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Abstract In order to make asteroseismology a powerful
tool to explore stellar interiors, different numerical codes
should give the same oscillation frequencies for the same
input physics. Any differences found when comparing the
numerical values of the eigenfrequencies will be an impor-
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tant piece of information regarding the numerical structure
of the code. The ESTA group was created to analyze the non-
physical sources of these differences. The work presented
in this report is a part of Task 2 of the ESTA group. Basi-
cally the work is devoted to test, compare and, if needed,
optimize the seismic codes used to calculate the eigenfre-
quencies to be finally compared with observations. The first
step in this comparison is presented here. The oscillation
codes of nine research groups in the field have been used
in this study. The same physics has been imposed for all
the codes in order to isolate the non-physical dependence of
any possible difference. Two equilibrium models with dif-
ferent grids, 2172 and 4042 mesh points, have been used,
and the latter model includes an explicit modelling of semi-
convection just outside the convective core. Comparing the
results for these two models illustrates the effect of the num-
ber of mesh points and their distribution in particularly crit-
ical parts of the model, such as the steep composition gra-
dient outside the convective core. A comprehensive study
of the frequency differences found for the different codes is
given as well. These differences are mainly due to the use
of different numerical integration schemes. The number of
mesh points and their distribution are crucial for interpret-
ing the results. The use of a second-order integration scheme
plus a Richardson extrapolation provides similar results to a
fourth-order integration scheme. The proper numerical de-
scription of the Brunt-Viisild frequency in the equilibrium
model is also critical for some modes. This influence de-
pends on the set of the eigenfunctions used for the solu-
tion of the differential equations. An unexpected result of
this study is the high sensitivity of the frequency differences
to the inconsistent use of values of the gravitational con-
stant (G) in the oscillation codes, within the range of the ex-
perimentally determined ones, which differ from the value
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used to compute the equilibrium model. This effect can pro-
vide differences for a given equilibrium model substantially
larger than those resulting from the use of different codes
or numerical techniques; the actual differences between the
values of G used by the different codes account for much of
the frequency differences found here.

Keywords Stars - Stellar oscillations - Numerical solution

Keywords 97.10.Sj - 97.10.Cv - 97.90.4j

1 Introduction

Asteroseismology is at present being developed as an effi-
cient instrument in the study of stellar interiors and evolu-
tion. Pulsational frequencies are the most important astero-
seismic observational inputs. It is evident that a meaningful
analysis of the observation, in terms of the basic physics of
stellar interiors which is the ultimate target of the investi-
gation, requires reliable computation of oscillation frequen-
cies for specified physics. This is a two-step process, involv-
ing first the computation of stellar evolutionary models and
secondly the computation of frequencies for the resulting
models. Lebreton et al. (this volume) provide an overview
of the tests of stellar model calculations. Here we consider
the computation of the oscillation frequencies.

An evident goal is that the computed frequencies, for a
given model, should have errors well below the observa-
tional error, which in the case of the CoRoT mission is ex-
pected to be below 0.1 uHz (Baglin et al. 2006). For the
Kepler mission (e.g., Christensen-Dalsgaard et al. 2007),
with expected launch in early 2009, selected stars may be
observed continuously for several years and errors as low
as 1073 uHz may be reachable, particularly for modes ex-
cited by the heat-engine mechanism. Since errors resulting
from numerical problems are typically highly systematic,
they may affect the asteroseismic inferences even if they are
substantially below the random errors in the observed fre-
quencies. This must be kept in mind in the assessment of the
estimates of the numerical errors.

During the last decades a lot of codes obtaining numeri-
cal solutions of an adiabatic system of differential equations
describing stellar oscillations have been developed. In order
to ascertain whether any possible difference in the descrip-
tion of the same observational data by different numerical
codes is due to physical descriptions or to different numeri-
cal integration schemes, the inter-comparison of these oscil-
lation codes in a fixed and homogeneous framework is ab-
solutely necessary. Some effort has been already done in the
past but only regarding pairs of codes. Some codes have also
developed a lot of internal precision tests. However, there is
a lack of inter-comparison of a large enough set of codes.
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We aim in this study try to fix a set of minimum require-
ments for a code to be sure that any difference found is only
due to a different physical assumption.

Ideally, for a given model there should be a set of
‘true’ frequencies with which the results of the different
codes could be compared. This ideal situation could prob-
ably be approximated by considering polytropic models for
which it is relatively straightforward to calculate the equilib-
rium structure with essentially arbitrary accuracy (see also,
Christensen-Dalsgaard and Mullan 1994). In practice, the
situation for realistic stellar models is more complex. Ow-
ing to the complexity of the stellar evolution calculation the
models are often available on a numerical mesh which is not
obviously adequate for the pulsation calculation. The effect
of this on the frequency computation depends on the detailed
formulation of the equations in the pulsation codes. These
formulations are equivalent only if the equilibrium model
satisfies the ‘dynamical’ equations of stellar structure, i.e.,
the mass equation and the equation of hydrostatic support,
and this is obviously not exactly true for a model computed
on a finite (possibly even relatively sparse) mesh. One might
define a consistent set of frequencies for a given model by
interpolating it onto a very dense mesh and resetting it to
ensure that the relevant equations of stellar structure are sat-
isfied. The model is fully characterized by the dependence
on distance r to the centre of density p and the adiabatic
exponent I'1 = (d1n P/d1Inp),g, P being pressure and the
derivative being at constant specific entropy. Thus one could
interpolate p(r) and I (r) to a fine mesh, and recompute the
mass distribution and pressure by integrating the mass equa-
tion and the equation of hydrostatic equilibrium. Frequen-
cies of this model should then be essentially independent of
the formulation of the oscillation equation and would pro-
vide a suitable reference with which to compare other fre-
quency calculations. Such a test may be carried out at a later
stage in the ESTA effort.

In Task 2, for now, we aim at testing, comparing and op-
timizing the seismic codes used to calculate the oscillations
of existing models of different types of stars. In order to do
so we consider steps in the comparison by addressing some
of the most relevant items that must be compared regarding
the seismic characterization of the models:

e Step 1: comparison of the frequencies from different seis-
mic codes for the same model.

e Step 2: comparison of the frequencies from the same seis-
mic code for different models of the same stellar case pro-
vided by different equilibrium codes.

e Step 3: comparison of the frequencies for specific pul-
sators.

The work presented here is mostly focused on step 1.
At this step three different equilibrium models have been
used. Two of them have been computed using CESAM
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(Morel and Lebreton 2007), with 902 and 2172 mesh
points, and a third one with 4042 mesh points provided by
ASTEC (Christensen-Dalsgaard 2007b).We present inter-
comparisons using the two models with the larger numbers
of mesh points. The same physics and physical constants
(except G) are used for all the oscillation codes. Frequen-
cies in the range of [20, 2500] uHz, belonging to spherical
degrees £ =0, 1,2 and 3 have been calculated, in order to
recover most of the possible values we can find in the obser-
vational photometric data.

We present in Sect. 2 the equilibrium models used and we
analyze their main features. Section 3 is devoted to the dif-
ferent oscillation codes used, discussing common require-
ments and variations in the treatment. In Sect. 4 the direct
comparison of frequencies for different frequency ranges
and spherical degrees is presented in detail. Sections 5 and 6
analyze the same inter-comparison for the values of the large
and small separations, respectively. Section 7 discusses the
dominant effects that contribute to the differences in fre-
quencies determined by the different codes. Conclusions are
given in Sect. 8.

2 The equilibrium models

To ensure that any difference obtained in the inter-compari-
sons is only due to differences in the numerical schemes,
we imposed to all the codes the use of the same equilib-
rium models. These models were supplied in several for-
mats: OSC, FGONG, SROX, and FAMDL. The first model
was required to have 900 mesh points, and it was provided
by CESAM. The differences in this case reached unaccept-
able values of 2-3 uHz when the same integration schemes
are compared, and even 10 uHz when the use or not of the
Richardson extrapolation are compared. The maximum dif-
ference found for large separations with this model is 1 uHz.
This showed that either a larger number of mesh points or
Richardson extrapolation was necessary.'

The second model was also provided by CESAM (re-
ferred from now on as M2k). It uses a grid, with 2172
mesh points, more suitable for asteroseismic purposes. Gen-
eral characteristics of the model are presented in Table 1.
These are typical of a y Doradus star showing oscillations
in the asymptotic g-mode regime, and also around the fun-
damental radial mode. A priori, solar-like pulsations cannot
be excluded for this type of star and therefore it can be a
good candidate for a global study. In Fig. 1, A* (which is a
quantity directly related to the Brunt-Viisili frequency N2:
A* =rg~! N2, where g is the gravitational acceleration) is
depicted as a function of the relative radius (x =r/R) in a

I Detailed results of this investigation can be found at http://www.astro.
up.pt/corot/compfreqs/task?2/.

Table 1 General characteristics of the models used for the inter-
comparison

M/Mq logTer Age X. R/Rg Mesh G
(in My) points [10-8 cgs]

1.5 3.826 1355 04 1.731 4042 6.6716823
1.5 3.830 1368 04 1.724 2172 6.67232
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Fig. 1 A* (related to the Brunt-Viisild frequency) as a function of
the relative radius for the two equilibrium models discussed in the text
in the p-gradient zone, close to the convective core. The mesh points
provided in the models are indicated

region of steeply varying hydrogen abundance, and hence
mean molecular weight u, just outside the convective core.
The model is in a phase of a growing convective core. If
diffusion and settling are neglected this leads to a discon-
tinuity in the hydrogen abundance and hence, formally, to
a delta function in A*; also, there is a region of ‘semicon-
vection’ at the edge of the core. In fact, the figure shows
that three points in this model display an erratic variation in
A* just in the transition region between the convective and
the radiative zone; also, the mesh resolution of this region
of rapid variation seems inadequate. This is emphasized by
Fig. 2 which shows the distribution of mesh points of this
model along the stellar radius, indicating that there are not
enough mesh points in this transition zone. As discussed be-
low, these features of model M2k give rise to frequency dif-
ferences in the comparison, particularly for those modes for
which this inner part is critical for their physical description.

The third and last model is a 4042 mesh points model
(from now on M4k) provided by ASTEC. General charac-
teristics of the model are presented in Table 1. It has been
computed to have overall characteristics similar to the pre-
vious CESAM model in order to understand better the dif-
ferences. However, as discussed by Christensen-Dalsgaard
(this volume) particular care has been taken in the treatment
of the p-gradient region; the semiconvective region was re-
placed by a region with a steep gradient in the hydrogen
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abundance, defined such as to ensure neutral stability of the
temperature gradient. As a result, A* for this model, also
presented in Fig. 1, shows a well-defined and reasonable be-
haviour. The distribution of the mesh points can be found
in Fig. 2. In the central and outer parts of the stellar model,
the distribution is similar to the CESAM model M2k. It is
in the inner zones, particularly in the boundary region be-
tween the convective core and the p-gradient zone, that the
models present different mesh-point distributions, with M4k
providing a far superior resolution of this critical region.

3 Oscillation codes and requirements

All oscillation codes involved in this task were asked to pro-
vide adiabatic frequencies in the range of [20, 2500] uHz
and spherical degrees £ =0, 1, 2 and 3. In addition, the so-
lution of the equations must satisfy the following require-
ments:

4500 T T T T

" 2172 mesﬁ poin'ts
4000 - 4042 mesh points --------- ]

3500 /‘v |
3000 | |
2500 | o |

2000 | A

Number of layers
\

1500 || 1
1000 || |

500 || i

0" 1 1 1 1 1 1 1 1 1 1
0 01 02 03 04 05 06 07 08 09 1 11

X

Fig. 2 Accumulated number of layers as a function of the relative ra-
dius for the two equilibrium models explained in the text

e To use the mesh provided by the equilibrium model, no
re-meshing is allowed.

e To set the Lagrangian perturbation to the pressure to zero

(6 P = 0) as outer mechanical boundary condition.

To use the physical constants prescribed in Task 1.

To use linear adiabatic equations.

Nevertheless, some other schemes for the numerical so-
lution of the differential equations (from now on called for
simplicity “degrees of freedom”) remain open. Nine oscilla-
tion codes of different research groups in the field have been
used in this inter-comparison exercise. A summary of the
participating codes and the different “degrees of freedom”
provided by each one is found in Table 2 and include:

e Set of eigenfunctions: Use of the Lagrangian or the
Eulerian perturbation to the pressure (8P or P’). This
obviously affects the form of the equations; in particu-
lar, when using é P the equations do not depend explicitly
on A*,

e Order of the integration scheme: Most of the codes use
a second-order scheme, but some of them have imple-
mented a fourth-order scheme.

e Richardson extrapolation: Some of the codes using a se-
cond-order scheme have the possibility to use Richardson
extrapolation (Shibahashi and Osaki 1981) to decrease the
truncation error; combining a second-order scheme with
Richardson extrapolation yields errors scaling as N ™%,
N being the number of mesh points (e.g. Christensen-
Dalsgaard and Mullan 1994).

e Integration variable: Two integration variables are used:
(1) the radius (r), or (2) the ratio r/ P. The latter variable
may reduce the effect of rounding errors in the outer lay-
ers (see Sect. 7.3).

e Despite the requirement that the physical constants be
fixed at the values for Task 1, the codes used slightly dif-
ferent values of the gravitational constant G, as listed in

Table 2 List of participating codes in this inter-comparison and “degrees of freedom” for each code: (a) eigenfunctions, (b) order of the integration
scheme (2 or 4), (c) use (y) or not (n) of the Richardson extrapolation, (d) integration variable used, and (e) the choice of the gravitational constant

G. The references for each code are also given

Code EF. LS. Rich. LV. G Reference

[1078 cgs]
ADIPLS P’ 2 y,n r 6.67232 Christensen-Dalsgaard (2007a)
FILOU P’ 2 n r 6.67232 Suarez and Goupil (2007)
GrAaCO PSP 2 y, 1 r,r/P 6.6716823 Moya and Garrido (2007)
LOSC SP 4 n r 6.67232 Scuflaire et al. (2007)
NOSC P, 5P 2 y, 1 r,r/P 6.67259 Provost (2007)
OSCROX P’ 4 n r 6.6716823 Roxburgh (2007)
POSC P’ 2 y, 1 r 6.6716823 Monteiro (2008)
PULSE P’ 4 n r/P 6.6716823 Brassard and Charpinet (2007)
LNAWENR P’ 2 n r 6.67232 Suran (2007)
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Table 2. Ideally the equilibrium model should have been
computed with the prescribed Task 1 value (6.6716823 x
108 cgs) which should then have been used for the os-
cillation calculations. In practice Model M4k was com-
puted with G = 6.67232 x 1078 cgs. Using different val-
ues of G in the oscillation equations clearly gives rise to
inconsistencies, with potential effects on the frequencies,
as discussed further in Sect. 7.1.

Note that most of the oscillation codes put £ =0 in the
general non-radial differential equations to obtain the ra-
dial modes, except for LOSC that uses the LAWE differ-
ential equation (Linear Adiabatic Wave Equation for radial
modes), and for GRACO for which results will be shown for
both sets of equations. It should be noted that the LAWE
does not depend on A*. All the main characteristics and nu-
merical schemes are presented in previous chapters of this
volume.

The Nice code (NOSC) has the options of using P’ or
8 P as dependent variables, and r or r/P as independent
variable. However, all NOSC results presented here use P’
and r.

The use of the mesh provided in the equilibrium model,
rather than meshes optimized for the different kinds of
modes, may result in inadequate resolution of the rapid vari-
ation of high-order p- and g-modes and hence larger trun-
cation errors in the solution of the differential equations. In
these cases, therefore, the second-order scheme may result
in unacceptable errors. Here the use of higher-order inte-
gration schemes (a fourth-order scheme or a second-order
scheme followed by Richardson extrapolation) is therefore
expected to give better results. For low- and intermediate-
order modes we expect little effect of the use of higher-order
schemes.

4 Frequency inter-comparisons

In this section, the results of the direct frequency inter-com-
parison are presented. We have structured this study split-
ting the frequency range in three parts for the non-radial
case, only one for the radial case, and comparing codes only
with similar selections of “degrees of freedom”. In addition,
the influence of using different selections in the same code
(GRACO in this case) is shown; for these tests the value of
G in the oscillation calculations was the same as was used
to compute the equilibrium model.

4.1 Radial modes

These are shown in a single frequency range. In Fig. 3 the
results obtained using the model M2k are presented. The ref-
erence line for all the inter-comparisons is selected to be
GRACO. In this figure the reference frequencies have been

3 . ; ; ;
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NOSC no-Rich -
25t POSC o '
ROMOSC —*— am
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Fig. 3 Frequency comparison (reference line is GRACO) for modes
with ¢ = 0 obtained for the model M2k. ADIPLS and NOSC frequen-
cies have been obtained without using the Richardson extrapolation

obtained using P’, second order, no Richardson extrapola-
tion and r as independent variable (see Table 2). Two sets
of codes can be identified in the figure, ADIPLS-NOSC-
GRACO, with differences lower than 0.25 uHz, and all with
the same “degrees of freedom”, and OSCROX-PULSE-
LOSC-POSC with differences for high frequencies lower
than 2 pHz with GRACO, but with differences among them
around 0.5 uHz. This second set of codes differs from the
first one in the use of a fourth-order numerical scheme in-
stead of a second-order one. In the present figure, in Fig. 5
and in Figs. 7 and 8, showing inter-comparisons with model
M2k, POSC has been chosen as representative of the codes
using second order plus Richardson extrapolation (see Ta-
ble 2). We can see how the use of this integration proce-
dure provides similar results as the fourth-order solutions.
These differences, around 0.5 pHz for codes using the same
integration scheme, and 2 uHz for codes using different
schemes, are larger than the expected precision of the com-
ing observational data. Therefore this effect can change any
detailed physical description as interpreted by different os-
cillation codes. Also, we point out that the differences be-
tween the codes using fourth-order schemes and GRACO
results using a second-order scheme indicate that the model
has an insufficient number of mesh points for asteroseismic
studies.

Figure 4 shows the results obtained for the model M4k.
In the top panel models with second order, no Richardson
extrapolation, r, are depicted. All the differences are lower
in magnitude than 0.014 puHz, i.e., two orders of magnitude
lower than those obtained for model M2k. Therefore im-
proving the mesh, including a doubling of the number of
points, provides a very substantial improvement in the pre-
cision, making these values more acceptable for theoretical
modeling.

The middle panel of Fig. 4 presents the differences ob-
tained with models providing fourth-order integration so-
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Second order, no Richardson extrapolation
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Fig. 4 Frequency comparison (reference line is GRACO) for modes
with £ = 0 as a function of the frequency obtained for the model M4k.
In the top panel the models with: second order, no Richardson extrap-
olation, r, are depicted (NOSC-ADIPLS-GRACO-FILOU-POSC).
The middle panel presents the differences obtained for models provid-
ing fourth-order integration solutions or second-order plus Richardson
extrapolation (LOSC-OSCROX-NOSC-ADIPLS-GRACO-POSC).
In the bottom panel a comparison of the different “degrees of freedom”
only using GRACO is presented

lutions or second-order plus Richardson extrapolation. The
global precision here is similar to the previous case or even
slightly lower, with differences lower than 0.02 pHz. It
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Fig. 5 Frequency comparison (reference line is GRACO) for modes
with £ =2 for the model M2k around the fundamental radial mode.
ADIPLS and NOSC frequencies have been obtained without using
Richardson extrapolation

is interesting to point out that we cannot directly distin-
guish between a fourth-order integration scheme solution
(OSCROX) or a second-order plus Richardson extrapola-
tion (the rest). However, it is noticeable that the GRACO-
OSCROX-POSC fall in one group and ADIPLS-NOSC
in a second, with a slight difference in the latter case. These
two groups are distinguished by the value of G (cf. Table 2),
with ADIPLS and NOSC having similar but not identical
values. This pattern will be found in other cases also. The
LOSC behaviour is discussed in the next paragraph.
Finally in the bottom panel of Fig. 4 a comparison be-
tween the different “degrees of freedom” using only the
GRACO code are presented. As reference we have used the
solution with “degrees of freedom”: X =(£ = 0, no Richard-
son extrapolation, P’, r). For each comparison we have
changed only one of these “degrees of freedom” at a time,
keeping the rest unchanged (solutions X’). The most promi-
nent effect arises from the use of Richardson extrapolation,
which changes the frequencies by nearly 0.8 uHz for the
highest-order modes, substantially more than the expected
observational accuracies. For model M2k (see Fig. 3), we
have similarly found a change of 2 uHz, reflecting the
smaller number of mesh points. This clearly shows that
second-order schemes are inadequate, even for the mesh in
M4k, for the computation of high-order acoustic modes; as
expected the effect decreases rapidly with decreasing mode
order. The use of r/ P as integration variable provides small
differences, always lower than 0.008 uHz. These differences
are of the order of those obtained in the top and middle pan-
els. The use of the Lagrangian perturbation to the pressure
as variable (6 P) or the use of the LAWE differential equa-
tion provide very similar differences, lower than 0.05 uHz,
but with an oscillatory pattern. This pattern is very similar to
that observed for LOSC, which also uses LAWE to obtain
the radial modes. As discussed in Sect. 7.2, this oscillatory
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Fig. 6 Frequency inter-comparison (reference line is GRACO) for
modes with £ =2 as a function of the frequency obtained for the
model M4k and for modes around the fundamental radial. In top
panel models with: second order, no Richardson extrapolation, and
r are depicted (NOSC-ADIPLS-GRACO-FILOU-POSC). Middle
panel presents the differences obtained for the models providing
fourth-order integration solutions or second-order plus Richardson ex-
trapolation (LOSC-OSCROX-NOSC-ADIPLS-GRACO-POSC). In
bottom panel an inter-comparison for the “different degrees” of free-
dom only with GRACO is presented

pattern arises from an inconsistency in the thermodynam-
ics of model M4k which affects A*; solutions of equations
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Fig. 7 Frequency comparison (reference line is GRACO) for modes
with ¢ = 2 obtained for the model M2k in the low frequency region.
ADIPLS and NOSC frequencies have been obtained without using
the Richardson extrapolation
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Fig. 8 Period separation as a function of the frequency in the asymp-
totic g-mode region for model M2k

that do not depend on A* (i.e., the LAWE or the equations
based on § P) are insensitive to this effect. Therefore, even
for model M4k and radial modes, the use of different inte-
gration procedures can give different values for the oscilla-
tion eigenfrequencies that are non-physical in nature. These
non-physical sources of differences are mainly some incon-
sistencies in the equilibrium models (see Sect. 7.2) and the
lack of mesh points. But when the same numerical schemes
are used, the different codes provide very similar frequen-
cies.

4.2 Non-radial modes with £ =2

To illustrate the differences appearing in the case of non-
radial modes, the spherical degree £ = 2 has been chosen.
We have divided the frequency spectrum into three regions:
(1) Large frequencies ([500,2500] uHz), (2) frequencies
around the fundamental radial mode ([80, 500] uHz), and
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(3) low-frequency region ([20, 80] uHz). In all cases a study
similar to that developed in the radial case has been carried
out.

For the sake of simplicity the high-frequency differences
are not represented since the results are very similar to those
presented for the radial case. Only a slightly higher preci-
sion is found in this case. The results of LOSC present the
same pattern as the radial case, owing to the use of § P as
eigenfunction in that code (see Sect. 7.2).

Figure 5 shows the results obtained for model M2k when
comparing ¢ = 2 frequencies around the fundamental radial
mode. The main differences are smaller than in the high-
frequency region, corresponding to the low order of the
modes and the consequent lesser sensitivity to the number
of mesh points. The largest differences are found for two
modes of frequency near 345 and 362 uHz showing avoided
crossing; these modes have a mixed character, with fairly
substantial amplitude in the p-gradient zone. PULSE and
LOSC present differences around 3—4 pHz, POSC around
2 uHz, OSCROX less than 1 pHz, and the rest do not
present significant differences for these two modes. That is,
the largest differences are found in these codes when us-
ing a fourth-order integration scheme or a second-order plus
Richardson extrapolation. The values of these differences
are larger than the expected precision of the satellite data
to come. They clearly reflect the inadequate representation
of the p-gradient zone in M2k, with higher-order schemes
being more sensitive to the resulting inconsistency in the
model.

In the top panel of Fig. 6 the inter-comparisons of the
frequencies (£ = 2) for model M4k, using a second-order
scheme without Richardson extrapolation, are depicted for
the same frequency range as in Fig. 5. The main differ-
ences are two orders of magnitude lower than those ob-
tained for model M2k, and they are also of the same order
of magnitude as those obtained for the high-frequency range
with M4k. All these differences remain always lower than
0.025 pHz. GRACO and POSC are extremely close, while
FILOU and ADIPLS provide very similar results, with
slightly larger differences for NOSC, by about 0.005 uHz,
relative to these codes. Thus again the differences are related
directly to the different values of G. There remain small
wiggles for the mixed modes near 350 pHz but reduced more
than two orders of magnitude relative to the largest differ-
ences for model M2k, reflecting the superior resolution of
the critical region in model M4k.

The middle panel of Fig. 6 shows the same inter-com-
parison as the top panel for codes using a fourth-order
scheme or a second-order plus Richardson extrapolation.
The precision is similar to the previous case, with differ-
ences of the same order of magnitude. We can distinguish
two groups of codes providing very similar results: OS-
CROX-POSC-GRACO and LOSC-ADIPLS-NOSC. This
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distribution does not depend on the integration scheme, but
again reflects the values of G. The wiggle of the mixed
modes is also very similar to that obtained with a second-
order scheme without Richardson extrapolation.

Finally, an inter-comparison of different “degrees of free-
dom” using only GRACO is presented in order to test the
differences obtained for the different choices. This compar-
ison is depicted in the bottom panel of Fig. 6. The use of the
Richardson extrapolation is not very important, as expected
for these modes of low order, with effects generally smaller
than 0.002 puHz, although a larger value is present for the
mixed modes. Using § P as variable gives differences larger
than the differences among codes with the same “degrees
of freedom”. The use of the integration variable r/P does
not introduce significant differences. Compared with model
M2k, we find a general reduction of the differences for M4k,
the main effects being in the region of mixed modes with an
improvement reaching up to three orders of magnitude. This
is obviously not a simple consequence of the doubling of
the number of mesh points. The main reason is likely the
inadequate resolution shown by model M2k in the descrip-
tion of the Brunt-Viisild frequency in the region close to
the boundary of the convective core, which is not present in
model M4k. The avoided-crossing phenomenon and the be-
haviour of the mixed modes are very sensitive to the detailed
treatment of this region, including the effects of semiconvec-
tion. Therefore, an accurate description of N 2 i critical for
the oscillation codes in order correctly to obtain eigenfre-
quencies for modes near an avoided crossing.

The direct frequency inter-comparison ends with the stu-
dy of the low-frequency region; as above we concentrate on
modes of degree £ = 2. Figure 7 shows the results obtained
for model M2k. In this case the differences are lower than
obtained at higher frequencies for this model (cf. Figs. 3
and 5). The most surprising behaviour is present in PULSE
and LOSC. POSC and OSCROX also present some dif-
ferences in the same region. To understand the reason for
these differences and the region where they appear Fig. 8
shows the period separation AIT between adjacent modes.
The first-order asymptotic g-mode theory predicts a con-
stant separation of the periods in this regime for a given £.
However, when the equations are solved numerically, this
period spacing presents several minima, and these minima
are directly linked with the mode trapping (Brassard et al.
1992). Figure 8 shows that the position of one of these min-
ima is the same as the position of the largest differences. The
modes in this region have somewhat enhanced amplitudes in
the region just outside the convective core. In PULSE and
LOSC this apparently happens for modes somewhat differ-
ent from the remaining codes. This is the origin of the fre-
quency differences. As the mode trapping in this region for
these stellar models is related to the Brunt-Viisild frequency
in the p-gradient zone, the previously mentioned inadequate
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treatment of this region in model M2k is likely the reason for
these differences.

The top panel of Fig. 9 presents inter-comparisons for
¢ = 2 frequencies calculated with a second-order scheme
without Richardson extrapolation and for model M4k, for
the same frequency range as in Fig. 7. POSC is again ex-
tremely close to GRACO, within 2 x 10~* uHz. FILOU and
ADIPLS present very similar results, with NOSC show-
ing slightly larger differences, ranging from 0.0005 up to
0.0015 pHz relative to this group. The differences decrease
globally as far as the frequency decreases until reaching a
magnitude of 0.0015 puHz for the smallest frequency studied
here.

The middle panel of Fig. 9 shows the same compari-
son for codes using a fourth-order scheme or a second-
order plus Richardson extrapolation. Once again it can be
seen that the precision resembles the results in the previ-
ous panel. Here POSC and OSCROX provide very similar
results to GRACO. ADIPLS-LOSC-NOSC present small
differences among them, with NOSC having a small in-
creasing difference with frequency with respect to the other
two. Again the general pattern here, and in the top panel,
largely reflects the differences in G. In this case we can
distinguish the codes using fourth-order integration scheme
with its apparently noisy profiles as compared with a solu-
tion using second-order integration plus Richardson extrap-
olation.

In the bottom panel of Fig. 9, an inter-comparison for the
different “degrees of freedom” using only GRACO is pre-
sented; as in earlier corresponding plots the same value of
G is used as in the computation of the equilibrium model.
As expected the Richardson extrapolation has a growing in-
fluence as the frequency decreases and the mode order in-
creases, with quite substantial differences, compared with
the differences between different codes, for the lowest-
frequency modes. Thus, with the mesh provided by the evo-
lution calculation the second-order schemes have inadequate
numerical precision. In this case, the differences provided by
the use of r/ P as integration variable are negligible; The use
of the Lagrangian perturbation to the pressure (6 P) gives
rise to frequency differences exceeding those obtained be-
tween the different codes, at the lowest frequencies; we note,
however, that a corresponding comparison between ADIPLS
and LOSC does not show this effect which may therefore be
particular to the GRACO implementation. Finally, we want
to point out that in the case of model M4k, the large differ-
ences appearing in the mode trapping region are not found.
Figure 10 presents the same period separation as Fig. 8 but
for this model. All the codes give quite similar results. Two
mode trapping regions appear with the same frequency do-
main as in Fig. 8. As this model does not present any nu-
merical imprecision in the Brunt-Visilid frequency pattern,
the obvious conclusion is that, as for the mixed modes in
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Fig. 9 Frequency comparison (reference line is GRACO) for modes
with £ =2 as a function of the frequency obtained for the model
M4k in the low-frequency region. In the top panel the models
with: second order, no Richardson extrapolation, and r, are de-
picted (NOSC-ADIPLS-GRACO-FILOU-POSC). The middle panel
presents the differences obtained for the models providing fourth-order
integration solutions or second-order plus Richardson extrapolation
(LOSC-OSCROX-NOSC-ADIPLS-GRACO0-POSC). In the bottom
panel an inter-comparison for the different degrees of freedom only
using GRACO is presented

avoided crossing, any numerical imprecision in the descrip-
tion of N2 coming from the equilibrium model can give rise

@ Springer



240

Astrophys Space Sci (2008) 316: 231-249

Period separation

1750
1700
1650 ADIPLS —+—
POSG  »
L POSC x|
1600 L OSG o
= OSCROX ---e-
o 1880 & FILOU = 1
< GraCo --o--
1500 | 1
1450 | <
1400 | 1
1350 1 1 1 1 1
20 30 40 50 60 70 80

Frequency (uHz)

Fig. 10 Period spacing as a function of the frequency in the asymp-
totic g-mode region for the model M4k

to large differences in the frequencies calculated by different
oscillation codes for the g-modes trapped in the p-gradient
zone.

5 Large separations (LS)

This section is devoted to the asymptotic behaviour of p-
modes through the use of the so called “large separations”,
that is, the difference between two consecutive modes with
the same spherical degree £ (A =v(n, £) —v(n—1,¢), n be-
ing the radial order of the mode). The structure of the section
is similar to the previous one. We will use the same defini-
tions as in the previous section to study all the frequencies
ranges. From now on, the results with the M2k model will
not be discussed, since no additional information is found
from the further inter-comparisons.

5.1 Large separation of radial modes

Figure 11 shows the results obtained for model M4k. In the
top panel differences for the different codes using second
order, no Richardson extrapolation, r, are depicted. POSC
and GRACO are again extremely close. The rest of the codes
(ADIPLS-NOSC-FILOU-GRACO) present differences of
up to around 0.0015 pHz, generally sharing an oscillatory
pattern, particularly at relatively low frequency; we have no
explanation for this behaviour. However, the effect is evi-
dently small.

In the middle panel of Fig. 11 the LS differences for the
different codes, using a fourth-order integration scheme or a
second-order plus Richardson extrapolation, are presented.
With the exception of LOSC the global behaviour is sim-
ilar to that obtained without Richardson extrapolation, the
NOSC-ADIPLS-OSCROX-GRACO differences being al-
ways lower than 0.002 uHz. The pattern of the LOSC differ-
ences, presenting differences one order of magnitude larger
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Fig. 11 Large separation inter-comparison (reference line is

GRACO) for modes with £ = 0 as a function of the fre-
quency calculated for the model M4k. In the top panel the mod-
els with second order, no Richardson extrapolation, r, are de-
picted (NOSC-ADIPLS-GRACO-FILOU-POSC). The middle panel
presents the differences obtained for the models using fourth-order
integration solutions or second-order plus Richardson extrapolation
(LOSC-OSCROX-NOSC-ADIPLS-GRACO-POSC). In the bottom
panel an inter-comparison for the different “degrees of freedom” using
only GRACO is presented

than the rest of the codes, is clearly related to the corre-
sponding oscillatory pattern found in Fig. 4; as before it is
explained by the use of the LAWE differential equation.
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The bottom panel of Fig. 11 shows the LS differences
for the radial modes obtained with GRACO and model M4k
when different “degrees of freedom” are used. The Richard-
son extrapolation introduces differences increasing with fre-
quency and mode order, as expected, giving the largest dif-
ferences, around 0.07 pHz. This again emphasizes the in-
adequacy of the second-order schemes for the highest-order
modes, on the M4k mesh. The integration variable r/ P gives
differences slightly lower than 5 x 10~* pHz, i.e., much
smaller than that found for different codes using the same
numerical techniques, as depicted in the previous panels.
The use of the Lagrangian perturbation to the pressure 6 P
and the LAWE differential equation show the same oscillat-
ing behaviour and values as those previously observed for
the LOSC results. As discussed above, this is related to the
inconsistency in A* in model M4k (see Sect. 7.2).

5.2 Non-radial modes with £ =2

To illustrate the differences appearing in the case of non-
radial modes, the spherical degree £ = 2 has been arbitrarily
chosen. We have divided the frequency spectrum in three re-
gions, like in the direct frequency inter-comparison: 1) high-
frequency region, 2) frequencies around the fundamental ra-
dial mode and 3) low-frequency region. In all cases, a study
similar to that developed in the radial case has been carried
out. In the low-frequency region, the more physical period
separation is studied, instead of the frequency separation rel-
evant for acoustic modes.

In the first region the results are very similar to those ob-
tained for the radial case; therefore the plots are not pre-
sented here. As in the direct frequency inter-comparison
case, LOSC also presents an oscillating pattern, owing to
the use of § P as eigenfunction (see Sect. 7.2). On the other
hand, the only noticeable difference, when compared with
the radial case in this region, is that for ¢ = 2 the preci-
sion among codes using the same integration procedures is
slightly higher.

The results obtained with the codes using a second-
order scheme, for the modes around the fundamental radial
mode, are depicted in the top panel of Fig. 12. POSC re-
mains very close to GRACO, with the other set of codes
(FILOU-NOSC-ADIPLS) extending the oscillatory pat-
tern in the top panel of Fig. 11, with the largest difference be-
ing 0.01 uHz for the mixed modes. This set of codes agrees
to within differences around 0.001 puHz (slightly larger for
NOSCO).

The middle panel of Fig. 12 depicts the differences
for a fourth-order integration scheme or second-order plus
Richardson extrapolation. The precision of the different
codes is similar to that given by the second-order scheme
without Richardson extrapolation. The maximum difference
is lower than 0.08 pHz, and most of the codes present differ-
ences around 0.005 pHz. Once again the largest differences
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Fig. 12 Large separation inter-comparison (reference line is GRACO)
for modes with £ = 2 as a function of the frequency calculated for
the model M4k and for modes around the fundamental radial one. In
the top panel the models with second order, no Richardson extrapola-
tion, r, are depicted (NOSC-ADIPLS-GRACO-FILOU-POSC). The
middle panel presents the differences obtained for the models using
fourth-order integration solutions or second-order plus Richardson ex-
trapolation (LOSC-OSCROX-NOSC-ADIPLS-GRAC0-POSC). In
the bottom panel an inter-comparison for different “degrees of free-
dom” using only GRACO is presented

are obtained in the mixed modes. No different behaviours
depending on the integration scheme are found.
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The bottom panel of Fig. 12 is devoted to the differences
obtained with GRACO when different options for the so-
lution of the differential equations are chosen. In this fre-
quency region the replacement of » by r/P as integration
variable introduces the smallest differences, one order of
magnitude lower than those obtained using the codes with
the same “degree of freedom”. Using the Lagrangian pertur-
bation to the pressure (§ P) as eigenfunction causes some
difference indicating sensitivity to whether or not A* is
used. The Richardson extrapolation introduces differences
lower than those found for the different codes, except in the
avoided crossing zone of mixed modes, where changes com-
parable to the largest one are found. Given the rather sub-
stantial variations in the bottom panel, and the fact that most
codes show the same variation in the top two panels, one
might suspect that the dominant source of this variation is in
fact in the GRACO results used as reference.

The low-frequency region is studied through the period
separation for £ =2 (AIT in seconds), illustrated in Fig. 13.
The top panel of this figure shows the differences found
using only codes with a second-order integration scheme.
ADIPLS and NOSC show similar shifts of around 0.1 s rel-
ative to GRACO. FILOU is similar at the higher frequencies
but shows a small oscillating behaviour in the mode-trapping
regions. Finally POSC presents a quite noisy pattern, vary-
ing around zero. Again the overall grouping of the differ-
ences (ADIPLS-NOSC-FILOU and GRACO0O-POSC) re-
flects the different values of G.

Results obtained using a fourth-order integration scheme
or a second-order plus Richardson extrapolation are com-
pared in the middle panel of Fig. 13. The values of the dif-
ferences found in this case are of the same order as in the
previous inter-comparison. Here we can distinguish codes
using a fourth-order scheme or a second-order plus Richard-
son extrapolation, because of the apparently random pattern
they present, with differences one order of magnitude larger
than the main values. The frequency differences obtained
with the OSCROX and LOSC results are those presenting
anoisy behaviour, when comparing with a second-order plus
Richardson extrapolation solution (as GRACO does) as the
reference line. POSC also presents some differences in the
mode-trapped regions when compared with other codes but
using the same integration scheme.

The bottom panel of Fig. 13 shows the differences ob-
tained with the same code (GRACO) and different choices
of the “degrees of freedom”. The use of the Richardson ex-
trapolation introduces substantial differences, of the order of
seconds, with noticeable wiggles in the two mode-trapping
regions. As noted previously this reflects the inadequacy of
the second-order schemes for high-order modes. The use of
the Lagrangian perturbation to the pressure as variable (§ P)
also introduces substantial differences, particularly around
the trapped modes near 22 uHz, related to the frequency dif-
ferences found with GRACO in this region when § P is used

@ Springer

Second order, no Richardson extrapolation

=
=]
=
4
Q
O
<
]
=
2
-0.1 L L ) ) ‘
20 30 40 50 60 - ”
Frequency (uHz)
Fourth order, second order + Richardson extrapolation
1.5 i ' '
@ -
X
E -
<
o
(&)
E -
o]
=
2
15} ¢ |
2 L L ) ) ‘
20 30 40 50 60 - o
Frequency (uHz)
' ' ' Rich —--—
SP —=— |
/P &
L 3 A
~ ot S me
E "‘iv S . o g
ER P 1
¥ 2 e ]
<)l<
= 8r i |
bl
-4 F ., |
-5 F |
-6 i; ]
%
-7 L . ) ) ‘
20 30 40 50 60 70 %0

Frequency (uHz)

Fig. 13 Period separation inter-comparison (reference line is GRACO)
for modes with £ = 2 as a function of the frequency calculated for
the model M4k in the low-frequency region. In the fop panel the
models with second order, no Richardson extrapolation, r, are de-
picted (NOSC-ADIPLS-GRACO-FILOU-POSC). The middle panel
presents the differences obtained for models using fourth-order in-
tegration solutions or second-order plus Richardson extrapolation
(LOSC-OSCROX-NOSC-ADIPLS-GRAC0-POSC). In the bottom
panel an inter-comparison for the different choices of “degrees of free-
dom” using only GRACO is presented

(cf. Fig. 9). Using r/ P as integration variable gives a small
difference when compared with », one order of magnitude
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lower than the differences found between the codes using
the same numerical integration schemes.

6 Small separations (SS)

In this section we study the inter-comparisons for the small
separations (SS) 8y = v(n,£) — v(n—1, £+2). Therefore,
two sets of inter-comparisons can be done, one for the
(£ =0 — ¢ =2) modes and another for the ({ =1 — £ = 3)
modes. In this case only the high-frequency region is stud-
ied, since this is where this quantity has physical meaning.
As in the previous section we concentrate on results for
model M4k.

6.1 Small separations g2

The results obtained for the small separation §pp are pre-
sented in Fig. 14. The top panel of this figure shows the dif-
ferences obtained with the codes solving the set of differen-
tial equations with a second-order integration scheme. In the
avoided crossing region some wiggles occur related to vari-
ations for £ =2, but these wiggles are of the order of magni-
tude of the differences obtained for the high-frequency re-
gion. ADIPLS-POSC-GRACO present similar values for
high frequencies and NOSC-FILOU presents differences
around 0.004 pHz, and always lower than 0.01 uHz. These
differences are much lower than the expected observational
errors for CoRoT.

The middle panel shows the same inter-comparison us-
ing a fourth-order integration scheme or a second-order plus
Richardson extrapolation. Once again we cannot distinguish
the integration scheme used. Just LOSC shows an oscilla-
tory pattern for high frequencies due to the use of LAWE or
8 P (see Sect. 7.2). The order of magnitude of the main dif-
ferences is the same as those obtained using only a second-
order scheme. The wiggles in the avoided crossing regions
are still present, and for high frequencies the differences are
all in the range [—0.001, 0.001] uHz. ADIPLS and POSC
present an almost constant difference with GRACo, NOSC
and OSCROX show a small noisy behaviour.

The bottom panel of Fig. 14 presents the SS differences
induced in GRACO when different choices of “degrees of
freedom” are selected. In this case they are all below, or
of the same order of magnitude as, the spread between the
different codes illustrated in the middle panel. Interestingly,
Richardson extrapolation introduces differences for higher
frequencies far smaller than found for the large separation
(Fig. 11). The use of the Lagrangian perturbation to the
pressure (8 P) as variable results in the same oscillatory pat-
tern as seen for LOSC in the middle panel. The integra-
tion variable r/ P gives increasing differences in the range
[0.001, 0.003] uHz, similar to the Richardson extrapolation,
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Fig. 14 Small separation inter-comparison (reference line is GRACO)
for modes with £ = 0-2 as a function of the frequency calculated
for the model M4k in the high-frequency region. In the top panel
models with second order, no Richardson extrapolation, r, are de-
picted (NOSC-ADIPLS-GRACO-FILOU-POSC). The middle panel
presents the differences obtained for models using fourth-order in-
tegration schemes or second-order plus Richardson extrapolation
(LOSC-OSCROX-NOSC-ADIPLS-GRACO-POSC). In the bottom
panel an inter-comparison for different “degrees of freedom” only us-
ing GRACO is presented

probably reflecting a difference in the sensitivity of radial
and nonradial modes to the choice of independent variable
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in the GRACO code; however, the effect is obviously small.
Note that in this case the use of the LAWE for the radial
modes, keeping the default “degrees of freedom” (including
the use of P’) for £ = 2, is hardly meaningful; thus no results
are included for LAWE.

6.2 Small separations 8§13

In Fig. 15 the inter-comparison of §13 is done for model
M4k. The top panel shows the differences given by the
codes using a second-order integration scheme. For POSC-
ADIPLS-FILOU-GRACO the differences are between
—0.001 and 0.002 pHz and NOSC shows somewhat larger
values. In any case the precision is good and the patterns
rather smooth.

The codes using a fourth-order integration scheme or a
second-order plus Richardson extrapolation have produced
the results presented in the middle panel of this figure.
The precision is very similar as in the previous panel or
even a little higher. LOSC shows the oscillatory pattern al-
ready obtained in all the previous inter-comparisons. POSC
and ADIPLS present smooth difference profiles when com-
pared with GRACO. On the other hand OSCROX and
NOSC give a low noisy profile. Once again the integration
scheme used cannot be discriminated.

Finally, the bottom panel presents the effect in §;3
of using different numerical integration schemes. Using
Richardson extrapolation gives large differences in the high-
frequency region, even larger than the precision of the dif-
ferent codes while, as expected, the effect is small for low-
order modes. If the differential equations are solved with
r/P as integration variable, an almost increased difference
is introduced, always lower than 0.001 uHz, i.e., of the order
of the precision among most of the codes using the same nu-
merical techniques. The use of the Lagrangian perturbation
to the pressure as variable introduces the same oscillatory
pattern as was obtained with LOSC.

7 Computational variations
7.1 The influence of the gravitational constant G

As indicated in Table 2 different values of G are used by dif-
ferent codes. In many cases the value differs from the value,
G = 6.67232 x 1078 cgs, which was used in the computa-
tion of model M4k. As aresult, as seen by the pulsation code
the equilibrium model is not strictly in hydrostatic equilib-
rium, thus potentially causing errors in the computed fre-
quencies.

In this section we examine the consequence of such in-
consistencies. Thus we test the influence of the choice of
a particular gravitational constant G, within always the re-
cent experimental values found in the literature. The value
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Fig. 15 SS inter-comparison (reference line is GRACO) for modes
with £ = 1-3 as a function of the frequency obtained for model
M4k in the high-frequency region. In the top panel the mod-
els with second order, no Richardson extrapolation, r, are de-
picted (NOSC-ADIPLS-GRACO-FILOU-POSC). The middle panel
presents the differences calculated for models using fourth-order in-
tegration solutions or second-order plus Richardson extrapolation
(LOSC-OSCROX-NOSC-ADIPLS-GRACO-POSC). In the bottom
panel an inter-comparison of the different “degrees of freedom” using
only GRACO is presented

of this constant is not very accurately known, and the differ-
ent values we can find in the literature can have an impact
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Fig. 16 Frequency comparison of modes with £ = 0 and 2 obtained
with GRACO(p’, §P = 0, no Richardson extrapolation, r) and the
model M4k when two different values of the gravitational constant G
are used

on the frequency calculation of the same order or even larger
than the differences studied here. To illustrate this, two ex-
treme values of G found in the literature have been cho-
sen: G| = 6.6716823 x 10~8 cgs (as fixed for Task 1), and
Gy =6.693 x 1078 cgs (Fixler et al. 2007), the most recent
one, although with a quoted random error of +0.027 x 1078
and a systematic error of £0.021 x 1078 cgs it is con-
sistent with the previous value. The present recommended
value of the Committee on Data for Science and Technol-
ogy (CODATA) can be found in the World Wide Web at
physics.nist.gov/constants, and it is closer to that fixed in
Task 1. The comparison has been carried out with GRACO
at fixed “degrees of freedom” (P’, § P = 0, no Richardson
extrapolation, r). The differences obtained using both val-
ues of G are shown in Fig. 16 for modes with £ = 0 and 2.
The equilibrium model used is M4k.

Surprisingly, the differences obtained in the region around
the fundamental radial mode are much larger than those ob-
tained for the direct frequency inter-comparison for the dif-
ferent codes or for the same code using different integration
numerical schemes. As expected for radial modes the largest
difference is obtained for the fundamental radial mode. The
value of this difference (more than 0.3 pHz in magnitude)
is really considerable. In the asymptotic regions the influ-
ence of the value of this parameter decreases until reaching
values lower than 0.1 uHz. Nevertheless, these differences
are larger than those obtained by using or not the Richard-
son extrapolation. The presence of wiggles for £ = 2 for the
mixed modes is also remarkable.

The relative difference between G| and G, is around
3 x 1073, In contrast, the relative difference between, say,
the value chosen for Task 1 and the ADIPLS value is only
5 x 107>, Thus we might expect this difference to cause a
frequency difference of order 5 x 1073 uHz. In fact, both the
magnitude and shape of the differences between ADIPLS

and GRACO in the middle panel of Fig. 4 are consistent
with this estimate. In general, as already discussed, it ap-
pears that much of the differences between codes using the
same numerical scheme results simply from the different
values of G. Thus, it is obviously important to ensure that
consistent values of G are used in the evolution and oscilla-
tion calculations.

7.2 The choice of dependent variables and equations

The most dramatic difference between the different codes
is the oscillatory variation shown by the computations us-
ing the LAWE or § P, relative to the reference GRACO re-
sults (e.g., Fig. 4). The oscillatory nature and the ‘period’
of the variation indicated that it reflected a sharp differ-
ence in some aspect of the model, located approximately
in the region of the second helium ionization zone. After
various failed attempts to identify the cause of the varia-
tion it transpired that it resulted from a, previously known
(e.g., Boothroyd and Sackmann 2003), inconsistency in the
OPAL equation-of-state tables (the original tables of Rogers
et al. 1996) used in the computation of model M4k with the
ASTEC code.
To understand this we consider the computation of

AF — 1 dinP dlnp )
T Iy dinr  dilnr’

From the point of view of stellar evolution calculation this is
somewhat inconvenient, since the gradient of p does not ap-
pear directly in the equations of stellar structure. Thus eval-
uation of A* would involve numerical differentiation of p.
A potentially more convenient formulation is obtained by
rewriting the expression in terms of the temperature gradi-
ent which is known from the equation of energy transport,
given that p is a function, known from the equation of state,
of pressure, temperature and composition which we charac-
terize solely by the hydrogen abundance X. Thus we obtain

0l dln P
A*:—( “") (V = Vag) o
P.X

olnT dinr

dln dln X
+ (222 ; @
dlnX /pr dinr

here, as usual, V =dInT/dIn P and V,q is its adiabatic
value. This expression still requires numerical differentia-
tion of X,Z but in much of the model X varies little or not
at all and hence the term in dln X/dInr makes a limited
contribution. Furthermore, in the bulk of convective zones,
with homogeneous composition, (2) accurately reflects the

2Except if diffusion is taken into account; in that case the gradient of
X appears directly in the equations (see, for example, the description
of ASTEC by Christensen-Dalsgaard 2007b).

@ Springer



246

Astrophys Space Sci (2008) 316: 231-249

0.004

0.002

0.000

—0.002

v (A* - A*ASTEC)

-0.004

—0.006
0.970

Fig. 17 Differences between A* as evaluated from (1) and evaluated
from (2) as done in ASTEC, for model M4k, against fractional radius.
The differences have been normalized by V = |dIn P/dInr|

small value of A* resulting from the small value of V — Vg4
determined, e.g., from the mixing-length treatment.

The transformation in (2) obviously assumes that the
thermodynamical quantities used are mutually consistent.
As noted by Boothroyd and Sackmann (2003), this is not
the case of the original OPAL tables provided by Rogers et
al. (1996). The effect of this on A* is illustrated in Fig. 17
for model M4k, in terms of the difference between the value
of A* calculated directly from (1), using numerical differen-
tiation to evaluate dIn p/dIn r,3 and the value, AZSTEC’
evaluated from (2). There are obvious systematic differ-
ences,* concentrated in the ionization zones of hydrogen
and helium. These would indeed affect the oscillations as
a ‘sharp feature’ and hence cause an oscillatory signature in
the frequencies, with the ‘period’ seen in Fig. 4 and else-
where (e.g., Gough 1990; Monteiro and Thompson 2005;
Houdek and Gough 2007).

To test further this interpretation of the results we have
recomputed frequencies for model M4k, but replacing
AZSTEC with A* computed from (1). For this modified
model the differences between ADIPLS and LOSC are
smaller by an almost an order of magnitude than the dif-
ferences illustrated in Fig. 4 and with none of the systematic
oscillatory character.

We finally note that transforming between the equations
using P’ and 8 P also depends on the equation of hydrosta-
tic equilibrium and hence on a consistent choice of G in the
oscillation equations (cf. Sect. 7.1). However, within the ac-
tual range of G-values used by the different codes this effect
is smaller than the effect of the inconsistency in A*.

3 At this level of precision it does not matter whether dIn P/dInr is cal-
culated from the equation of hydrostatic support or through numerical
differentiation.

4The small-scale rapid variation is probably associated with the inter-
polation procedure in the equation-of-state tables.
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7.3 The choice of independent variable

We have found a fairly significant dependence on the G
value used by the oscillation codes for the differences of
using the integration variables r or r/P. Figure 18 shows
this dependence in the case of ¢ = 0. In this figure, the dif-
ferences between the use of » or /P with the three dif-
ferent G values presented in Table 2, are depicted. All of
them have been obtained using GRACO and M4K. The dif-
ferences increase with frequency, and their value depend on
the difference G.y4 — Gosc, Where Gy is the G value used to
obtain the equilibrium model or the oscillation frequencies,
respectively. In fact, the transformation between using r and
r/ P as independent variables uses the equation of hydrosta-
tic equilibrium and hence the result is obviously sensitive
to whether or not a consistent value of G is used. By far
the smallest differences are obtained when the same G are
used in the equilibrium and oscillation codes. Even when
the same value of G is used, we have found a slight effect
of using r/ P as independent variable, as implemented in a
few of the codes (see also Provost 2007), instead of r; in
Fig. 18 the maximum difference is 0.008 uHz, as also found
in Fig. 4. The origin of choosing r/P seems to be a con-
cern that near the surface, where r varies little between ad-
jacent mesh points, rounding errors in the evaluation of dif-
ferences in r, when representing the differential equations
on finite-difference form, could have a significant effect on
the results. Given the rapid variation of P in the near-surface
layers this problem is obviously avoided if /P is used in-
stead. While there might well be such problems with using
r when variables are represented in single-precision form
(with four-byte reals) it seems unlikely to be a problem when
using double-precision variables.> On the other hand, the
present test has been carried out with models transferred in
the FGONG format, where variables are given with ten sig-
nificant digits. Here one cannot exclude that rounding errors
might be significant.

To test this JC-D computed frequencies with ADIPLS
using both the original binary (double-precision) version of
M4k and the version resulting from conversion to FGONG
format. The frequency differences between these two cases
were always less than 10~ uHz, strongly indicating that the
use of the FGONG format is not a concern with the present
level of accuracy.

It is obvious that the choice of independent variable also
affects the truncation error, i.e., the error in the representa-
tion of the differential equations on finite-difference form.
This can presumably be the reason for the differences found
with GRACO when comparing the use of r and r/P (e.g.,
Fig. 14), although the effects are small. Further analysis is
required to decide which is the more accurate representation.

51n contrast, the problem would be severe if the interior mass were used
as independent variable.
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Fig. 18 Differences between the use of r or r/P as integration vari-
able as a function of the mode frequency, for radial modes. Different
G values are used in the GRACO oscillation code: G (M4K) is the G
value used to obtain the M4K model, G (M2K) is the G value used
to obtain the M2K model, and G NOSC is the G value used by the
NOSC code. M4K has been used as equilibrium model for this com-
parison

8 Conclusions

A complete inter-comparison of the frequencies calculated
by using a set of oscillation codes has been presented.
Nine oscillation codes have been used: ADIPLS, FILOU,
NOSC, LOSC, GRACO, OSCROX, PULSE, POSC and
LNAWENR. The only free parameter for each code has
been the integration numerical scheme. In order to ensure
that the same physics has been imposed to all the codes
two equilibrium models of a 1.5M, star have been supplied,
with 4042 (M4k) and 2172 (M2k) mesh points in their grids,
respectively. No re-meshing has been allowed. The model
M2k presents inadequate numerical resolution in the Brunt-
Viiséld frequency close to the boundary of the convective
core. The model M4k does not suffer from these problems.
In the present paper we have used these models only to
show the sensitivities of the oscillation codes to possible nu-
merical inaccuracies in the equilibrium models. A complete
study of the accuracies of the different evolutionary codes is
provided by Lebreton et al. in this volume.

Several inter-comparisons have been performed: (1) Di-
rect frequency inter-comparison, (2) large separation (LS),
(3) small separation (SS), and (4) different experimental val-
ues of the gravitational constant G.

The main conclusions can be summarized as:

e When codes using the same numerical integration sche-
mes are compared, the general precision obtained for
model M4k (0.02 uHz) is higher than the expected pre-
cision of the observational data obtained with the CoRoT
mission. This precision is always one order of magnitude
better or even more when compared with that obtained

for model M2k (0.5 uHz). The largest differences are ob-
tained for the high-frequency region.

The use of a second-order integration scheme plus Rich-
ardson extrapolation or a fourth-order integration scheme
does not improve the agreement between the codes when
compared with the use of a second-order scheme. In the
cases here presented it was not possible to distinguish
between the use of a fourth-order scheme or Richardson
extrapolation, which always give very acceptable consis-
tency for model M4k.

However, the use of a fourth-order integration scheme (or
a second-order plus Richardson extrapolation) introduces
differences larger than 0.1 pHz (1.5 pHz for M2k and
0.8 uHz for M4k) compared with a second-order scheme,
mainly located in the regions of high order (high fre-
quency for p-modes and low frequency for g-modes). This
indicates that the second-order schemes have inadequate
numerical precision on the mesh provided in M4k and,
obviously, even more so on the sparser mesh in M2k.

For “large separations” the agreement between different
comparable codes using model M4k, with every possible
numerical scheme is generally better than the expected
precision of the data. However, the equation-of-state in-
consistency in model M4k (see Sect. 7.2) introduces a
signature that it potentially significant. The use of the
Richardson extrapolation together with a second-order in-
tegration scheme, or a fourth-order scheme, gives differ-
ences for high-order p- and g-modes relative to the use
of only a second-order scheme that are comparable to the
expected observational accuracies, indicating that the ac-
curacy of the latter scheme is inadequate.

The “small separations” present differences for model
M4k lower than the expected observational accuracies
everywhere, although the inconsistency in M4k has a no-
ticeable effect. Use of Richardson extrapolation has a po-
tentially significant effect, indicating that the precision of
second-order schemes may be inadequate.

The use of r/P as integration variable instead of r has
a small influence when a consistent value of G is used.
However, an inconsistency between the G values used to
obtain the equilibrium model and the oscillation frequen-
cies can give substantial differences between the use of
these integration variables, over the range of G values in
Table 2.

For model M2k, the mixed modes near the avoided cross-
ing present large differences, reaching even up to 4 pHz.
These differences are not present when model M4k is
used. The problems with N2 in M2k are undoubtedly
the main source of this difference. The same behaviour
is found for the trapped g-modes. Therefore, the correct
numerical description of N2 is critical for the value of the
frequencies of these trapped modes or in avoided cross-

ing.
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e The use of § P or P’ as eigenfunction, or the solution of
the LAWE, may have a significant effect if the equilib-
rium model is based on thermodynamic quantities that are
not internally consistent, as is the case for the OPAL ta-
bles used to calculate model M4k. Further effects arise
when there are problems with the Brunt-Viisild fre-
quency (as for model M2k); here a different choice can
change the frequencies of some modes since N2 does
not appear in the differential equations when 6 P or the
LAWE are used and it does when using P’.

e The value of the gravitational constant G in the oscilla-
tion calculations can introduce non-negligible differences
as well, if it is not the same as the value used in the equi-
librium model. When the two extreme values found in
the literature are used, such inconsistency yields differ-
ences in the range [—0.35, —0.08] uHz for model M4k,
larger than those obtained when different numerical inte-
gration schemes are used. Differences between the values
of G actually used by the different codes, although less
extreme, account for much of the difference between the
computed frequencies.

Therefore, for a proper pulsational study, we require that
the number of mesh points and their distribution must be
such as to yield an equilibrium model that satisfies the dy-
namical equations with sufficient accuracy also in the re-
gions of the star where the physical quantities present rapid
variations (e.g., the outer layers and p-gradient zones). In
addition, the mesh used in the pulsation calculation must
properly resolve the eigenfunctions of the highest-order
modes considered. In the present case model M4k, with
4042 points, appears to satisfy these conditions although the
use of a fourth-order integration scheme, or a second-order
scheme and Richardson extrapolation, is still needed in the
oscillation calculation; these higher-order schemes give sig-
nificant improvements compared with the use of a simple
second-order scheme. The use of a second-order integration
plus Richardson extrapolation scheme is not distinguishable,
in accuracy and precision, from the use of a fourth-order in-
tegration scheme. A correct physical and numerical descrip-
tion of the Brunt-Viisild frequency is essential when P’ is
used as eigenfunction; in particular, inconsistencies in the
equation of state can have serious effects on the frequencies.
Inconsistency between the value of G used in the oscillation
calculation and the value used to compute the equilibrium
model, within the range of the different values of G found
in the literature, may lead to substantial errors in the com-
puted frequencies.

We note that the situation is somewhat different if con-
sistent values of G are used in the evolution and oscilla-
tion calculations. Then the effect on the frequencies is ap-
proximately given, according to homology arguments, as a
scaling by (GM)!/2. However, since the product G My, is
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known extremely precisely from planetary motion in the so-
lar system, any variation in G should be reflected in a corre-
sponding change in the assumed value of M. If this is the
case, and if the model is characterized by a given value of
M /Mg (as is typically the case) the effect on the frequen-
cies of changes in G are very small (see also Christensen-
Dalsgaard et al. 2005).

In further tests more care is required to secure the full
consistency of the models: a consistent equation of state
should be used, and the value of G should obviously be
the same in the equilibrium-model and the pulsation calcula-
tions; indeed, this strongly argues for including the value of
G as one of the parameters in the model file. The main con-
clusion of this extensive investigation, however, it positive:
with a properly resolved equilibrium model the broad range
of oscillation codes likely to be involved in the asteroseis-
mic analysis of data from CoRoT and other major upcom-
ing projects generally give consistent results, well within the
expected errors of the observations. Thus, although the re-
maining problems in the calculation evidently require atten-
tion, we can be reasonably confident in our ability to com-
pute frequencies of given models and hence in the inferences
concerning stellar structure drawn from comparing the com-
puted frequencies with the observations.
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