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Abstract

Geometry problem solving has attracted much

attention in the NLP community recently. The

task is challenging as it requires abstract prob-

lem understanding and symbolic reasoning

with axiomatic knowledge. However, current

datasets are either small in scale or not pub-

licly available. Thus, we construct a new large-

scale benchmark, Geometry3K, consisting of

3,002 geometry problems with dense annota-

tion in formal language. We further propose

a novel geometry solving approach with for-

mal language and symbolic reasoning, called

Interpretable Geometry Problem Solver (Inter-

GPS). Inter-GPS first parses the problem text

and diagram into formal language automati-

cally via rule-based text parsing and neural ob-

ject detecting, respectively. Unlike implicit

learning in existing methods, Inter-GPS in-

corporates theorem knowledge as conditional

rules and performs symbolic reasoning step by

step. Also, a theorem predictor is designed to

infer the theorem application sequence fed to

the symbolic solver for the more efficient and

reasonable searching path. Extensive experi-

ments on the Geometry3K and GEOS datasets

demonstrate that Inter-GPS achieves signifi-

cant improvements over existing methods. 1

1 Introduction

Geometry problem solving is a long-standing chal-

lenging task in artificial intelligence and has been

gaining more attention in the NLP community

recently (Seo et al., 2014; Hopkins et al., 2019;

Sachan et al., 2020). Solving geometry problems

is an essential subject in high-school education for

the development of students’ abstract thinking. As

an example shown in Figure 1, given problem text

∗Equal contribution.
1The project with code and data is available at https:

//lupantech.github.io/inter-gps.

In triangle ABC, AD = 3 and BD
= 14. Find CD.
Choices:
A. 6.0    B. 6.5    C. 7.0    D. 8.5
Answer: B

BD

C

A

Triangle(A,B,C)
Equals(LengthOf(Line(A,D)),3)
Equals(LengthOf(Line(B,D)),14)
Find(LengthOf(Line(C,D)))

Text Formal Language

Triangle(A,B,C)
Triangle(A,C,D)
Triangle(B,C,D)
PointLiesOnLine(D,Line(A,B))
Perpendicular(Line(A,C),Line(B,C))
Perpendicular(Line(C,D),Line(A,B))

Diagram Formal Language

Figure 1: A data example in Geometry3K dataset. Each

data is annotated with formal language descriptions.

in natural language and a corresponding diagram,

one needs to identify the geometric relations, apply

theorem knowledge, and conduct algebraic calcula-

tions to derive the numerical value of the answer.

Psychologists and educators believe that solving

geometric problems requires high-level thinking

abilities of symbolic abstraction and logical reason-

ing (Chinnappan, 1998; Nur and Nurvitasari, 2017).

However, if algorithms take the raw problem con-

tent, it might encounter challenges to understand

the abstract semantics and perform human-like cog-

nitive reasoning for inferring the answer in the ge-

ometry domain. A formal language is composed of

words from a well-formed alphabet based on a spe-

cific set of rules and is commonly used in the fields

of linguistics and mathematics. Therefore, our pro-

posed geometry solver parses the problem inputs

into formal language descriptions (see examples in

Figure 1) before solving the problems.

To translate the problem text and diagrams to

formal descriptions, existing methods (Seo et al.,

2015; Sachan et al., 2017; Sachan and Xing, 2017)

highly depend on human annotations like symbols

in diagrams as the intermediate results. Also, these

methods fail to provide the explicit reasoning pro-

cesses when predicting the answer. For example,

(Seo et al., 2015) simplifies the problem solving

task to an optimization problem to pick one that

satisfies all constraints from choice candidates. Fur-

https://lupantech.github.io/inter-gps
https://lupantech.github.io/inter-gps
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thermore, most current datasets are either small in

scale or not publicly available (Seo et al., 2015;

Sachan and Xing, 2017), which further hinders the

research of geometry problem solving.

To overcome these challenges, we first construct

a new large-scale benchmark, called Geometry3K,

to assess algorithms’ performance of geometry

problem solving. The Geometry3K dataset consists

of 3,002 multi-choice problems as well as covers

diverse geometric shapes and problem goals. In

contrast with existing work, we also annotate each

problem text and diagram with unified structural

descriptions in formal language.

This paper further presents a novel geometry

solving approach with formal language and sym-

bolic reasoning, called Interpretable Geometry

Problem Solver (Inter-GPS). Inter-GPS (Figure 4)

develops an automatic parser that translates the

problem text via template rules and parses diagrams

by a neural object detector into formal language,

respectively. In contrast to parameter learning,

Inter-GPS formulates the geometry solving task

as problem goal searching, and incorporates the-

orem knowledge as conditional rules to perform

symbolic reasoning step by step. It demonstrates

an interpretable way to tackle the task. Also, we

design a theorem predictor to infer the possible the-

orem application sequence in Inter-GPS for the effi-

cient and reasonable searching path. Extensive ex-

periments on the Geometry3K and GEOS datasets

show Inter-GPS achieves large improvements over

existing methods.

Our contributions are three-fold: (1) we intro-

duce a large-scale diverse benchmark of geometry

problem solving, Geometry3K, which is densely

annotated with formal language; (2) we develop

an automatic problem parser to translate the prob-

lem text and diagram into formal language; (3) we

propose a novel interpretable problem solver that

applies symbolic reasoning to infer the answer.

2 Related Work

Datasets for Geometry Problem Solving. Sev-

eral datasets for geometry problems have been

released in recent years. These include GEOS

(Seo et al., 2015), GEOS++ (Sachan et al., 2017),

GeoShader (Alvin et al., 2017) and GEOS-OS

(Sachan and Xing, 2017) datasets. However, these

datasets are relatively small in scale and contain

limited problem types. For example, there are only

102 shaded area problems in GeoShader and 186

problems in GEOS. While GEOS++ and GEOS-

OS contain more data of 1,406 and 2,235 prob-

lems, respectively, they have not been publicly

available yet. Instead, our Geometry3K dataset

features 3,002 SAT-style problems collected from

two high-school textbooks that cover diverse graph

and goal types. Besides, each problem in Geome-

try3K is annotated with dense descriptions in for-

mal language (defined in Section 3), which makes

it particularly suited for symbolic reasoning and

interpretable problem solving. In order to promote

follow-up work in the geometry domain, we release

the dataset and evaluation baselines.

Approaches for Geometry Problem Solving.

Due to the sparsity of appropriate data, most early

works on automated geometry systems focus on ge-

ometry theorem proving (Wen-Tsun, 1986; Chou

et al., 1996; Yu et al., 2019; Gan et al., 2019), prob-

lem synthesis (Alvin et al., 2014), diagram parsing

(Seo et al., 2014), as well as problem formaliza-

tion (Gan and Yu, 2018). (Seo et al., 2015) at-

tempt using computer vision and natural language

processing techniques to solve geometry problems

with problem understanding. However, the system

does not perform explicit reasoning with axiomatic

knowledge as it reduces the task to an optimiza-

tion problem to see which choice can satisfy all

constraints. Some recent efforts (Sachan et al.,

2017, 2020) have been made to incorporate theo-

rem knowledge into problem solving. They feed ge-

ometry axioms written as horn clause rules and dec-

larations from the diagram and text parser into log-

ical programs in prolog style to solve the problem.

However, these methods fail to provide human-

readable solving steps. And parameter learning

on horn clause rules and built-in solvers leads to

an uncontrollable search process. In contrast, our

proposed Inter-GPS implements explicit symbolic

reasoning to infer the answer without the help of

candidate answers in an interpretable way.

Interpretable Math Problem Solving. Due to

the intrinsic requirements of symbolic understand-

ing and logical reasoning, interpretability of solvers

plays an essential role in geometry problem solv-

ing. While the interpretability of geometry problem

solvers is rarely explored, some pioneering work

has been proposed in the general math problem

solving domain. Broadly there are two main lines

of achieving interpretable solving steps for math

problems. The first generates intermediate struc-

tural results of equation templates (Huang et al.,
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Problem Text Diagram Choices Text Literals Diagram Literals

Find y. Round to the 
nearest tenth.

A. 18.8
B. 23.2
C. 25.9
D. 44.0
Answer: C

Find(y) Equals(LengthOf(Line(A,B)),32)
Equals(LengthOf(Line(B,D)),y)
Equals(MeasureOf(Angle(A,C,B)),54)
Equals(LengthOf(Line(A,D)),x)
PointLiesOnLine(D,Line(A,C))
Perpendicular(Line(B,D),Line(C,D))
Equals(LengthOf(Line(A,B)),LengthOf(Lin
e(B,C)))

Find the perimeter of 
$\parallelogram$ 
JKLM.

A. 11.2
B. 22.4
C. 24
D. 44.8
Answer: B

Find(PerimeterOf(Parallelogram

(J,K,L,M)))

Equals(LengthOf(Line(L,K)),7.2)

Equals(LengthOf(Line(M,L)),4)

Equals(LengthOf(Line(E,J)),6)

PointLiesOnLine(E,Line(M,L))

Perpendicular(Line(J,E),Line(E,L))

In $\odot$ K, MN = 
16 and m $\widehat$ 
MN = 98. Find the 
measure of LN. 
Round to the nearest 
hundredth.

A. 6.93
B. 7.50
C. 8.94
D. 10.00
Answer: C

Circle(K)    

Equals(LengthOf(Line(M,N)),16)

Equals(MeasureOf(Arc(M,N)),98)

Find(LengthOf(Line(L,N)))

Equals(LengthOf(Line(J,K)),10)
Perpendicular(Line(P,K),Line(M,P))
PointLiesOnLine(P,Line(M,N))
PointLiesOnLine(P,Line(L,J))
PointLiesOnLine(P,Line(L,K))
PointLiesOnLine(K,Line(P,J))
PointLiesOnLine(K,Line(L,J))
PointLiesOnCircle(M,Circle(K))
PointLiesOnCircle(J,Circle(K))
PointLiesOnCircle(N,Circle(K))
PointLiesOnCircle(L,Circle(K))

Figure 2: More data examples in the Geometry3K dataset.

2017; Wang et al., 2019), operational programs

(Amini et al., 2019) and expression trees (Wang

et al., 2018; Qin et al., 2020; Hong et al., 2021).

The second line of work with a higher level of

interpretability translates the math problems into

symbolic language and conducts logical reasoning

iteratively to predict the final results (Matsuzaki

et al., 2017; Roy and Roth, 2018). Furthermore, in-

spired by work on semantic parsing (Han and Zhu,

2005; Zhu and Mumford, 2006; Tu et al., 2014), we

claim structured diagram parsing and joint seman-

tic representations for text and diagrams is critical

in interpretable geometry problem solving.

3 Geometry Formal Language

A geometry problem P is defined as a tuple

(t, d, c), in which t is the input text, d is the dia-

gram image and c = {c1, c2, c3, c4} is the multiple-

choice candidate set in the format of numerical val-

ues. Given the text t and diagram d, an algorithm

is required to predict the correct answer ci ∈ c.

We formally describe the problem in the geometric

domain language Ω, a set of literals composed of

predicates and arguments. Basic terms used in the

geometry problem solver are defined as follows.

Definition 1. A predicate is a geometric shape

entity, geometric relation, or arithmetic function.

Definition 2. A literal is an application of one

predicate to a set of arguments like variables or

constants. A set of literals makes up the semantic

description from the problem text and diagrams in

the formal language space Ω.

Definition 3. A primitive is a basic geometric

element like a point, a line segment, a circle, or an

arc segment extracted from the diagram.

Terms Examples

predicate Line, IntersectAt, IsMedianOf
literal Find(AreaOf(Triangle(A,B,C))

Table 1: Term examples in geometry formal language.

Table 1 lists examples of predicates and literal

templates. There are 91 predicates in our defined

formal language, and we list them in the Tables 10

to 15 in the Appendix Section.

4 Geometry3K Dataset

4.1 Dataset Collection

Most existing datasets for geometry problem solv-

ing are relatively small, contain limited problem

types, or not publicly available. For instance, the

GEOS dataset (Seo et al., 2015) only contains 186

SAT problems. Although there are 1,406 problems

in GEOS++ (Sachan et al., 2017), this dataset has

not been released to the public yet. Therefore, we

build a new large-scale geometry problem bench-

mark, called Geometry3K. The data is collected

from two popular textbooks for high school stu-

dents across grades 6-12 by two online digital li-

braries (McGraw-Hill2, Geometryonline3). Groups

of well-trained annotators with undergraduate de-

grees manually collect each problem with its prob-

lem text, geometry diagram, four candidate choices,

and correct answer. In order to evaluate the fine-

grained performance of geometry solvers, we label

each problem data with the corresponding problem

goal and geometry shapes.

2https://www.mheducation.com/
3www.geometryonline.com
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Dataset #qa #word #shape #goal #var grade operator type

GeoShader (Alvin et al., 2017) 102 / 4 1 1 6-10 {+, −, ×, ÷, ✷2,
√
✷}

GEOS (Seo et al., 2015) 186 4,343 4 3 1 6-10 {+, −, ×, ÷, ✷2,
√
✷}

GEOS++ (Sachan et al., 2017) 1,406 / 4 3 1 6-10 {+, −, ×, ÷, ✷2,
√
✷}

GEOS-OS (Sachan and Xing, 2017) 2,235 / 4 3 1 6-10 {+, −, ×, ÷, ✷2,
√
✷}

Geometry3K (ours) 3,002 36,736 6 4 3 6-12 {+, −, ×, ÷, ✷2,
√
✷, sin, cos, tan}

Table 2: Comparison of our Geometry3K dataset with existing datasets.

Total Train Val Test

Questions 3,002 2,401 300 601
Sentences 4,284 2,993 410 881
Words 30,146 20,882 2,995 6,269

Literals (Text) 6,293 4,357 624 1,312
Literals (Diagram) 27,213 19,843 2,377 4,993

Table 3: Basic statistics of our Geometry3K dataset.

Unlike existing datasets that only collect the

problem text and diagrams, we further annotate

each data in Geometry3K with dense formal lan-

guage descriptions that bridge the semantic gap

between the textual and visual contents as well as

benefit the symbolic problem solver. The anno-

tated formal language is used to train and evaluate

our proposed problem parsers. Data examples are

illustrated in Figure 2.

4.2 Dataset Statistics

The Geometry3K dataset consists of 3,002 prob-

lems and is divided into the train, validation, and

test sets with the ratio of 0.7:0.1:0.2, as shown in

Table 3. Figure 3 illustrates the question distribu-

tion by the number of sentence words. The long tail

in the distribution requires the geometry solvers to

understand the rich semantics in the textual content.

0 10 20 30 40
Number of question words

0

5

10

15

20

Fr
eq

ue
nc

y 
(%

)

Question Distribution

Geometry3K

Figure 3: Question length distribution of Geometry3K.

There are 6,293 literals for the problem text and

27,213 literals for the diagrams in Geometry3K,

respectively. We list the most and least frequent

predicates with a frequency greater than 5 in Table

4. It is shown that the predicates for the problem

Predicates (Text) % Predicates (Diagram) %

Find 19.00 Line 30.89
Line 14.49 PointLiesOnLine 16.66
Equals 11.83 Equals 15.17
LengthOf 9.53 MeasureOf 10.46
MeasureOf 8.97 LengthOf 8.69
...... ......
CircumscribedTo 0.05 Triangle 0.03
SumOf 0.04 Quadrilateral 0.02
HeightOf 0.04 Kite 0.01
BaseOf 0.04 HeightOf 0.01
IsHypotenuseOf 0.04 Square 0.01

Table 4: Most and least frequent predicates of formal

descriptions in Geometry3K (frequency >5).

text are more evenly distributed than those for di-

agrams. This is mainly because the problem text

describes diverse geometric shapes, attributes, and

relations while diagrams display the basic proper-

ties of points, lines, and arcs.

4.3 Comparisons with Existing Datasets

To the best of our knowledge, currently, it is the

largest geometry problem dataset. We summarize

the Geometry3K dataset’s main statistics and a

comparison of existing datasets in Table 2. In ad-

dition to four elementary shapes (lines, triangles,

regular quadrilaterals, and circles) mentioned in

that GEOS dataset, Geometry3K contains irregular

quadrilaterals and other polygons. Besides, in Ge-

ometry3K, there are more unknown variables and

operator types that may require equation solving to

find the goal of the problem. Note that 80.5% of

problems are solvable without the associated dia-

gram in the GEOS dataset. By contrast, less than

1% of the problems in our Geometry3K dataset

could be solved when the problem diagram is not

provided. In general, the statistics and compar-

isons above show Geometry3K is challenging for

geometry problem solvers.

4.4 Human Performance

As an intellectual task, it is necessary to know the

human performance for geometry problems. We

push the test-split data of the dataset in the crowd-



6778

sourcing platform, Amazon Mechanical Turk4.

Each eligible annotator must have obtained a high

school or higher degree and is asked to answer 10

problems in 25 minutes. To ensure annotators solv-

ing the problem to the best of their ability, they

are further asked to spend at least 7 minutes on the

problem set and 10 seconds on each problem. We

filter out annotators who do not satisfy the require-

ment. We also ask dozens of graduates majoring

in science or engineering to answer these problems

to evaluate human experts’ performance. Table 5

shows the human performance. Compared to ran-

dom guess’s accuracy of 25%, humans achieve an

overall accuracy of 56.9%, and human experts can

achieve a good performance of 90.9%.

5 Geometry Problem Parser

Our proposed Inter-GPS takes the problem text

and diagrams as inputs and translates them into

formal language descriptions automatically via the

text parser (Section 5.1) and the diagram parser

(Section 5.2), respectively.

5.1 Text Parser

Given the word sequence of the problem text T ,

the text parser needs to translate it into a set of

literals Lt, a sequence composed of predicates and

variables. Recently, deep neural networks have

achieved promising performances in sequence-to-

sequence (Seq2Seq) learning tasks like machine

translation (Sutskever et al., 2014; Vaswani et al.,

2017; Devlin et al., 2018). However, semantic

parsers using Seq2Seq learning methods are not fea-

sible to generate satisfactory literals in the Geome-

try3K dataset for two reasons. Firstly, the limited

scale of geometry datasets weakens these highly

data-driven methods. Secondly, neural semantic

parsers tend to bring noises in generated results

while geometry solvers with symbolic reasoning

are sensitive to such deviations.

Inspired by previous works (Koo et al., 2008;

Seo et al., 2015; Bansal et al., 2014) that indicate

the rule-based parsing method is able to obtain pre-

cise parsing results, we apply this approach with

regular expressions to perform text parsing. We

also achieve a semantic text parser using BART

(Lewis et al., 2020), one of the state-of-the-art se-

quence learning models for comparison.

4https://www.mturk.com/

5.2 Diagram Parser

Diagrams provide complementary geometric infor-

mation that is not mentioned in the problem text.

Previous works (Seo et al., 2014, 2015) require

manual annotations to identify symbols in the dia-

grams and fail to deal with special relational sym-

bols such as parallel, perpendicular, and isosceles.

Instead, an automatic diagram parser without hu-

man intervention is proposed in this work and is

able to detect varied diagram symbols.

The diagram parser first applies Hough Transfor-

mation (Shapiro and Stockman, 2001) to extract ge-

ometry primitives (points, lines, arcs, and circles),

following (Seo et al., 2015). Then the diagram sym-

bols and text regions are extracted through a strong

object detector RetinaNet (Lin et al., 2017), and the

textual content is further recognized by the optical

character recognition tool MathPix5. After obtain-

ing the primitive set P and symbol set S, we need

to ground each symbol with its associated primi-

tives. (Seo et al., 2015) adapts a greedy approach

where each symbol is assigned to the closest prim-

itive without considering its validity. Instead, we

formulate the grounding task as an optimization

problem with the constraint of geometry relations:

min
∑

s

dist(si, pj)× ✶{si assigns to pj}

s.t. (si, pj) ∈ Feasibility set F,

(1)

where the dist function measures the Euclidean

distance between the symbol si and primitive pj .

F defines the geometric constraints for symbol

grounding. For example, the parallel symbol could

only be assigned to two lines with the same slopes

and the perpendicular symbol is only valid to two

orthogonal lines.

6 Geometry Problem Solver

Unlike existing methods (Seo et al., 2015; Sachan

et al., 2017; Alvin et al., 2017; Sachan et al., 2020),

Inter-GPS achieves the explicit symbolic reasoning

with the theorem knowledge base and the human-

readable search process, shown in Figure 4.

6.1 Symbolic Geometry Solver

Overall, Inter-GPS takes the relation setR and the

theorem knowledge base set KB as inputs, and out-

puts the numeric solution g∗ of the problem goal g.

5https://mathpix.com/
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In triangle ABC, AB = BC.
Find y. 

Triangle(A,B,C)
Triangle(A,B,D)
Triangle(B,C,D)
Equals(Line(B,C),32)
Equals(Line(C,D),x) 
Equals(Line(B,D),y)
Equals(Angle(C,A,B),54)
PointLiesOnLine(D,Line(A,C))
Perpendicular(Line(B,D),Line(A,D))
Equals(Line(B,C),Line(A,B))
Find(y)

 

A

B

DC x

y32

54°

Rule-Based Text Parser

Neural Detector Diagram Parser Relation Set in Formal Language

 

 
Encoder
Encoder
Encoder

Decoder
Decoder
Decoder

Transformer-Based Theorem Predictor

 
Equals(Line(A,B),32)

Equals(y,25.89)

 Isosceles Triangle Theorem9

Law of Sine Theorem16

Symbolic Geometry Problem Solver

✔

Figure 4: Given the problem diagram and text, our proposed Inter-GPS first parses the inputs into a relation set

defined in formal language. Then Inter-GPS applies the theorem sequence predicted by the theorem predictor to

perform symbolic reasoning over the relation set to infer the answer. 9© and 16© denote the theorem orders.

The relation setR defines geometry attributes and

relations in the given problem, and is initialized

with literals from the text and diagram parsers. R
is further expanded with literals that are derived

from definitions of geometry shapes. For example,

a triangle is defined as three connected sides. So

if there is a literal Triangle(A,B,C), six more lit-

erals (Ponit(A), Ponit(B), Ponit(C), Line(A,B),

Line(B,C), Line(C,A)) will be appended toR.

The theorem set KB is represented as a set of

theorems, where each theorem ki is written as a

conditional rule with a premise p and a conclusion

q. For the search step t, if the premise p of ki
matches the current relation setRt−1, the relation

set is updated according to the conclusion q:

Rt ← ki ∧Rt−1, ki ∈ KB. (2)

After the application of several theorems, equations

between the known values and the unknown prob-

lem goal g are established, and g could be solved

after solving these equations:

g∗ ← SOLVEEQUATION(Rt, g). (3)

6.2 Theorem Predictor (TP)

As the geometry problems in Geometry3K are col-

lected from high school textbooks, it might need to

apply multiple theorems before the problems are

solved. Intuitively, one possible search strategy is

to use brute force to enumerate candidates in the

theorem set randomly. The random search strategy

is inefficient and might lead to problems unsolvable

as there might be applications of complicated theo-

rems in the early stage. Therefore, an ideal geom-

etry problem solver can solve the problems using

reasonable theorem application sequences. Stu-

dents with good academic performance can solve

a problem with prior knowledge learning from a

certain amount of problem solving training. In-

spired by this phenomenon, a theorem predictor is

proposed to infer the possible theorem application

sequence for inference after multiple attempts on

the train data. Recent studies (Loos et al., 2017;

Balunovic et al., 2018) also suggest that neural

guided search can speed up the search process.

There are no annotated theorem application se-

quences for data in Geometry3K due to tremendous

worker labor. Thus, we randomly sample from the

theorem set multiple times to generate the applica-

tion sequences. A generated sequence is regarded

as positive if the geometry solver Inter-GPS solves

the problem after the application of that sequence.

A positive sequence with the minimum length for

a problem is seen as pseudo-optimal. Finally, after

attempts, we collect 1,501 training samples with

the problem and its pseudo-optimal theorem appli-

cation sequence.

Given the problem formal description L =
{l1, ..., lm}, the theorem predictor aims to recon-

struct the pseudo-optimal theorem sequence T =
{t1, ..., tn} token by token. We formulate the gen-

eration task as a sequence-to-sequence (Seq2Seq)

problem and use a transformer-based model (Lewis

et al., 2020) to generate theorem sequence tokens.

Specifically, the transformer decoder predicts the

next theorem order ti given T = {t1, ..., ti}. The

Seq2Seq model is trained to optimize the negative

log-likelihood loss:

LTP = −
n∑

i=1

log pTP (ti | t1, . . . , ti−1) , (4)
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Algorithm 1 Symbolic Geometry Solver

Input Literals L, goal g, knowledge bases KB1, KB2

Output Numeric goal value g∗ and theorem application S
1: function SEARCH(L, g, KB1, KB2)
2: Initialize relation setR0 with L, g∗ = ∅, S = ∅
3: KBp ← THEOPREDICTOR(L) ⊲ Predicted
4: for ki ∈ KBp do
5: Rt ← ki ∧Rt−1

6: S.APPEND(ki)
7: end for
8: g∗ ← SOLVEEQUATION(Rt, g)
9: if g∗ 6= ∅ then

10: return g∗ and S
11: end if
12: while g∗ = ∅ andRt is updated do
13: for ki ∈ KB1 do ⊲ Lower-order
14: Rt ← ki ∧Rt−1

15: S.APPEND(ki)
16: g∗ ← SOLVEEQUATION(Rt, g)
17: if g∗ 6= ∅ then
18: return g∗ and S
19: end if
20: end for
21: for ki ∈ KB2 do ⊲ Higher-order
22: Rt ← ki ∧Rt−1

23: S.APPEND(ki)
24: g∗ ← SOLVEEQUATION(Rt, g)
25: if g∗ 6= ∅ then
26: return g∗ and S
27: end if
28: end for
29: end while
30: end function

where pTP is the parametrized conditional distribu-

tion in the theorem predictor model.

6.3 Low-first Search Strategy

After the application of the theorem sequence pre-

dicted by the theorem predictor, it is likely that

Inter-GPS still could not find the problem goal.

Generally, humans incline to use simple theorems

first when solving math problems to reduce com-

plex calculations. If simple theorems are not tan-

gible, they will turn to more complex theorems.

On account of that, we apply an efficient search

strategy with heuristics driven by subject knowl-

edge. We categorize theorems into two groups:

lower-order theorem set KB1 and higher-order

theorem set KB2. The lower-order set KB1 (e.g,

Triangle Angle-Sum Theorem, Congruent Triangle

Theorem) only involves in two simple operations of

addition and subtraction, while KB2 (e.g, Law of

Sines) requires complex calculations. In each fol-

lowing search step after using predicted theorems,

we first enumerate theorems in the lower-order set

KB1 to update the relation setR:

Rt ← ki ∧Rt−1, ki ∈ KB1. (5)

If lower-order theorems fail to updateR anymore,

higher-order theorems are considered to updateR:

Rt ← ki ∧Rt−1, ki ∈ KB2. (6)

The search process stops once we find the prob-

lem goal g or the search steps reach the maximum

steps allowed. The whole search algorithm for

Inter-GPS is presented in Algorithm 1.

7 Experiments

7.1 Experimental Settings

Datasets and evaluation metrics. We conduct ex-

periments on the Geometry3K and GEOS (Seo

et al., 2015) datasets. The Geometry3K dataset

involves 2,101 training data, 300 validation data,

and 601 test data, respectively. The GEOS dataset

provides 55 official SAT problems for evaluating

geometry solvers. Regarding our proposed Inter-

GPS model, if the one closest to the found solution

among the four choices is exactly the ground truth,

the found solution is considered correct. For a

fair comparison, if Inter-GPS fails to output the

numeric value of the problem goal within allowed

steps, it will randomly choose the one from the four

candidates. In terms of compared neural network

baselines, the predicted answer has a maximum

confidence score among choice candidates.

Baselines. We implement several deep neural net-

work baselines for geometry solvers to compare

them with our method. By default, these baselines

formalize the geometry problem solving task as

a classification problem, fed by the text embed-

ding from a sequence encoder and the diagram

representation from a visual encoder. Q-only only

encodes the problem text in the natural language

by a bi-directional Gated Recurrent Unit (Bi-GRU)

encoder (Cho et al., 2014). I-only only encodes

the problem diagram by a ResNet-50 encoder (He

et al., 2016) as the input. Q+I uses Bi-GRU and

ResNet-50 to encode the text and diagram, respec-

tively. RelNet (Bansal et al., 2017) is implemented

for embedding the problem text because it is a

strong method for modeling entities and relations.

FiLM (Perez et al., 2018) is compared as it achieves

effective visual reasoning for answering questions

about abstract images. FiLM-BERT uses the BERT

encoder (Devlin et al., 2018) instead of the GRU en-

coder, and FiLM-BART uses the recently proposed

BART encoder (Lewis et al., 2020).
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Method All Angle Length Area Ratio Line Triangle Quad Circle Other

Random 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0
Human 56.9 53.7 59.3 57.7 42.9 46.7 53.8 68.7 61.7 58.3
Human Expert 90.9 89.9 92.0 93.9 66.7 95.9 92.2 90.5 89.9 92.3

Q-only 25.3 29.5 21.5 28.3 33.3 21.0 26.0 25.9 25.2 22.2
I-only 27.0 26.2 28.4 24.5 16.7 24.7 26.7 30.1 30.1 25.9
Q+I 26.7 26.2 26.7 28.3 25.0 21.0 28.1 32.2 21.0 25.9
RelNet (Bansal et al., 2017) 29.6 26.2 34.0 20.8 41.7 29.6 33.7 25.2 28.0 25.9
FiLM (Perez et al., 2018) 31.7 28.7 32.7 39.6 33.3 33.3 29.2 33.6 30.8 29.6
FiLM-BERT (Devlin et al., 2018) 32.8 32.9 33.3 30.2 25.0 32.1 32.3 32.2 34.3 33.3
FiLM-BART (Lewis et al., 2020) 33.0 32.1 33.0 35.8 50.0 34.6 32.6 37.1 30.1 37.0

Inter-GPS (ours) 57.5 59.1 61.7 30.2 50.0 59.3 66.0 52.4 45.5 48.1
Inter-GPS (GT) 78.3 83.1 77.9 62.3 75.0 86.4 83.3 77.6 61.5 70.4

Table 5: Evaluation results by our proposed method and compared baselines on the Geometry3K dataset.

Method Acc (%)

GEOS (Seo et al., 2015) 49
GEOS++ (Seo et al., 2015) 49
GEOS-OS (Sachan and Xing, 2017) 52
GEOS++AXIO (Sachan et al., 2017) 55

Inter-GPS (ours) 67

Table 6: Evaluation results on the GEOS dataset.

Implementation details. Main hyper-parameters

used in the experiments are shown below. For our

symbolic solver, a set of 17 geometry theorems is

collected to form the knowledge base. For gener-

ating positive theorem sequences, each problem

is attempted by 100 times with the maximum se-

quence length of 20. The transformer model used

in the theorem predictor has 6 layers, 12 attention

heads, and a hidden embedding size of 768. Search

steps in Inter-GPS are set up to 100. For the neu-

ral solvers, we choose the Adam optimizer and set

the learning rate as 0.01, and the maximum epochs

are set as 30. Each experiment for Inter-GPS is

repeated three times for more precise results.

7.2 Comparisons with Baselines

Table 5 compares the results of symbolic solver

Inter-GPS with baselines on our proposed Geome-

try3K dataset. Apart from the overall accuracy, the

results of different problem types are also reported.

Benefiting from symbolic reasoning with theorem

knowledge, our Inter-GPS obtains an overall accu-

racy of 57.5%, significantly superior to all neural

baselines. Inter-GPS even attains a better accuracy

compared to human beings. Inter-GPS with ground

truth formal language gains a further improvement

of 20.8%. Inter-GPS also obtains state-of-the-art

performance over exiting geometry solvers on the

GEOS dataset, as shown in Table 6.

7.3 Ablation Study and Discussion.

Search strategies. The overall accuracy and aver-

age steps needed for solving problems with differ-

ent search strategies in Inter-GPS are reported in

Table 7. Predict refers to the strategy that uses the

theorems from the theorem predictor followed by a

random theorem sequence. The strategy largely re-

duces the average steps to 6.5. The final strategy in

Inter-GPS applies the predicted theorems first and

lower-order theorems in the remain search steps,

and gains the best overall accuracy.

Search strategies Accuracy (%) # Steps

Random 75.5 ± 0.2 13.2 ± 0.1

Low-first 77.3 ± 0.3 15.1 ± 0.2

Predict 77.5 ± 0.1 6.5 ± 0.1

Predict+Low-first (final) 78.3 ± 0.1 7.1 ± 0.1

Table 7: Performance of Inter-GPS with different

search strategies.

Problem parsers and literal sources. The rule-

based text parser achieves an accuracy of 97%

while only 67% for the semantic text parser. Table

8 reports the Inter-GPS performance fed with differ-

ent sources of literals. With literals generated from

our problem solver, Inter-GPS achieves an accuracy

of 57.5%. The current text parser performs very

well as there is only a slight gap between Inter-GPS

with generated text literals and ground truth literals.

An improvement of 17.5% for Inter-GPS with an-

notated diagram literals indicates that there is still

much space to improve for the diagram parser.

Diagram w/o Diagram Diagram (GT)

Text w/o 25.0 ± 0.0 46.6 ± 0.7 58.7 ± 0.2

Text 25.4 ± 0.0 57.5 ± 0.2 75.0 ± 0.6

Text (GT) 25.4 ± 0.0 58.0 ± 1.7 78.3 ± 0.1

Table 8: Performance of Inter-GPS with predicted and

ground truth (GT) literals.



6782

Searching step distribution. Figure 5 compares

correctly solved problem distribution by the aver-

age number of search steps in different strategies.

Our final Inter-GPS applies the Predict+Low-first

strategy, with which 65.97% problems are solved

in two steps and 70.06% solved in five steps.
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Figure 5: Correctly solved problem distribution by the

number of search steps.

Neural geometry solvers. Current neural network

baselines for geometry solving fail to achieve sat-

isfactory results in the Geometry3K dataset. It

is because there are limited data samples for these

neural methods to learn meaningful semantics from

the problem inputs. Besides, dense implicit repre-

sentations might not be suitable for logical rea-

soning tasks like geometry problem solving. We

replace the inputs of problem text and diagram in

the Q+I baseline with the ground truth textual and

visual formal annotations and report the result in

Table 9. An improvement of 9.2% indicates the

promising potential for neural network models for

problem solving if structural representations with

rich semantics are learned.

Diagram (visual) Diagram (formal)

Text (natural) 26.7 35.3

Text (formal) 34.6 35.9

Table 9: Neural solver performance with different rep-

resentations of the problem text and diagrams.

Failure cases. Inter-GPS might not find a solution

because of inaccurate parsing results and the in-

complete theorem set. Figure 6 illustrates some

failure examples for Inter-GPS. For example, dia-

gram parsing tends to fail if there are ambiguous

annotations or multiple primitives in the diagram.

It is difficult for the text parser to handle nested

expressions and uncertain references. And the sym-

bolic solver is still not capable of solving complex

problems with combined shapes and shaded areas

2

In rhombus ABCD,  
m∠DAB = 
2m∠ADC. 

Text parser: nested expressions

Diagram parser: ambiguous symbols Diagram parser: multiple primitives

Symbolic solver: complex theorems

(a) (b)

(c) (d)

Figure 6: Failure examples for Inter-GPS.

in the diagrams.

Interpretability in Inter-GPS. Inter-GPS pro-

vides an interpretable symbolic solver for geom-

etry problem solving. First, Inter-GPS parses the

problem contents into a structural representation of

formal language. Second, Inter-GPS performs sym-

bolic reasoning to update the geometric relation

set explicitly. Last, Inter-GPS applies reasonable

theorems sequentially in the search process.

8 Conclusion

Solving geometry problems is one of the most chal-

lenging tasks in math question answering. In this

paper, we propose a large-scale benchmark, Geom-

etry3K, which consists of 3,002 high-school geom-

etry problems with dense descriptions in formal

language. We further propose a novel geometry

solving approach, Interpretable Geometry Problem

Solver (Inter-GPS), which parses the problem as

formal language from an automatic parser and per-

forms symbolic reasoning over the theorem knowl-

edge base to infer the answer. Also, a theorem pre-

dictor with a low-first search strategy is designed

to generate the reasonable theorem application se-

quence. Experiment results show that Inter-GPS

outperforms existing state-of-the-art methods by a

large margin. In the future, we plan to extend our

work in other math question answering tasks and

explore more general symbolic reasoning models.
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A Appendix

We define 91 predicates and their corresponding

literal templates in the geometry language domain.

For development, these predicates are categorized

into six groups: geometric shapes (Table 10), unary

geometric attributes (Table 11), general geometric

attributes (Table 12), binary geometric relations

(Table 13), A-IsXOf-B-type geometric relations

(Table 14), as well as numerical attributes and re-

lations (Table 15). Moreover, $ in the literal tem-

plates denotes the undetermined shape.
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# Predicates Literal templates

1 Point Point(A), Point($)
2 Line Line(A,B), Line(m), Line($)
3 Angle Angle(A,B,C), Angle(A), Angle(1), Angle($)
4 Triangle Triangle(A,B,C), Triangle($), Triangle($1,$2,$3)
5 Quadrilateral Quadrilateral(A,B,C,D), Quadrilateral(1), Quadrilateral($)
6 Parallelogram Parallelogram(A,B,C,D), Parallelogram(1), Parallelogram($)
7 Square Square(A,B,C,D), Square(1), Square($)
8 Rectangle Rectangle(A,B,C,D), Rectangle(1), Rectangle($)
9 Rhombus Rhombus(A,B,C,D), Rhombus(1), Rhombus($)
10 Trapezoid Trapezoid(A,B,C,D), Trapezoid(1), Trapezoid($)
11 Kite Kite(A,B,C,D), Kite(1), Kite($)
12 Polygon Polygon($)

13 Pentagon Pentagon(A,B,C,D,E), Pentagon($)
14 Hexagon Hexagon(A,B,C,D,E,F), Hexagon($)
15 Heptagon Heptagon(A,B,C,D,E,F,G), Heptagon($)
16 Octagon Octagon(A,B,C,D,E,F,G,H), Octagon($)
17 Circle Circle(A), Circle(1), Circle($)
18 Arc Arc(A,B), Arc(A,B,C), Arc($)
19 Sector Sector(O,A,B), Sector($)
20 Shape Shape($)

Table 10: 20 predicates and corresponding literal templates for geometric shapes.

# Predicates Literal templates

1 RightAngle RightAngle(Angle($))

2 Right Right(Triangle($))

3 Isosceles Isosceles(Polygon($))

4 Equilateral Equilateral(Polygon($))

5 Regular Regular(Polygon($))

6 Red Red(Shape($))

7 Blue Blue(Shape($))

8 Green Green(Shape($))

9 Shaded Shaded(Shape($))

Table 11: 9 predicates and corresponding literal templates for unary geometric attributes.

# Predicates Literal templates

1 AreaOf AreaOf(A)

2 PerimeterOf PerimeterOf(A)

3 RadiusOf RadiusOf(A)

4 DiameterOf DiameterOf(A)

5 CircumferenceOf CircumferenceOf(A)

6 AltitudeOf AltitudeOf(A)

7 HypotenuseOf HypotenuseOf(A)

8 SideOf SideOf(A)

9 WidthOf WidthOf(A)

10 HeightOf HeightOf(A)

11 LegOf LegOf(A)

12 BaseOf BaseOf(A)

13 MedianOf MedianOf(A)

14 IntersectionOf IntersectionOf(A,B)

15 MeasureOf MeasureOf(A)

16 LengthOf LengthOf(A)

17 ScaleFactorOf ScaleFactorOf(A,B)

Table 12: 17 predicates and corresponding literal templates for general geometric attributes .
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# Predicates Literal templates

1 PointLiesOnLine PointLiesOnLine(Point($),Line($1,$2))

2 PointLiesOnCircle PointLiesOnCircle(Point($),Circle($))

3 Parallel Parallel(Line($),Line($))

4 Perpendicular Perpendicular(Line($),Line($))

5 IntersectAt IntersectAt(Line($),Line($),Line($),Point($))

6 BisectsAngle BisectsAngle(Line($),Angle($))

7 Congruent Congruent(Polygon($),Polygon($))

8 Similar Similar(Polygon($),Polygon($))

9 Tangent Tangent(Line($),Circle($))

10 Secant Secant(Line($),Circle($))

11 CircumscribedTo CircumscribedTo(Shape($),Shape($))

12 InscribedIn InscribedIn(Shape($),Shape($))

Table 13: 12 predicates and corresponding literal templates for binary geometric relations.

# Predicates Literal templates

1 IsMidpointOf IsMidpointOf(Point($),Line($))

2 IsCentroidOf IsCentroidOf(Point($),Shape($))

3 IsIncenterOf IsIncenterOf(Point($),Shape($))

4 IsRadiusOf IsRadiusOf(Line($),Circle($))

5 IsDiameterOf IsDiameterOf(Line($),Circle($))

6 IsMidsegmentOf IsMidsegmentOf(Line($),Triangle($))

7 IsChordOf IsChordOf(Line($),Circle($))

8 IsSideOf IsSideOf(Line($),Polygon($))

9 IsHypotenuseOf IsHypotenuseOf(Line($),Triangle($))

10 IsPerpendicularBisectorOf IsPerpendicularBisectorOf(Line($),Triangle($))

11 IsAltitudeOf IsAltitudeOf(Line($),Triangle($))

12 IsMedianOf IsMedianOf(Line($),Quadrilateral($))

13 IsBaseOf IsBaseOf(Line($),Quadrilateral($))

14 IsDiagonalOf IsDiagonalOf(Line($),Quadrilateral($))

15 IsLegOf IsLegOf(Line($),Trapezoid($))

Table 14: 15 predicates and corresponding literal templates for A-IsXOf-B-type geometric relations.

# Predicates Literal templates

1 SinOf SinOf(Var)

2 CosOf CosOf(Var)

3 TanOf TanOf(Var)

4 CotOf CotOf(Var)

5 HalfOf HalfOf(Var)

6 SquareOf SquareOf(Var)

7 SqrtOf SqrtOf(Var)

8 RatioOf RatioOf(Var), RatioOf(Var1,Var2)
9 SumOf SumOf(Var1,Var2,...)

10 AverageOf AverageOf(Var1,Var2,...)

11 Add Add(Var1,Var2,...)

12 Mul Mul(Var1,Var2,...)

13 Sub Sub(Var1,Var2,...)

14 Div Div(Var1,Var2,...)

15 Pow Pow(Var1,Var2)

16 Equals Equals(Var1,Var2)

17 Find Find(Var)

18 UseTheorem UseTheorem(A B C)

Table 15: 18 predicates and corresponding literal templates for numerical attributes and relations.


