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Abstract

In this paper, we propose a novel inter-group image registration method to register different
groups of images (e.g., young and elderly brains) simultaneously. Specifically, we use a
hierarchical two-level graph to model the distribution of entire images on the manifold, with intra-
graph representing the image distribution in each group and the inter-graph describing the
relationship between two groups. Then the procedure of inter-group registration is formulated as a
dynamic evolution of graph shrinkage. The advantage of our method is that the topology of entire
image distribution is explored to guide the image registration. In this way, each image coordinates
with its neighboring images on the manifold to deform towards the population center, by
following the deformation pathway simultaneously optimized within the graph. Our proposed
method has been also compared with other state-of-the-art inter-group registration methods, where
our method achieves better registration results in terms of registration accuracy and robustness.

Index Terms

Inter-group image registration; graph shrinkage; topology preservation; diffeomorphism

1. INTRODUCTION

Recently, image analysis upon large population dataset becomes more and more popular in
many neuroscience and clinical studies such as brain development, aging, and disease-
induced abnormality [1, 2]. Catering for this requirement, many state-of-the-art groupwise
registration methods have been proposed in last decade, which emerges as an unbiased
approach to simultaneously align all images towards the population center [1–7].

Although the problem of groupwise registration has been widely investigated, few attentions
have been paid for the registration problem between two or more image groups. For
example, estimating the deformation from one group to another group is essential to
characterize brain development or identify disease-related brain regions. Current methods
usually first estimate the group-mean image of each group and then perform pairwise
registration between two group-mean images [8]. However, there are several limitations of
this kind of approach. First, the group-mean image of each group by simple averaging is
usually very fuzzy, thus losing a lot of anatomical details compared with the individual
subjects. Consequently, it is challenging to register two group-mean images both with fuzzy
image contents. Second, although the recently proposed method [8] addressed this issue by
using multi-channel registration method to encode not only intensity of group-mean image
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but also the intensity variances of all aligned subjects within the same group, the estimation
of group-mean within each group and the inter-group registration are performed
independently. Thus, the registration errors in the first step will be unavoidably propagated
to the second step, which will affect the final registration performance between two groups.
Third, current inter-group registration methods can only deal with two groups by registering
all images in one group to the domain of group-mean image in the other group, regardless of
the space anatomical differences between two group-mean images. However, it is common
that some individual images in one group are much easier to register with the images in
another group, due to their similar anatomical structures, which can be used as intermediate
milestones to guide the estimation of deformation pathway from one group to another group.

In this paper, we propose to use the hierarchical graph to model the complex distribution of
entire images which have already been partitioned into different groups based on clinical
criterion (e.g., age and gender). Specifically, we first construct the intra-group graph for
images in each group by adaptively setting threshold on all possible pairwise image
distances. Then, the connections between two constructed intra-graphs are set up according
to the distances between images in two graphs, resulting in the inter-group graphs. After
obtaining the two-level graph with the intra-graph representing the image distribution in
each group and the inter-graph describing the relationship between any two groups, we
formulate the inter-group registration problem as the dynamic evolution of graph shrinkage,
where each image (graph node) deforms along the graph edge until meets each other at the
population center. Particularly, the advantages of our graph based inter-group registration
method include: (1) registration error can be reduced by deforming each image only w.r.t.
locally connected images in the graph, which have similar anatomical structures; (2) the
topology of entire image distribution will not be changed during registration since each
image consistently deforms along the graph edge. As we will demonstrate in the
experiments, promising registration results have been achieved by our novel graph-based
registration method, by comparison with other state-of-the-art counterpart methods.

2. METHODS

In this section, we present our graph-based inter-group registration method as follows.

2.1. Overview of Our Graph-based Registration Method

Here, we consider all images I = {Ii| i=1,…,N} sitting on the high-dimensional manifold.
Then we construct a two-level graph to model the distribution of all images from different
groups (Section 2.2). Given the graph, we further regard the registration of each individual
image to the population center as a dynamic procedure of time variable t (0 < t < ∞). Thus,
we use Ii(t) to represent the warped image Ii at time t with Ii(0) = Ii. To model the
distribution of images, we introduce a dynamic graph (t) = {I(t), E,V(t)} on the image
manifold, where I(t) = {Ii(t)|i=1,…,N} denotes the deformed graph nodes at time t and E =
{eij|i,j = 1,···,N} denotes the graph edge, respectively. eij = 1 if Ii(t) and Ij(t) are connected,
and 0 otherwise. Since we do not allow self-loop in the graph, we further define eii = 0 for
all i=1,···,N. We also define a weighted adjacency matrix V(t) = (exp(vij(t)))N×N to represent
the geodesic distance between two images, where vij(t) is the velocity vector of the geodesic
from Ii(t) to Ij(t) at Ii(t), and ‘exp’ denotes exponential mapping [9]. The energy function in
our graph-base registration method is defined as follows:

(1)
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The principle behind Eq. (1) is demonstrated in Fig. 1. The topology of their distribution is
described by the graph, where the graph edges denote the local connectivity between graph
nodes. Specifically, the velocity vector vij(t) is associated with each graph edge, where the
integration along vij(t) forms the geodesic distance from Ii(t) to Ij(t). Thus, the minimization
of F(t) can be regarded as a dynamic graph shrinking procedure, which deforms each image
from Ii(t) to Ii(t+Δt) with the decreased overall geodesic distance, while keeping the
topology of the entire graph. As time t increases, all Ii(t) s are supposed to meet at the
population center, with the properly determined velocity vector vij(t) and the time increment
Δt (Section 2.3).

2.2. Graph Construction

Since the final goal of our method is to register all images from different groups to the
common space, it is straightforward to construct the two-level graph for all images from
different groups, where the intra-graph represents the distribution of images in the same
group and the inter-graph encodes the relationship between intra-graphs. The idea of
constructing the two-level graph is displayed in Fig. 2 where we use three groups as
example (solid lines and dashed lines represent the edges of the intra-graphs and the inter-
group graph, respectively). Next, we will explain the method for constructing intra- and
inter-graph.

Intra-group Graph—Assume that the whole dataset I has M groups. For each group, we

apply the following steps to construct the intra-group graph: (1) for each image Ii in group

Sm (m=1,…,M, and ), we calculate the distance w.r.t. all other images Ij in I,
where we use the geodesic distance estimated from Log-Demons method [10] as the
measurement. Note, if Ii and Ij belongs to two different groups, we set the distance to
infinity. (2) We adaptively determine the threshold h which is the smallest degree to make
every node in the intra-graph of Sm having at least one connection. (3) We construct the
intra-group by removing the connections with its geodesic distance obtained in Step (1)

which is larger than h, i.e.,  if the geodesic distance is smaller than h. Otherwise .

Inter-group Graph—To build the connection between two groups, we exhaustively

calculate the geodesic distance of each possible pair of graph node Ii in one intra-group
graph w.r.t graph node Ij in another intra-group graph and select k pairs with p-smallest

distance (p= 30 in our paper). Then the inter-group edge  if the distance between Ii

and Ij (Ii and Ij belong to different groups) is top p smallest. Otherwise . Eventually,

all graph edges eij (both  and ) in (t) (Section 2.1) can be calculated by:

(2)

2.3 Graph Shrinkage

As we formulate the problem of groupwise registration as the dynamic shrinkage of graph, it
is critical to determine the deformation of each image Ii(t) at time t, which can reduce the
energy function F(t) in Eq. (1). Based on the local connectivity of each node Ii(t) in the
graph, it is reasonable to move Ii(t) along the average direction according to its connected
nodes. Since the velocity vector sits on the tangent space of Ii(t) on the manifold, it can be
efficiently calculated by linear averaging as:
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(3)

where  is the number of connections for Ii(t). Next, we will prove that such
velocities make our objective function F(t) monotone decreasing. First, the increment of the
objective function F(t) from time t to t+Δt is:

(4)

where we discard the high-order terms o(Δt2). Note, vij(t+Δt) can be approximated by using
the BCH formula [9] on the geodesic exp(vij(t+Δt)), where exp(vij(t+Δt)) = exp(−v̂i(t) · Δt) ∘
exp(vij(t)) ∘ exp(v̂j(t) · Δt). Then, the derivative of F(t) is given as

(5)

Obviously, F′(t) is always negative, which leads to the objective function F(t) strictly and
monotonously decreasing when t increases to infinity. As time t goes to infinity, all the
graph nodes shrink to the population center with the degree of F′(t) tended to 0.

To implement this minimization procedure, we propose a discrete descent method as
follows. Suppose each image has been deformed from Ii(t0) to Ii(t

k), where {tk} is the

discretization of time t (k = 0,1,2, ···, t0 = 0 and tk → ∞ as k → ∞). Let  be the

warped image at time tk and  (by Eq. (3)) be the velocity vector. Given these
velocity vectors, the optimal step size Δtk is determined as follows. According to the
convergent condition of the Taylor series when we apply BCH formula to calculate vij(t+Δt)

in Eq. (4), Δtk should be small enough, i.e.,  for all i=1, ···,N. Notice that the
increment ΔF(tk; Δt) can be considered as a positive definite quadratic function of Δt. Then,
to make our method quickly converge, Δtk is selected to encourage the increment ΔF(tk; Δt)
decreased as large as possible. Thus, it is straightforward to determine the optimal value of
Δtk by

(6)

Eventually, the deformation field from  to population canter can be obtained by

concatenating the deformation segments as .

3. EXPERIMENTS

In this section, our proposed method is evaluated by performing inter-group registration on
the IXI database1. The proposed method is also compared with the conventional groupwise
registration method [5] where the deformations for all images are jointly estimated towards

1http://biomedic.doc.ic.ac.uk/brain-development/index.php?n=Main.HomePage
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the single population center, and also our previously developed pairwise inter-group
registration method [8]. 30 brain MR images (from 20 to 54 years old) are used in the
following experiment, each with 83 manually delineated ROIs. The image size and voxel
spacing are 256 × 256 × 198 and 1×1×1mm3, respectively. Based on the age information,
we divide it into two groups (below and above 30y). Some typical images from the IXI
database are shown in Fig. 3.

The linear alignment among different images is served as the preprocessing step. Then, we
perform the groupwise registration with the conventional groupwise registration method,
pairwise inter-group registration method, and our proposed graph-based inter-group
registration method. The group-mean images (i.e. simple averaging of all warped images) by
three methods are shown in Fig. 4. It is clear that the group-mean image obtained by our
method is sharper than those obtained by the conventional groupwise registration method
and pairwise inter-group method.

To quantitatively evaluate the registration accuracy, we use the average of all pairwise Dice
ratios for 83 ROIs, in which the Dice ratio used to measure the overlap degree between ROI
A and ROI B is defined by

(7)

where | · | means the volume of the particular ROI. The average Dice ratio of our method is
68.49%, where we achieve 4.03% and 1.48% more performance improvement than the
conventional groupwise registration method and the pairwise inter-group registration
method, respectively.

To demonstrate the advantage of topology preserving, we project 30 warped images at
different shrinkage stages onto the 3D space by PCA. For clarity, we only show 4 images
(dots) in the first group and 5 images (boxes) in the second group in Fig. 5. The lines are
used to represent the graph edges. It is clear that the graph is synchronously shrinking to the
population center with the topological structure well preserved, which brings the
improvement in registration accuracy. As shown in Fig. 6, the Dice ratios of two typical
ROIs (Hippocampus and Postcentral Gyrus) consistently increase (red curves) in our method
with progress of registration, while the Dice ratios by the conventional groupwise
registration method (blue curves) even decrease in the middle of groupwise registration.
Also, the evolution curves by our method is eventually above those (green lines) by the
pairwise inter-group registration method.

4. CONCLUSION

In this paper, we have developed a novel graph-based intergroup registration method by
using a hierarchal graph to model the entire image distribution. Then, the procedure of
groupwise registration is formulated as the dynamic shrinkage procedure of the graph on the
manifold, which brings the advantage of preserving the topology of the image distribution
during the groupwise registration. Our proposed method has been evaluated on the IXI data
set, where our method achieves the best registration results in comparison with other two
state-of-the-art methods.
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Fig. 1.
Overview of our graph-based registration method by graph shrinking.
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Fig. 2.
Illumination of two-level graph for entire images with three groups.
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Fig. 3.
Four typical images from the IXI database.
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Fig. 4.
Group-mean images by three methods. (a) conventional groupwise registration [5], (b)
pairwise inter-group method [8], and (c) our method.
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Fig. 5.
Evolution of the graph of 9 selected images in the projected space.
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Fig. 6.
Dice ratios of two ROIs during the registration by three methods with respect to different
iterations, respectively.
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