather unsatisfactory, as in
our experience coefficients of agreement, together with the other information discussed
below, do provide a better indication of the quality of the resulting annotation than
simple percent agreement.

One area in which a motivated difference may be emerging between Content Anal-
ysis practice and CL methodology is in the role of experts. The main concern in Content
Analysis is to ensure that the results of a given study are reproducible; to guarantee this,
one must make sure that the coding on which these results are based can be reliably
reproduced by individuals whose only training is provided by the coding scheme. One
of the main purposes of reliability testing in CL, on the other hand, is to test schemes
used for resource creation – that is, the ‘result’ will be an annotated corpus, not some
scientific claim. Now, most annotation tasks of interest to CL require judgments which
are too complex to be drawn by naive coders, so in practice professionals rather than
naive coders are employed for serious resource creation efforts whenever financial
resources allow. This can be achieved either by using professionals, as advocated by
Kilgarriff (1999), or through an intensive training, as done in OntoNotes (Hovy et al.
2006) or by Carlson, Marcu, and Okurowski (2003). We think this is not problematic so
long as precautions are taken to ensure that the resource will be consistent – that is, to
ensure that the people who will actually do the job are consistent and agree with each
other. So long as the people who actually do the job are experts, we feel it is adequate
to draw the coders for the reliability test from this kind of population. This practice
will certainly not offer the same cast-iron guarantee as using naive coders who only
follow written instructions, and the resulting corpora cannot be used to make claims
about spontaneous linguistic judgments, but in practice the only alternative would be
to limit corpus annotation in CL to the kind of “oversimplified or superficial but reliable
text analyses” that quite rightly Krippendorff finds to be of as limited usefulness as
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“fascinating interpretations that nobody can replicate” (Krippendorff 2004a, pages 213–
214).

6.2 Choosing a coefficient

Up until the papers by Passonneau (2004) and Di Eugenio and Glass (2004), K was
viewed for all intents and purposes as the only available option for measuring reliability.
One of the goals of this paper is to further the process of reconsideration of the available
options.

As far as we know, the debate concerning the ‘horizontal’ dimension of the coef-
ficient cube – annotator bias – has been limited to the exchange between Di Eugenio
and Glass (2004), in favor of Cohen’s κ, and Craggs and McGee Wood (2005) (and
Krippendorff), in favor of K and α. There is an overwhelming consensus in CL practice:
K and α are used in the vast majority of the studies we reported. We also incline
towards the view that K and α are more appropriate, as they abstract away from the
bias of specific coders, as well as not suffering from the unpleasant properties noted by
Di Eugenio and Glass. But we also believe that ultimately this issue of annotator bias is
of little consequence because the differences get smaller and smaller as the number of
annotators grows (Artstein and Poesio 2005), and we believe that increasing the number
of annotators is the best strategy, also to increase the variability of data.

One of the main goals of this article has been to bring to the attention of the CL
community the fact that in many cases an argument can be made for using weighted
coefficients, and that the choice between weighted and unweighted measures is of
greater import. We think there are at least two types of coding schemes in which partial
agreement measures may be considered:

• Coding schemes with hierarchical tagsets

• Coding schemes with set-valued interpretations (anaphora,
summarization)

We discussed various examples of both, and argued that at least in the second case,
weighted coefficients are almost unavoidable. The problem is that the results obtained
with these measures are not easy to interpret. Our suggestion would therefore be as
follows.

• Use clearly disjoint labels and a binary distance function when possible
(that is, K);

• Use weighted measures when the task demands it, but then do not expect
to be able to interpret the value thus obtained using scales such as those
proposed by Krippendorff or Landis and Koch.

6.3 Interpreting the values

We perceive the lack of consensus on how to interpret the value of the coefficient of
agreement as the most serious problem with current practice in reliability testing, and
one of the main reasons for the reluctance of many in CL to embark in reliability studies.

We already said that Krippendorff’s position is quite clearly that a value of 0.8 is the
absolute minimum for any serious claims to be supported by the data. As far as resource
creation is concerned, our own experience is more consistent with Krippendorff and
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Neuendorf’s than with that of Landis and Koch: both in our earlier work (Poesio and
Vieira 1998; Poesio 2004a) and in the more recent efforts (Poesio and Artstein 2005) we
found that only values above 0.8 ensured an annotation of reasonable quality (Poesio
2004a).

However, it is doubtful that a single cutoff point is appropriate for all purposes.
Even the lower 0.67 level has often proved impossible to achieve in CL research, partic-
ularly on discourse, except via substantial training (see, e.g., Hearst 1997; Poesio and
Vieira 1998); often, substantial agreement among coders results in values of K or α
around the 0.7 level replicated across studies. Provided that significance is reached, we
feel that this level of agreement may be all that one may hope to achieve for certain
types of judgments, and we agree therefore with Craggs and McGee Wood (2005)
that insisting that the magic 0.8 threshold be reached is unhealthy; on this, see also
Krippendorff’s remarks about losing validity to reach reliability. (We especially hope
this paper won’t result in readers viewing weighted coefficients as a particularly nifty
trick to raise their K score!)

Unfortunately, weighted coefficients, while arguably more appropriate for many
annotation tasks, as we have seen, make the issue of deciding when the value of a coef-
ficient indicate sufficient agreement even more complicated. With weighted measures,
the value of the coefficient greatly depends on the distance metric chosen, as we saw at
the end of section 4.4.

This being the situation at the moment, however, we feel that simply reporting the
value of a chance-corrected coefficient of agreement is not informative enough. Given
that coefficients such as K or α do not have a clear interpretation, and given also the
distorting effects of skewed distributions, simply reporting the value of K is not enough
in order to understand what the results actually mean. On this point we agree with
Di Eugenio and Glass (2004), but we feel that their solution of reporting the values of
more than one coefficient of agreement is not the right solution. Instead, researchers
should clearly report the methodology that was followed to collect the reliability data
(number of coders, whether they coded independently, whether they relied exclusively
on an annotation manual). The study should also indicate whether agreement was
statistically significant, and provide the confusion matrix or agreement table so that
readers can find out whether overall figures of agreement hide disagreements on less
common categories. For an example of good practice in this respect, see Teufel and
Moens (2002).

One approach that in our opinion may offer a way out of the problem of interpreting
the results is Latent class analysis (Uebersax 1988; Uebersax and Grove 1990), a term
used to indicate the application of latent class modeling techniques to nominal data
(the term latent trait analysis is used for ordinal categories). Latent class modeling
techniques, of which perhaps the best known example is the familiar EM algorithm
(Goodman 1974; Dempster, Laird, and Rubin 1977), were developed to deal with classi-
fication tasks in which the pattern of results (say, the POS tags assigned to words) derives
from the membership of the items that have to be classified to an (unknown) number
of (unknown) categories (the latent classes). Uebersax and colleagues show how latent
class analysis methods can be used to analyze agreement, and argue that such methods
solve many of the problems they find with kappa-like coefficients of agreement (Ueber-
sax 1988; Uebersax and Grove 1990). A full discussion of these methods falls outside
the scope of this article, but we think they are worth mentioning, especially as a way of
addressing the problem of interpreting the value of K.

Uebersax and colleagues view the coding process as an instance of the noisy channel
model. An item, whose real class is unobservable (latent), is assigned a category label by
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coders according to the probability distribution associated with the latent class; the only
observable results are the annotators’ category labels. Using standard techniques in CL,
we can however estimate the probability P(labeli = l|latent-classi = c) using maximum
likelihood estimation to get initial estimates from the observed frequency counts, and
then the EM algorithm to get more accurate estimates. For instance, returning to our first
example in Table 1, we could estimate P(labeli = STAT|latent-classi = STATEMENT)
and similarly for IREQ. We could then use these probabilities to evaluate the reliability
of our coding procedure: for example, we could decide that our coding procedure is
sufficiently reliable if such probabilities are sufficiently high (say, higher than 95%) or,
alternatively, the probability of error is sufficiently low.

We find this approach extremely promising, but to our knowledge it has not yet
been used as a way of evaluating agreement on annotation in CL. (Latent class modeling
has been used by Bruce and Wiebe (1998) in order to identify the number of latent classes
that seemed to underly the behavior of their coders, but not to analyze agreement.)

Appendix A. Bias and variance with multiple coders

In section 3.1 we briefly noted that the difference between π and κ drops as the number
of coders increases, because this difference is the overall variance of the different cat-
egories divided by the number of annotators. Here we give the formal proof. We start
by taking the formulas for expected agreement from section 2.5 and putting them into a
form that is more useful for comparison with one another.
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The overall annotator bias B is the difference between the expected agreement according
to π and the expected agreement according to κ.
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c

∑
m=1

P̂(k|cm)2 −
c

∑
m=1

c

∑
n=1

P̂(k|cm)P̂(k|cn)

)

We now calculate the mean µ and variance σ2 of P̂(k|c), taking c to be a random
variable with equal probabilities for all of the coders: P̂(c) = 1

c for all coders c ∈ C.

µP̂(k|c) =
1
c

c

∑
m=1

P̂(k|cm)
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σ2
P̂(k|c) =

1
c

c

∑
m=1

(P̂(k|cm)− µP̂(k|c))
2

=
1
c

c

∑
m=1

P̂(k|cm)2 − 2µP̂(k|c)
1
c

c

∑
m=1

P̂(k|cm) + µ2
P̂(k|c)

1
c

c

∑
m=1

1

=

(
1
c

c

∑
m=1

P̂(k|cm)2

)
− µ2

P̂(k|c)

=
1
c2

(
c

c

∑
m=1

P̂(k|cm)2 −
c

∑
m=1

c

∑
n=1

P̂(k|cm)P̂(k|cn)

)

The annotator bias B is thus the sum of the variances of P̂(k|c) for all categories k ∈ K,
divided by the number of coders less one.

B =
1

c− 1 ∑
k∈K

σ2
P̂(k|c)

Since the variance does not increase in proportion to the number of coders, we find that
the more coders we have, the lower the annotator bias; at the limit, κ approaches π as
the number of coders approaches infinity.

Appendix B. Bias of weighted measures

We have shown in appendix A that the variance of the individual coders’ distibutions of
items to categories is a useful measure for the annotator bias in a set of coding data, and
that it correlates with the difference between π and κ. This measure of variance is less
useful when the coding data are judged according to a weighted measure, because the
discrepancies between the individual coders also have varying magnitudes. A measure
of annotator bias for such coding data should therefore take the weights into account.
Since the expected disagreement already considers the weights, we define the annotator
bias B in an analogous way to our definition in appendix A, namely as the difference
between the expected disagreement according to the single-distribution measure αb and
the expected disagreement according to the individual-distribution measure ακ .

B = Dαb
e −Dακ

e

We first put the expected disagreements according to αb and ακ (sections 2.6 and 2.7
respectively) into forms that are more useful for the comparison.

Dαb
e =

k

∑
j=1

k

∑
l=1

P̂(k j)P̂(kl)dkjkl
=

k

∑
j=1

k

∑
l=1

1
c2

c

∑
m=1

c

∑
n=1

P̂(k j|cm)P̂(kl |cn)dkjkl

Dακ
e =

1(c
2
) k

∑
j=1

k

∑
l=1

c−1

∑
m=1

c

∑
n=m+1

P̂(k j|cm)P̂(kl |cn)dkjkl
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=
k

∑
j=1

k

∑
l=1

1
c(c− 1)

(
c

∑
m=1

c

∑
n=1

P̂(k j|cm)P̂(kl |cn)−
c

∑
m=1

P̂(k j|cm)P̂(kl |cm)

)
dkjkl

Now we calculate the annotator bias as the difference between the above measures.

B = Dαb
e −Dακ

e

=
k

∑
j=1

k

∑
l=1

(
(

1
c2 −

1
c(c− 1)

)
c

∑
m=1

c

∑
n=1

P̂(k j|cm)P̂(kl |cn)

+
1

c(c− 1)

c

∑
m=1

P̂(k j|cm)P̂(kl |cm)

)
dkjkl

=
1

c− 1

k

∑
j=1

k

∑
l=1

1
c2

(
c

c

∑
m=1

P̂(k j|cm)P̂(kl |cm)−
c

∑
m=1

c

∑
n=1

P̂(k j|cm)P̂(kl |cn)

)
dkjkl

Unlike the case for unweighted measures, this measure of annotator bias does not cor-
respond to the sum of the variances of a single random variable. But the bias still drops
in proportion to an increase in the number of coders: the sums inside the parentheses
grow in proportion to c2, and therefore the overall annotator bias B grows in proportion
to 1/(c− 1).
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