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Abstract 

It has recently been reported how to quantify inter-individual differences in the response to an exercise 

intervention using the standard deviation (SD) of the change scores, as well as how to appraise these differences 

for clinical relevance. In a parallel-group RCT, the key trigger for further investigation into inter-individual 

responses is when the standard deviation of change (SDchange) in the intervention sample is substantially larger 

than the same standard deviation derived from a suitable comparator sample. ‘True’ and clinically relevant inter-

individual differences in response can then be plausibly expected, and potential moderators and mediators of the 

inter-individual differences can be explored. We now aim to critically review the research on the inter –

individual differences in response to exercise training, focusing on maximal oxygen uptake (VO2max).  

A literature search through the relevant bibliographic databases resulted in the identification of six relevant 

studies that were published prior to the influential HERITAGE family study. Only one of these studies was 

found to include a comparator arm. Re-analysis of the data from this study, accounting for random within-

subjects variation, revealed an absence of clinically important inter-individual differences in the response of 

VO2max to exercise training. The SDchange was, in fact, larger (± 5.6 ml/kg/min) for the comparator than the 

intervention group (± 3.7 ml/kg/min).  

We located over 180 publications that resulted from the HERITAGE study, but we could not find a comparator 

arm in any of these studies. Some authors did not explain this absence, while others reasoned that only inter-

individual differences in exercise response were of interest, so this intervention sample was investigated solely. 

We also found this absence of a comparator sample in on-going studies. A perceived high test-retest reliability is 

offered as a justification for the absence of a comparator arm, but the test-retest reliability analysis for 

HERITAGE was over a much shorter term than the length of the actual training period between baseline and 

follow-up measurements of VO2max. 

We also scrutinised the studies in which twins have been investigated, resulting in concerns about how genetic 

influences on the magnitude of general within-subjects variability has been partitioned out (again in the absence 

of a comparator – no training – group), as well as with the intraclass correlation coefficient approach to data 

analysis. Twin pairs were found to be sometimes heterogeneous for the obviously influential factors of sex, age 

and fitness, thereby inflating an unadjusted coefficient.  

We conclude that most studies on inter-individual differences in VO2max response to exercise training have no 

comparator sample. Therefore, true inter-individual differences in response cannot be quantified, let alone 

appraised for clinical relevance. For those studies with a comparator sample, we found that the inter-individual 

differences in training response were not larger than random within-subjects variation in VO2max over the same 

time period as the training intervention. 
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Key Points 

Researchers often focus upon ‘main effects’ and mean group changes, but these statistics may hide a wide range 

of responses. 

True inter-individual differences in exercise training response can be precisely quantified and appraised for 

clinical importance only with parallel information from a suitable comparator group or data from a relevant 

reliability study. Importantly, none of the studies resulting from the HERITAGE Family Study included a 

comparator sample.  

We provide a ‘road-map’ for the study of inter-individual differences in the responses to exercise training.  
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1. Introduction 

Interest in the concept of individualised responses to an intervention as part of ‘personalised medicine’ and 

‘precision care’ has been growing over the last 30 years (1,2,3,4,5,6,7,8,9,10,11). In pharmacogenetics, there has 

been particular interest in ‘tailor-made’ drugs and therapies, based on the individual response of a patient and/or 

certain moderators and mediators of that response (8,12). Personalised medicine has also been considered in the 

context of inter-individual differences in the response of health outcomes to various exercise interventions.  

It has been highlighted that the majority of researchers focus upon ‘main effects’ and mean group changes (13). 

These statistics are useful, but do not allow us to distinguish between cases (14), may hide a wide range of 

responses (15) and have previously been described as misleading (13,16). True inter-individual differences in 

the response to an intervention are less frequently reported, even though it has been proposed that there is large 

inter-individual variability in response to physical activity interventions (1,2,3,4,5,6,13,17). 

Importantly, even in the studies in which inter-individual differences in the response to exercise training are 

considered, concerns have been levelled at the designs and analysis approaches in these studies (18,19). 

Therefore, it is important at this time for the claims of inter-individual differences in response to an exercise 

intervention, with a particular focus on maximal oxygen uptake (VO2max), to be scrutinised in the context of 

these recent criticisms. Consequently, we have undertaken the present critical review on the HEalth, RIsk 

factors, exercise Training And GEnetics (HERITAGE) Family Study, as well as the studies that preceded it and 

the more recently published research. We focus especially on any apparent limitations of previously adopted 

data analysis approaches, and how researchers have investigated potential moderators and mediators of the inter-

individual difference in VO2max response to an exercise intervention. Finally, we present what we consider to 

be an appropriate trial design and analysis approach in order to quantify true inter-individual differences in 

VO2max response to exercise interventions. Our focus in this regard is on parallel group randomised controlled 

trials, as we believe that this design is more widely applicable to research questions addressing chronic 

adaptations to training. Moreover, published chronic training studies with VO2max as the outcome are 

exclusively before-and-after designs, either with or without a control group, with a single intervention period. 

However, we acknowledge that other designs and statistical approaches have been proposed for quantifying 

individual differences in response to treatments, primarily the multiperiod (replicate) crossover design (20,21).  

2. Maximal oxygen uptake and precision medicine 

Low cardiorespiratory fitness has been established as an independent predictor of all-cause mortality and 

cardiovascular disease (22,23). Many researchers have highlighted the favourable changes in risk factors that 

occur following a period of exercise training (24,25,26,27). Given that one metabolic equivalent (MET) is the 

amount of oxygen consumed whilst sitting at rest, and is ≈3.5 ml/kg/min (28), research that 1-MET increase in 

cardiorespiratory fitness translates to a 12% reduction in cardiovascular disease and all-cause mortality risk has 

been reported (24).  

While a multitude of phenotypes have been investigated, VO2max response has often been the focus for authors 

observing the inter-individual variation in response to exercise. Wide inter-individual differences in the 

trainability of the cardiorespiratory system have been claimed (3,29,30), with reports that the improvements in 

VO2max range from zero to a 40% increase (29). Such variation is consistent with the fact that biochemical and 
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physiological functions vary in all humans (31). Several researchers have also reported that some individuals 

show little or no improvement in markers such as lipolytic activity, insulin sensitivity, maximal work rate, 

submaximal exercise heart rate and respiratory exchange rate following an exercise intervention (2,3,4,5,6). 

Conversely, it has been proposed that physical activity may increase cardiovascular risk in some individuals, 

worsening risk factors beyond measurement error and biological variation (32), although this notion is not 

consistent with the results of a more recent study (33).  

Prescription of exercise is often undertaken with a global approach rather than a personalised one, and as 

exercise interventions are often utilized to reduce or prevent age-related reduction in function or lifestyle related 

diseases, attention should be paid to the response of each participant within a study (34). If an individual is 

likely to respond favourably to a given stimulus, he/she may more likely to engage with that mode of exercise. 

Consequently, identifying individuals likely to gain greatest benefit would allow practitioners to also focus on 

alternative exercise, dietary or pharmacological options for those that may be less likely to respond (35,36).  

Insert Table 1 here. 

3. A critical review of the relevant studies 

 

Via a search of the relevant literature databases, we aimed to locate all the studies in which inter-individual 

differences in the response of VO2max to an exercise intervention have been considered. We were particularly 

interested in ascertaining how many of these studies incorporated a relevant comparator sample into their 

design. Data from this sample have been deemed to be important for precise quantification and interpretation of 

inter-individual differences in response (18,19). Without these data, measurement error and random or 

biological variation in the study outcome over time can compromise the quantification of true inter-individual 

differences in response (33). Importantly, any physiological outcome can show substantial natural variability 

over a 4-6 month follow-up period in a control sample that does not receive the intervention (33). This variation 

will also be present in the intervention group, irrespective of the additional influence of the intervention itself.  

3.1. Pre-HERITAGE Studies 

The seminal studies on this topic were conducted in the 1980s, with the aim of identifying the inter-individual 

response to exercise and to clarify the genotype dependency of the modulation of response (1-6) (Table 1). The 

effects of a 20-week endurance training programme on maximal aerobic power (MAP), ventilatory aerobic 

threshold and ventilatory anaerobic threshold in ten pairs of monozygotic twins were initially investigated (1). 

Unlike in later studies, a comparator (no-exercise training) group was included in this study. From the intraclass 

correlations (ICC) reported, the authors described a highly variable response to training and concluded that 

sensitivity to training is genotype-dependent. The authors estimated that 20-25% of training-induced variation in 

MAP was due to within-pair differences. Nevertheless, using the approach recently described (19), re-analysis 

of the data presented in Table 1 of this study revealed no clinically important differences in the SD of the 

change scores between the groups (control ± 5.6 ml/kg/min, intervention ± 3.7 ml/kg/min). This observation 

indicates that there are no substantial inter-individual differences in response to the intervention (19). In fact, 

these SDs indicate greater variability in response in the control group versus the intervention group. We have 

argued previously that this phenomenon may be due to imprecision in the estimation of inter-individual 
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responses with inadequate sample sizes and/or caused by the intervention having a ‘homogenizing’ effect on the 

outcome variable, thus reducing the SD of the changes relative to the control group (19).  

Further research was undertaken (2,3,4,5,6,37), with the study authors claiming there to be large variations in 

response to exercise for a number of phenotypes, including adipose tissue, fat cell weight, lipolytic activity, 

glucose conversion into fat cell, triglycerides, skinfolds, percentage body fat, anaerobic, alactic and lactic acid 

capabilities, fibre type, enzyme activity, sensitivity of muscle characteristics and aerobic endurance 

performance. Crucially, no comparator group was included in these studies. 

 

A variation in improvement in maximal aerobic performance (VO2peak) of between 5 and 88% that was not 

correlated with a similarly wide range of 16-97% increases in total work output accomplished in a 90-minute 

ergocycle performance test was reported in one study (3). Inter-individual responses were concluded following 

the observation of greater between-pair variation than within-pair variation in monozygotic twins, and through 

sex differences in those studies using mixed-sex cohorts (2). Genotype dependent responses for both maximal 

aerobic power and endurance performance were observed in conjunction with skeletal muscle enzyme changes 

following a fifteen-week training programme (5), while inter-individual differences in anaerobic alactacid 

(ALC) and lactacid (AAC) response, fibre type changes and enzyme activity were reported in response to high 

intensity intermittent training (6). ALC and enzyme activity were said to be determined by genotype, although 

no such relationship was observed for other measured variables. The use of siblings was used to make 

inferences about the importance of genetic influence in heritability, with F-ratios suggesting 5-10 times more 

variance between twin pairs than within pairs. Similarly, genetic determination has been claimed for several 

different aerobic performance measures from the results of studies in which brothers, monozygotic and 

dizygotic twins were compared (37). Changes in aerobic fitness ranging from 0-58% were later reported among 

adults aged 60-71, where a trend for older participants improving less than younger subjects was observed (38).  

The justification for the lack of a non-exercising control in the subsequent HERITAGE Family Study, which 

appears to have been continued through subsequent investigations, was an observation of mean values from 

previously studied control groups remaining unchanged (39). However, a finding of no substantial change in the 

mean for the control group can occur in the face of substantial random within-subject variability in the changes 

in VO2max over the duration of the study. The variability in the changes in the intervention group must be 

assessed against the backdrop of this natural variability. In a randomised controlled trial (RCT), the mean effect 

of the intervention is given by the mean change in the intervention minus the mean change in the control. This 

logic should be extended to the assessment of inter-individual responses to an exercise intervention. In a parallel 

group RCT, one cannot say with 100% certainty whether or not any specific individual in the intervention group 

is a positive responder, as what would have happened to that person if, contrary to the fact, they had been in the 

control group is unknown. This is the fundamental counterfactual basis of the RCT. However, if the variance in 

the response in the intervention group is substantially greater than that in the control arm, then true individual 

responses may be inferred. The control group variability over the same time period as the intervention 

effectively provides our best guess of the counterfactual - what would have happened to individuals in the 

intervention group if they had been in the control arm. In parallel group RCTs, substantially greater response 

variance in the intervention group versus control is both necessary and sufficient for inferring true inter-

individual differences in response to the intervention. Assuming that sample estimates are accurate estimates of 
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the population values, it is incontrovertible that there must be a larger variance in response in intervention vs. 

control if true individual differences exist in response to treatment. Furthermore, although a parallel group RCT 

cannot isolate variance due to subject-by-treatment interaction (21), in this design a greater response variance in 

intervention vs. control is sufficient to infer inter-individual responses. As described in section 4, for any 

individual in the intervention arm we can then derive the probability of being a positive responder/ trivial 

responder/ or negative responder.  

3.2. Recent Studies 

Six to nine times more variance in VO2max response between monozygotic twin pairs than within pairs has 

been reported (40). This and other studies were described as ‘standardized and carefully monitored’ (9), with a 

‘careful and constant program of quality control and assurance’ (41); yet still lack a suitable comparator sample. 

Nevertheless, RCTs are not only relevant to the investigation of main effects (20). Use of the intervention-only 

arm as a basis for analysis is problematic, as similar or even greater variability of changes may also be observed 

in a control group, as was the case when a previous study was re-examined (1). We fear that too much emphasis 

has been placed on gene relationship statistics without answering the initial and crucial question of whether 

clinically-relevant inter-individual differences in response exist. This question is answered by calculating the 

difference in baseline to follow-up variability between intervention and comparator groups, and comparing this 

difference to a rationalised minimum clinically important difference (MCID) (19). 

More recently, large variations in VO2max response to exercise were reported in the large scale Dose-Response 

to Exercise in Women (DREW) Study (42). A decrease in the prevalence of non-response with increased 

training volume was also observed. The authors reported a large amount of inter-individual variability (-33.2 to 

76.0% change), citing baseline VO2max, age and training volume as predictors of non-response. The study 

comprised three intervention groups (4, 8 and 12 kcal/kg per week of exercise) alongside a control group, with a 

stated purpose of the analysis to examine the determinants of change in VO2max in response to exercise 

training. However, the decision to exclude the control group from the analysis compromised the correct 

quantification of the true inter-individual response and missed potentially vital information. Further work from 

the DREW study reported that 30% of participants experienced no improvement in VO2peak (43). However, 

once again, no control group data were studied.  

Recent studies have been undertaken to further identify possible genotype or phenotype interactions responsible 

for moderating the magnitude of inter-individual response (15,17,44). Large variation in training response to an 

eight-week aerobic endurance training intervention was reported (17). Interestingly, whilst a control group was 

used, the baseline to follow-up changes in this group were not used for comparison at all. As we have stated, 

disregarding the control group in this manner, on the basis that there will be no mean change and/or the short-

term test-retest reliability is high, is a flawed approach. Differences in response were observed by dividing the 

intervention group responses by quartile, rather than retaining a continuous variable; this approach discards 

information and has previously been reported to be an inadequate analysis method in epidemiology (45). Upon 

closer inspection, in contrast to the authors’ assertion of the differential effects of the training protocol on the 

sympathetic nervous system, it appears that there may be little true difference in the variation (SDchange) between 

each of the ‘response’ groups. 
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3.3. Concurrent Training 

Investigations into the inter-individual responses to combined endurance and strength training in young (46) and 

older adults (15) have also been undertaken. The findings of these studies are in general agreement with much of 

the previously published literature, in that a range of training responses were observed. Nevertheless, as in an 

earlier study (1), a control group was included in one study (15) but no specific comparison was made. It is also 

apparent from the responses reported in Figure 1 of this investigation (15) that similar variation in response 

exists in the control group as in the experimental groups, reinforcing the view that there is similar variability of 

baseline to follow-up changes across all groups. The participants in another study acted as their own control in a 

crossover trial (46), however, the residual training effect of the intervention period on the response following the 

washout period is unknown.  

3.4. Biological Variability 

Not all inter-individual response may be due to the factors postulated in the studies reviewed within this article. 

Neither does variation in responses confirm that this assumption of inter-individual difference in response is true 

for any particular study (19). Small day-to-day changes cannot be classified as a worthwhile change, and the 

response must be clinically relevant and more than the natural biological variation between baseline and follow-

up measurements (47). Of course, patients differ not only by genetics, but also by their personal history and 

environmental circumstances (48), and this can lead to a multitude of effects on inter-individual response. There 

appears to be little doubt that the response to exercise training is influenced by multiple factors. 

A new focus on the quantification of true inter-individual differences and the moderators and mediators 

responsible may, therefore, have substantial clinical relevance, with any correctly quantified heterogeneity 

affording the opportunity to identify possible molecular determinants (49). Indeed, RNA profiling may be a 

potential methodology for capturing information critical to informing the integrated physiological response and 

molecular determinants (36), once the presence of inter-individual variation in response has been confirmed.  

3.5. Identifying ‘Responders’ and ‘Non-Responders’ 

A further limitation of much of the previous research is the classification of individuals as ‘non-responders’ 

(49,50) without first defining the term, although this has been partially addressed more recently when defined as 

those improving by ‘less than the natural biological variability of the selected variable’ (47). Strictly, a positive 

response should be defined as an increase that is greater than the MCID. For VO2max, for example, the MCID 

could be defined as 1 MET, anchored to a clinically relevant relative risk reduction for all-cause mortality of 

around 12% for this value (24). For a given individual, the observed change in VO2max after the intervention 

can be combined with knowledge of the natural random variation of VO2max over the same time period (from a 

control group or similar reliability study) to derive the probability that this individual’s true response is greater 

than the MCID (18). We can then more properly describe each individual in the intervention as, for example, 

‘likely to be a responder’, ‘very unlikely to be a responder’, ‘possibly negative responder’, and so on. 

Similarly to previous reports (42), further argument for the dose-response to exercise is observed when greater 

exercise volume (43) or intensity (44) was associated with reduced chances of being classified as a non-

responder. While direct comparison between studies is not straightforward, these and similar findings suggest 
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that some people may be more sensitive to dose prescription of exercise, as opposed to being non-responsive. If 

this is the case, effective identification of dose requirement or requirement for multimodal approaches such as 

concurrent training may provide a capability for enhancing the efficacy of an intervention (51). However, as is 

covered in this review, we argue that an individual cannot be categorically defined as a ‘responder’ or other such 

descriptor; merely a probability (percentage chance) that they are such can be applied to each individual (18). 

Even with this information, in a single-period before-and-after study design, this process can only occur in the 

presence of an appropriate comparator group assessed over the same or very similar time period as the exercise 

intervention.  

3.6 The HERITAGE Family Study 

The large-scale, longitudinal, multicentre HERITAGE Family Study was initiated to investigate and identify the 

role of genotype in cardiovascular, metabolic and hormonal responses to a 20-week aerobic exercise training 

programme (52). The contribution of regular exercise to changes in cardiovascular disease (CVD) and diabetes 

mellitus risk factors was also investigated (41,52). To date, 186 separate publications have resulted from the 

study, with some of these involving the comparison of various familial relationships to determine the relative 

importance of genetics (53,54,55). The bulk of the research undertaken during HERITAGE asserts that there are 

no genotype-specific covariate effects on VO2max response, such as age, sex or weight (13,30,50). Familial 

aggregation was reported in response to maximal (3,49,56) and submaximal (54,57) aerobic training, with two 

and a half times more variance reported between than within families for the VO2max response. 

A reported genetic contribution of approximately 47% (49,55) of the variance observed in VO2max training 

response from the HERITAGE studies was similar to that previously reported (3,58). These data were 

characterized by a strong maternal aggregation (49,54,56), with shared environmental factors also contributing 

to the observed heritabilities. The mechanisms underpinning this variance are unclear, but suggestions of genetic 

contribution from mitochondrial DNA (49) or expression of genes inherited from the mother have been 

presented (54). Correlations between spouses have led to familial environmental factors also being postulated as 

responsible for some of the variance observed in response to exercise (54,56,58,59); however the correlations 

presented are small (r=0.14-0.26), therefore posing, rather than answering, further questions on this issue. The 

crucial question that is, again, unanswered in the absence of a comparator group is whether there are genetic 

influences on individual magnitude of random within-subjects variability. If this is known, then these genetic 

influences could be quantified. 

In HERITAGE studies, it is claimed that there is considerable variation in response. Nevertheless, it remains 

unclear as to whether it was the same individuals that showed no response for all measures, or if each individual 

showed differing response characteristics across the spectrum of physiological markers investigated. Recent 

research has attempted to elucidate this issue, observing improvements in at least one measured variable in 

every individual (47), though again, this study is limited by the lack of a control group with which to compare 

the inter-individual response. Interestingly, despite methodological concerns, individuals with the highest 

response to endurance training have also shown high response to resistance training, but the reverse was not true 

(46). This area opens up future avenues in which to investigate the magnitude of response, in the presence of 

proper initial quantification through comparison with a suitable comparator sample. 
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3.7. Twin Studies 

Previously noted criticisms of twin studies point to the fact that they may not necessarily separate genetic from 

environmental pathways (60). Presentation of evidence of genetic variance of numerous phenotypes through 

greater between-twin pair variance than within-pair variance is often reported through the use of ICCs 

(1,5,36,61,62,63,64,65,66) (Table 2). These observations are highly sample-specific, and a comparison of the 

ICC between studies is not without difficulty, due to the heterogeneity of samples. The potential for ICCs in 

twin studies to overestimate heritability has also been highlighted in that genetic and environmental factors have 

not been adequately separated (63). 

It is as yet unknown as to whether any relationship between genes and phenotype is even linear (60) and while 

genetic variation is not denied in this review, it is not clear that all observed variance is genetic (48). We believe 

that when analysing such a design, it would be more appropriate to use data from a relevant control (no-

exercise) sample and a linear mixed model in order to correctly quantify the influence of genetics on magnitude 

of response. Associations could then be presented as a regression coefficient in the units of measurement, rather 

than a comparison of correlation values. In this way, the clinical importance of any association can be inferred. 

Common underlying environmental effects have also been proposed as being underestimated due to study 

design or low statistical power (67).  Adoption studies combined with twin studies to compare identical and 

fraternal twins and twins reared apart (63) and repeated assessments (20) may be required to quantify some of 

these issues. 

Insert Table 2 here. 

3.8. Baseline Correlation of Changes 

Several authors of HERITAGE studies correlated each individual’s baseline score with the follow-up change to 

attempt to determine the contribution of baseline status to the inter-individual response to exercise training. 

From such analyses, it has also been reported that age, sex, fat mass, fat-free mass, weight and race have little or 

no impact upon the inter-individual response to training or covariate effect (13,30), and that the initial level of 

the phenotype was a major determinant of the magnitude of response in some cases (13). Nevertheless, this 

correlation approach has been questioned, due to regression to the mean and mathematical coupling influences 

(68). Linear mixed effects modelling and other methods such as that previously reported (69) have been 

purported to be superior to this simple correlation approach (68).  

3.9. Testing Quality Control 

The HERITAGE intervention was described as having a careful and constant program of quality control and 

quality assurance (41). Nevertheless, this claim was based on the test-retest mean differences being small, 

although the selection of either an average of two VO2max test scores (where coefficient of variation (CV) was 

less than 5% between the two) or the higher score (if CV was greater than 5% between the two) at both baseline 

and follow-up (70) could have led to inconsistent data. To accurately analyse the data, identical methodology 

should ideally be used for all participants. Test-retest reliability was reported to be 4.1-5.0% and ICCs of 0.96 to 

0.97 were reported over a period of two days (70) and two weeks (71), implying adequate short-term 

reproducibility. It is our belief that reproducibility needs to be assessed over a longer period, preferably 
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matching the length of the intervention, in order to estimate the true extent of longer-term within-subject 

variation. A better alternative is to use an RCT design, wherein the control group in effect acts as the perfect 

contemporaneous reliability study. Each of the investigations discussed have contained a single application of an 

intervention (single period before-and-after study). We reiterate that the primary limitation of the parallel group 

RCT design in permitting the quantification of inter-individual variation in treatment response is that it does not 

allow the isolation of the variance due to true subject-by-treatment interaction (21). In this design, the SD for 

inter-individual responses – although free from random error - includes the subject-by-treatment interaction plus 

any within-subject variability in treatment response introduced by the intervention (20). Indeed, the multiperiod 

(replicate) crossover study, in which participants are randomised to sequences in which they receive both the 

intervention and comparator treatments in at least two periods each, is the only design that can identify variance 

between-treatments, between-subjects, and the subject-by-treatment interaction (20). However, the primary 

limitation of the replicate crossover, in the context of chronic training studies, is the long and uncertain washout 

periods required and hence potentially substantial carryover effects (18). 

 

The authors of a recent investigation into the cardiac determinants of individual response in change in aerobic 

fitness after a moderate intensity exercise intervention (43) stated that they incorporated ‘well-controlled 

exercise trials’ in keeping with the HERITAGE study. Nevertheless, ‘well-controlled’ appears to refer to 

relatively short-term repeatability of measurements (over a few days) rather than the within-subjects variability 

in measurements over the duration of the intervention (a few months). Just because a measurement method has 

good short-term repeatability does not rectify the problem of lack of a control group, which must be employed 

in order to make a formal comparison of the variability of the change scores in intervention vs. control groups. 

Consequently, the inclusion of data from studies such as these is potentially misleading, and as such, 

participants from these studies that have been termed ‘responders’ and ‘non-responders’ may have been selected 

for further investigation as to the potential moderators and mediators of the inter-individual response, when it 

may be nothing other than their natural biological variation that has been measured.  

3.10. N-of-1 Trials 

In pharmacogenetics, n-of-1 trials have been proposed (72,73), but these single-subject trial studies have 

previously been linked to controversial issues in clinical investigation, such as carryover effects and the 

presupposition of patient-by-treatment interaction and behavioural change (74) that may confound the 

effectiveness of interventions. Of course, if a number of n-of-1 trials are carried out, then the combined data 

effectively equates to the repeated period crossover design proposed by Hecksteden et al. (20). It has also been 

proposed that n-of-1 data with a limited observation count per participant may not be compatible with statistical 

models that aim to identify the inter-individual response and may be preferential for estimating the population 

effect (75).  

4. A Road Map For Future Study Designs and Analyses 

Recently, for both parallel group and replicate crossover designs, more appropriate and robust statistical 

approaches have been forwarded for the quantification of true inter-individual response to a treatment. Relevant 

sources of variability must first be quantified (20) before any exploration is undertaken of the true inter-
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individual variation in treatment response. Additionally, without knowledge of the smallest worthwhile change 

or the MCID, no substantial inter-individual differences in VO2max response to an exercise intervention can be 

claimed. When analysing the collected data from a parallel group RCT, it has been proposed that comparing the 

standard deviation of the intervention arm of the study against the standard deviation of the comparator arm, 

using 𝑆𝐷𝑅 = √𝑆𝐷𝐼2 −  𝑆𝐷𝐶2, where R = inter-individual responses, I= the intervention sample SD and C = the 

comparator sample SD (18,19), provides a more accurate statistical analysis of the presence of inter-individual 

differences in response. If appropriate clinical inferences are to be made about the magnitude of change and any 

inter-individual response to the intervention, standard deviations, confidence intervals, effect sizes and 

magnitude-based inferences should also be interpreted (18,76). Using a custom spreadsheet (77), and with 

knowledge of the typical error over the same timeframe as the intervention and the smallest worthwhile change, 

the probability (percentage chance) of each individual being classified as ‘very likely’, ‘likely’, ‘possibly’, 

‘possibly not’, ‘unlikely’ and ‘very unlikely’ to be a responder can be calculated. This is a more robust 

approach, as the standard parallel arm study design renders the definitive identification of specific individuals as 

non-responders impossible (33). For instance, individuals could be termed likely ‘positive’ responders if the 

individual probabilities were above 0.75 (75% chance, or odds of 3:1 in favour) and the converse for ‘negative’ 

responders. A finding of substantial clinically relevant inter-individual differences in response to the 

intervention would justify further investigation of potential moderators and mediators, using more advanced 

statistical modelling.  

If we consider the original pre-HERITAGE study (1), the mean VO2max improvement in the exercise 

intervention group was 5.5 (± 3.7) ml/kg/min and the change in the control group was -0.6 (± 5.6) ml/kg/min. 

The pooled between-subjects SD for VO2max at baseline was 5.9 ml/kg/min. If we define a ‘responder’ by an 

improvement of 1 MET, an individual would be required to improve by 7.4 ml/kg/min (i.e. approximately 1.25 

SDs) for the probability of being a true responder to be 0.75. To increase confidence, using a probability of 0.95 

(i.e. ‘very likely’ to be a responder), the individual would be required to improve by 13.5 ml/kg/min, or more 

than 2 SDs. Therefore, an individual who showed an improvement of, say, 5 ml/kg/min (a figure above the 

clinically relevant threshold for a responder of 1 MET) would have a probability of 0.60 of being a true 

responder. Obviously, in this case, this is little better than chance. These figures demonstrate that an individual 

would be required to improve their VO2max substantially more than the MCID (i.e. 1 MET) in order to be 

deemed likely or very likely to be a responder. This is in stark contrast to the practice of classification of any 

individual showing improvement of 3.5 ml/kg/min (1 MET) or more as a definite responder. Assuming normal 

distribution of the changes in the control group and a MCID of 1 MET, the mean and SD reveal that 23% of the 

control group would be expected to ‘improve’ by more than 1 MET, and would be labelled conventionally as 

‘positive responders’. These apparent positive responses in the control are due to the random variation in 

VO2max over a 20-week period. As highlighted, the SD of the change scores in each group reveal that there are 

no substantial inter-individual responses in the intervention group (vs. control), and any further investigation of 

the mechanisms underpinning inter-individual response is therefore unwarranted. 

In contrast to our proposed approach, it has been argued that a large-scale multiperiod crossover training study 

approach is a more robust method of predicting training response (20). This approach, however, presents a 

number of challenges. Given the difficulties of recruiting the sample size required for a large-scale training 
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study, this type of study is likely to be statistically underpowered, while the time required to run a training 

intervention study, complete with washout periods, is highly restrictive. The crossover trial methodology might 

also have less relevance in training studies than in pharmacological research, as the effectiveness of any washout 

period is unknown, and may diminish training related effects. This approach has been previously utilised 

through the use of a two-month washout period subsequent to a two-week intervention (46), but the effects of 

the previous training intervention cannot be controlled for, and therefore each participant is potentially 

beginning from a different baseline. Unlike in pharmacological studies, where the washout period for specific 

drugs is defined as some multiple of the drug’s half-life, it cannot be stated with any certainty that a previous 

period of training or an exercise intervention has not changed the individual at the cellular or neuromuscular 

level. This problem leads to a sample that is not acting as its own control, and therefore presents potential 

differences at baseline for each intervention period. The multiperiod crossover design might be more applicable 

to the investigation of acute effects of short-term interventions (15). There are also a multitude of sources of 

variability that create challenges in identifying true inter-individual differences in response, such as maturation, 

diet modulation, disease, lifestyle and environment to be accounted for, further confounding the issue (51).  

5. Conclusions 

To date, the investigation of inter-individual differences in VO2max response to exercise training has been 

conducted almost exclusively without a control group or comparator arm. While we do not deny that the 

identification of any inter-individual response to an exercise intervention is important, we maintain that the 

variation must be appropriately quantified prior to deeper investigation, and we recognize that a number of 

challenges exist in realising this goal. Primary among these is the proper quantification and determination of a 

threshold for meaningful magnitude of change, to establish the presence of clinically important differences in 

response (51). In order to quantify the inter-individual response to an exercise intervention, studies should 

contain the presence of a comparator arm, preferably as an RCT design. A number of variables and health 

outcomes should also be collected, as some participants may improve across some but not all physiological 

measures. Furthermore, the correct statistical analysis and modelling must be used in order to identify the 

presence of true, clinically relevant, individual response, as unless true inter-individual response exists, it is 

futile looking for treatment interactions (14). 

Future work on any primary outcome in exercise intervention trials should focus upon a thorough systematic 

review of the available literature, in order to determine the robustness of the published data addressing inter-

individual differences in response to exercise training. Secondary analysis of the data presented by fellow 

researchers should also be undertaken, in order to quantify inter-individual responses in previous trials. Only 

when these effects have been properly quantified, using the standard deviation of the change score (SDchange) 

after adjusting for random within-subjects variability using the following equation: 𝑆𝐷𝑅 = √𝑆𝐷𝐼2 − 𝑆𝐷𝐶2 (18,19) 

can the design of experiments to further elucidate the mechanisms responsible for the individual response be 

confirmed. Supplementary investigations and robust data analysis must then be carried out, using a logical 

framework (Fig. 1) such as that previously proposed (19) in order to properly identify whether specific 

moderators and mediators exist that control the likelihood of an individual responding to an exercise 

intervention, rather than looking to unravel complex gene responses. At this point, when included as covariates, 
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these moderators and mediators may account for the inter-individual response, to the extent that they reduce the 

magnitude of the SD for inter-individual responses (15). 

Insert Fig. 1 here  

In summary, against the backdrop of suggestions of precision interventions, individuals may respond to 

treatment in a variety of ways; the intervention might be beneficial, ineffective, or harmful for different people. 

The issue of inter-individual differences in the response of maximal oxygen uptake following an exercise 

intervention is very important, and identifying the personal characteristics that account for these variations in 

response may ultimately allow more effective direction of interventions. Common themes in previous trial 

design and data analysis are evident, such as a lack of comparator arm or disregarding data from the control, and 

the use of ICCs to quantify genotype dependency of inter-individual difference in the variability of VO2max 

response.  While the subject is an important one, it is crucial that the correct quantification methodology is 

employed, together with an understanding of the clinical importance of any inter-individual response, before 

suggestions can be made in regard to potential moderators and mediators responsible for the observed inter-

individual variance of VO2max in response to exercise training. 
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Table. 1. Early studies presenting inter-individual response to exercise interventions. 

 

Pr – pair, M – male, F- female, MZ – monozygotic, HRR – heart rate reserve, MHR – maximal heart rate, HR – heart rate, b.min – beats per minute, HIIT – high intensity interval training, BW – body weight, VO2max 
– maximal oxygen uptake, MAP – maximal aerobic power, AAC- anaerobic alactic acid, ALC – anaerobic lactacid, SD – standard deviation.  

 

 

 

 

 

 Exercise training program Results 
Study Subjects/groups Mode Length Intensity/frequency/duration/volume Δ BW/VO2max/lipids Other 

Prud’Homme et al., 
1984 (1) 

n = 48 (10 pr (6M, 4F) MZ 
twins & 14 (7M, 7F) 
control) 

Cycling 20 wk 4-5d/wk; 40-45mins; 60-85% HRR Variable response, claims that 
sensitivity to training is genotype 
dependent 

20-25% of training induced 
variation in MAP due to 
within-pair differences 

Despres et al., 1984 
(2) 

n = 22 (11M, 11F) Cycling 20 wk 4-5d/wk; 40mins; 80% MHR No Δ in fat cell number. Δ fat cell 
weight. Δ lipolysis 

Δ lipolysis response greater 
in males than females.  
Females had no Δ in fat 
mass, skinfolds. Increased 
MAP.  

Lortie et al., 1984 
(3) 

n = 24 (13F, 11M) Cycling 20 wk 4-5d/wk; 40-45mins; 60-85% HRR Δ MAP/kg 33%;  Δ MAC/kg by 
51%; Males Δ in MAC/kg 50% 
more than females. 

Range of variation: 5-88% Δ 
MAP/kg & 16-97% Δ 
MAC/kg.  

Savard et al., 1985 
(4) 

n = 24 (13F, 11M) Cycling 20 wk 4-5d/wk; 40-45mins; 60-85% HRR Δ Insulin stimulated glucose 
conversion to triglycerides. Δ in 
males, but not females. Similar Δ 
in MAP. 

Suggests Δ in modification 
of fat cell glucose 
metabolism.  

Hamel et al., 1986 
(5) 

n = 12 (6 prs MZ twins) Cycling 15 wks 3-5d/wk; 30-45mins; 60-85% HRR including 1/wk HIIT; 
3x10mins; 80-85% with 5mins recovery 
 
 

Δ in aerobic enzyme activity in 
wks 8-15. 5-11 x more variation 
between than within pairs. 

No fibre type Δ  

Simoneau et al., 
1986 (6) 

n = 28 (14 pr MZ twins, 
(7M pr, 7F pr)) 

Cycling 15 wk 4-5d/wk; HIIT 10 x 15-30s & 4-5 x 60-90s;HR recovery to 120-
130b.min efforts. 

Δ T1 fibres, AAC, ALC, enzyme 
activity & T2 fibres. 

Large inter-individual 
differences, but similar 
within twins. Genotype 
suggested as responsible for 
responsiveness to HIIT on 
several variables. 65% of 
ALC associated with 
genotype.  
Δ oxidation following HIIT. 
Fibre type changes 
independent of genotype. 
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Table. 2. Twin studies presenting intraclass correlations in analysis of inter-individual response to exercise interventions 

ICC – intraclass correlation, SD – standard deviation, MZ – monozygotic, DZ – dizygotic, M – male, F- female, MZA – monozygotic twins reared apart, MZT – monozygotic twins reared together, DZA - dizygotic 

twins reared apart, DZT - dizygotic twins reared together, pr – pair, MAP – maximal aerobic power, VAT – ventilatory aerobic threshold, VANT – ventilatory anaerobic threshold, VO2max – maximal oxygen uptake, 
FFM – fat free mass, BP – blood pressure, RMR – resting metabolic rate.

Study Number of twin pairs Mean (SD) age (years) Outcome measures ICC Age/sex adjustment 
Prud’homme et al., 1984 (1) 10 MZ (6F, 4M) 20 (2.9) MAP, VAT, VANT 0.24-0.74 Not reported 
Hamel et al., 1986 (5) 6 MZ (3M, 3F) 21 (4) VO2max 0.69 Not reported 
Bouchard et al., 1986 (36) 53 MZ (mixed sex) 

33 DZ (mixed sex) 
27 male siblings 

16-34 (range) VO2max 0.85 
0.74 
0.55 

Yes 

Poehlman et al., 1986 (61) 6 MZ males 19.2 (2.3) Body composition, fat morphology, fat mass, skinfolds 0.46 – 0.90 Not reported 
Bouchard et al., 1990  (62) 12 MZ males 21 (2) Body composition & fat topography 0.4 – 0.55 Not reported 
Heller et al., 1993 (63) 46 MZA 

7 MZT 
100 DZA 
89 DZT 

52-86 (range) Lipids 0.22 – 0.79 
0.33 – 0.83, 
-0.06 – 0.47 
-0.13 – 0.49 

Dichotomous age categories 

Bouchard et al., 1994 (64) 7 MZ males 21 (0.8) Body weight, FFM, topography, VO2max 0.25 - 0.87 No mention – single sex, low SD of age 
Hong et al., 1997 (65) 289 pr; 45 MZA 

64 MZT 
95 DZA 
85 DZT 

 Insulin, glucose, lipids, BP 0.28-0.64  
0.56-0.6 

0.17-0.39  
0.15 -0.26 

Yes 

Tremblay et al., 1997 (66) 11pr MZ males 21 (0.8) RMR, fat loss, weight loss, FFM loss 0.32 – 0.69 Single sex, low SD of age 
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Fig.1. Conceptual framework for the quantification of true inter-individual differences in response to an exercise 

intervention (19).  

SDR – the standard deviation of the true inter-individual response of the intervention. SDI – the standard 

deviation of the pre-to-post change score of the intervention arm. SDC - the standard deviation of the pre-to-post 

change score of the comparator arm. 




