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Inter-layer synchronization in non-
identical multi-layer networks
I. Leyva1,2, R. Sevilla-Escoboza3, I. Sendiña-Nadal1,2, R. Gutiérrez4, J.M. Buldú1,2 & 

S. Boccaletti5,6

Inter-layer synchronization is a dynamical process occurring in multi-layer networks composed of 

identical nodes. This process emerges when all layers are synchronized, while nodes in each layer do not 

necessarily evolve in unison. So far, the study of such inter-layer synchronization has been restricted to 

the case in which all layers have an identical connectivity structure. When layers are not identical, the 

inter-layer synchronous state is no longer a stable solution of the system. Nevertheless, when layers 

differ in just a few links, an approximate treatment is still feasible, and allows one to gather information 
on whether and how the system may wander around an inter-layer synchronous configuration. We 
report the details of an approximate analytical treatment for a two-layer multiplex, which results in 
the introduction of an extra inertial term accounting for structural differences. Numerical validation of 
the predictions highlights the usefulness of our approach, especially for small or moderate topological 

differences in the intra-layer coupling. Moreover, we identify a non-trivial relationship connecting the 
betweenness centrality of the missing links and the intra-layer coupling strength. Finally, by the use of 

multiplexed layers of electronic circuits, we study the inter-layer synchronization as a function of the 
removed links.

Complex networks is one of the most active research topics in today’s nonlinear science1. As the �eld is rapidly 
evolving (mostly due to the huge amount of data collected nowadays), novel features are incorporated to better 
describe real world systems. Among these, the extension of the traditional framework to include the multi-layer 
nature of networks has signi�cantly altered the landscape of network science. In a multi-layer description, units 
can be arranged in several layers (each of them accounting for a di�erent kind of relationship or interaction 
between the nodes), either simultaneously or in an alternating fashion2–4.

On the other hand, synchronization is one of the most relevant dynamical processes encountered in nature, 
and probably the one that has been most thoroughly studied in the context of complex networks1,5. Only very 
recently the study of synchronization has been extended to multi-layers4 and, though an exact analytical treatment 
is available for just particular cases6–10, several synchronization scenarios have been addressed. Namely, unidirec-
tional coordination between layers11,12, synchronization control13, multi-layer explosive synchronization14, syn-
chronization driven by energy transport in interconnected networks15, delayed synchronization between layers16,17  
and global synchronization on interconnected layers as in Smart Grids8 or neural systems18, and networks with 
multiple interaction layers19.

In the majority of these studies, the multi-layer structure of connections supports a global synchronous state in 
which all the nodes in all the layers behave coherently. More general forms of synchronization, however, are inher-
ently possible on top of a multi-layer structure, as for instance intra-layer synchronization20 (where nodes evolve 
synchronously within each layer but layers do not necessarily evolve coherently), inter-layer synchronization11,21 
(where, instead, layers are synchronized but nodes within each layer are not), and cluster synchronization22.

In some of theses studies, diverse formalisms based on the Master Stability Function (MSF) are used for the 
study of multiplex synchonization in restricted cases6,10,13,23. Recently, we have provided analytical, numerical and 
experimental evidence of inter-layer synchronization21, based on a version of the MSF for reducing the system 
dimensionality, and under the assumption that di�erent layers are structurally identical. In this work, we extend 
the study to the (more realistic) case of nonidentical layers. As main results, we o�er a comprehensive (numerical, 
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experimental and analytical) description of the perturbative e�ects that the deletion of m links in one of the lay-
ers has on the stability of the inter-layer synchronous state, and show a non-trivial relationship connecting the 
betweenness centrality of the missing links and the intra-layer coupling strength.

Results
�e object of our study is a multiplex of two layers, formed by N identical m dimensional dynamical systems, 
whose states are represented by the mN ×  1 column vectors = …X x x x[ , , , ]N

T
1 2  and = …Y y y y[ , , , ]

N
T

1 2
 with 

∈x y, ,i i
m for = …i N1, 2, , . Here, we focus on the case in which the topology of the two layers is di�erent, 

and encoded by the elements of the Laplacian matrices 1 and 2  respectively, as depicted in Fig. 1. �erefore, the 
evolution of the system is given by
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where the function = …F X f x f x f x( ) [ ( ), ( ), , ( )]N
T

1 2 , with  →f: m m representing the evolution vectorial 
function. G, H are the m ×  m matrices representing the linear intra (G) and inter-layer (H) coupling schemes, 
respectively. �e N ×  N identity matrix N represents the inter-layer topology for the multiplex network. �e 
parameters σ and λ are the intra- and the inter-layer coupling strengths.

When the layers are identical ( =1 2), the inter-layer synchronous evolution ( =X Y) is a solution of 
Eq. (1), independently of the existence of intra-layer synchronization21. When the inner structure of the layers 
di�ers ( ≠1 2), however, =X Y is no longer a solution of Eq. (1) –i.e. the system may satisfy that condition at 
a given time if e.g. the two layers start from the same initial condition, but the dynamics will move away from the 
synchronization manifold =X Y, which is no longer an invariant set of the dynamics. Yet, it can be expected that 
when the topologies of the two layers are actually similar (i.e. when their di�erence is limited to only a few links), 
one can proceed with an approximation, which consists in supposing that the dynamics of the system would 
anyway visit regions of the state space su�ciently close to =X Y, so that the predictive use of the Master Stability 
Function (MSF) methodology1,24 still makes sense. In the Methods section, the interested reader can �nd the 
details of such an approximate MSF approach, whose predictions are tested in the following, both numerically 
and experimentally. It is, in any case, important to remark that our approach relies on approximations that are not 
fully controllable, and therefore it is reasonable to expect that predictions based on the associated conditional 
Lyapunov exponents would less and less quantitatively �t the real evolution of the system, the more the two layers 
di�er in the structure of connectivity. �e validity of the approximation is checked by monitoring the value of the 

inter-layer synchronization error,  which is  def ined as ∫ δ= →∞E t dtXlim ( )inter T T

T1

0
,  where 

δ = −t t tX Y X( ) ( ) ( ) is the vector describing the di�erence between the layers’ dynamics and  stands for the 

Euclidean norm. Additionally, the intra-layer errors ∫= ∑ −→∞ ≠ ‖ ‖E t t dtx xlim ( ) ( )in T T

T
j j

(1) 1

0 1 1  and 

∫= ∑ −→∞ ≠ ‖ ‖E t t dty ylim ( ) ( )in T T

T
j j

(2) 1

0 1 1
, and their di�erence ∆ = −E E Ein in in

(2) (1) will be computed when 

they may help to elucidate the dynamics under investigation.

Numerical results. �e �rst goal is to numerically assess the range of validity of the approximate MSF 
approach detailed in the Methods section. For this purpose, the two layers are initially created as identical, and 
then structural di�erences are generated by removing m links in 2 . To evaluate the range of impact of the struc-
tural di�erences, we have chosen the m links to be removed following an edge betweenness criterion25, but other 

Figure 1. Schematic representation of a multiplex of two layers of identical oscillators. Labels σ and λ 
denote the intra- and inter-layer coupling strengths, respectively. Each node i (j) in the top (bottom) layer is an 
m dimensional dynamical system whose state is represented by the vector xi (yj). �e topologies of layers X and 
Y are encoded in the 1  and 2  Laplacian matrices, respectively. Originally  =1 2, but as we start deleting 
links, we can write   = + ∆

1 2  where ∆  contains the links that have been deleted in the bottom layer.
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criteria will be discussed later. Accordingly, each simulation is repeated twice, a �rst time removing the links with 
the highest edge betweenness (

+
m ), and a second time removing those that have the lowest edge betweenness 

(
−

m ). �e procedure never produces a lack of connectedness in the graphs (for the networks and number of 
removals considered), and in case of degeneracy, a link is chosen at random among those that have the same 
betweenness. Without lack of generality, we consider two possible kinds of topologies where both layers are either 
Erdös-Rényi26 (ER) or scale-free27 (SF), in both cases with N =  500, and average degree =k 8.

No d e s  a r e  h e r e  R ö s s l e r  o s c i l l a t o r s 2 8 ,  w h o s e  au t o n o m o u s  e v o l u t i o n  i s  g i v e n  by 

= − − + . . + − .y z x y z xf x( ) [ , 0 2 , 0 2 ( 9 0)]. ER and SF networks are generated by means of the procedures 
proposed in refs 26 and 27, respectively, and therefore the considered SF networks display a degree distribution 

∝
−p k k( ) 3.

In our �rst example, the intra- and inter- layer local coupling functions are set to be = = zg x Gx( ) (0, 0, )T 
and = = yh x Hx( ) (0, , 0)T respectively, so that (according to the standard MSF classi�cation established in ref. 1) 

the intra-layer con�guration is within class I (and, therefore, intra-layer synchronization is never possible), 
whereas the inter-layer con�guration corresponds to class II (i.e., synchronization may be stable when the cou-
pling strength exceeds a certain threshold).

In Fig. 2 we show the Einter (panels a and b) and MLE (panels c and d) as a function of the inter-layer coupling 
λ for two di�erent values of intra-layer coupling σ1 =  0.1 (red curves) and σ2 =  1.0 (blue curves) when the 50 links 
(i.e. approximately 2.5% of the total number) with the largest (

+
m , squares) and lowest (

−

m , triangles) between-
ness centrality values are removed from the SF (Fig. 2a,c) and ER (Fig. 2b,d) 2 layers. For the sake of comparison, 
we also report the curves for the case of identical layers (m0, circles).

It can be observed that, in spite of the nonidentical layer topologies that make complete synchronization for-
mally impossible, the Einter series presents, in fact, apparently small di�erences with the identical case for both 

+
m  

and 
−

m  and for the chosen σ values, which can be better appreciated in a logarithmic representation (as shown in 
the insets of the corresponding �gures). Independently of the layer topology, at relatively large σ (σ2), Einter is seen 

Figure 2. Results for inter-layer dynamics as a function of the intra-layer coupling strength λ for class-I 
layers. Einter (see main text) in multiplexes of SF (a) and ER (b) layers of N =  500 Rössler oscillators, for two 
di�erent values of intra-layer coupling σ1 =  0.1 (red symbols) and σ2 =  1.0 (blue symbols) when the 50 links 
with larger (

+
m , 2) and lower (

−

m , ▲ ) betweenness are removed from 2 , and for identical layers ( =m 0, ○ ). 
Insets: Detail of the respective panels (a) and (b), in semi-logarithmic scale. (c,d) �e corresponding MLE for 
the approximate expression in Eq. (9).
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to follow more closely the trend observed in the identical case when compared with smaller values of σ (σ1). �is 
form of resilience is in agreement with the fact that the non identity of the layers results in the presence of an 
inertial term, which depends indeed on the value of σ (see details in the Methods section). �e corresponding 
Maximum Lyapunov Exponent (MLE) is shown in the bottom panels of Fig. 2, con�rming the behavior of the 
inter-layer dynamics depicted in the upper panels. Notice that the e�ects of removing links with high or low 
betweenness are more pronounced in multiplexes made of SF layers than in those made of ER ones. Another 
observation, which will be further highlighted in the following, is that the impact on the inter-layer synchroniza-
tion of removing high or low betweenness links is reversed depending on the strength of the intra-layer coupling: 
in both the ER and SF cases, removing 

+
m  links deteriorates (improves) the synchronization levels with respect to 

removing 
−

m  links for large (small) σ values.
An analysis that further elucidates the role of the structural di�erences is provided in Fig. 3, where the depend-

ence of MLE
+

m( ) and MLE
−

m( ) is reported as a function of m, for a �xed value of λ (at which there is inter-layer 
synchronization for m =  0). As predicted by the approximated MSF approach, the dynamics dri�s from the iden-
tical case at smaller values of m, as σ increases. We here find a unexpected and interesting feature, already 
glimpsed before in Fig. 2, that entangles the intra-layer structure with the inter-layer dynamics: for small values 
of σ, removing the 

−

m  lowest betweenness centrality links results in a stronger perturbation for the inter-layer 
synchronization than removing the same number 

+
m  of highest betweenness links. However, for larger values of 

σ, the e�ect is reversed.
We tested also the case = = xg x h x( ) ( ) ( , 0, 0) (where the MSFs belong to class III for both the intra- and 

inter-layer dynamics). �e validity of our approximation is shown in the le� panel of Fig. 4, where log(Einter) is 
plotted for the =

−
m 50 case in the (σ, λ ) parameter space. �e limit in which the MLE becomes negative (black 

solid line) closely corresponds to = .E E0 001inter 0, E0 being the corresponding inter-layer synchronization error 
for λ =  0 (uncoupled layers) at each σ value. Once again, our approximated MSF provides an excellent reference 
for the analysis of the nonidentical inter-layer dynamics. In particular, in Fig. 4 we compare the MLE curves as a 
function of σ in three di�erent scenarios: identical layers (stars) and nonidentical layers a�er removing 50 links 
with the lowest (full circles) or the highest (empty circles) betweenness. In all cases, λ was �xed to 0.12 (which 
makes the two layers synchronizable when they are identical). For weakly coupled layers (low values of σ), the 
perturbation caused by removing 

+
m  or 

−

m  links is similar, but as the intra-layer coupling increases, the multiplex 
is able to recover the inter-layer synchronization state despite the 

−

m  links that have been removed from one of 
the layers, while it is never again achieved in the case of removing the largest betweenness links.

In order to understand the remarkable in�uence of choosing to remove the 
+

m  links or the 
−

m  links on the 
emergence of inter-layer synchronization, we checked the impact of this choice on the intra-layer dynamics. 
Removing the links with the largest betweenness a�ects the information �ow in the network and therefore, for the 
same value of σ, the layer coherence will deteriorate more by this action than by removing the links with the low-
est betweenness. In Fig. 4c we plot the corresponding intra-layer errors di�erence ∆ = −E E Ein in in

(2) (1) of Fig. 4b. 
As it can be observed, the two curves follow perfectly the same trends as the inter-layer MLEs shown in Fig. 4b, 
disclosing the close relationship between the inter and the intra-layer dynamics.

So far, we have chosen the edge betweenness criterion to provide an insight on how the absence of certain links 
would impact the inter-layer synchronization. However, the edge betweenness is not the only possible criterion to 
rank the importance of the links in governing the multiplex dynamics. In Fig. 5a we report the results correspond-
ing to the same settings used in Fig. 4b but applying this time the criterion of the product of the nodes’ degree, 

k ki j, to remove the edge connecting nodes i and j. �e e�ect on the inter-layer coherence of removing links fol-
lowing this criterion resembles that resulting from applying the edge betweenness criterion but with a substantial 
di�erence: while in the latter case, the links whose perturbative e�ect a�er removal become more perturbative by 

Figure 3. Maximum Lyapunov exponents (MLE) for di�erent intra-coupling strengths σ as a function of 
the number of links removed m, for the cases in which the removed links have the highest (full markers) or 
the lowest (void markers) edge betweenness. Layers are SF and of class I with N =  500 Rössler oscillators and 
λ =  0.12.
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increasing the intra-layer coupling σ are those with the highest betweenness, in the former case the inter-layer 
synchronization become more a�ected when removing the links connecting the nodes whose degrees product is 
the lowest. �is reverse e�ect is explained in Fig. 5b where we compare k ki j vs edge betweenness for all the links 
of a typical ER network used in our study and the links with the highest betweenness happen to be also those with 
a low k ki j (red ellipse). �erefore, the results based on the two criteria are fully consistent.

Experimental results. Our predictions can be substantiated by evidence resulting from an experiment with 
electronic circuits. �e setup, sketched in Fig. 6, consists of an electronic array, a personal computer (PC), 14 
analog to digital converters (ADC) and 4 digital ports (DO) from a multi-functional data card (DAQ) controlled 
by Labview. �e ADCs are used for sampling one of the state variables out of all the networked circuits, while the 
DOs are used as controllers for the gain of the two coupling strengths σ and λ. �e array is made of 14 Rössler-like 
circuits arranged in two layers (blue nodes), each one of them having two di�erent electronic couplers, one for the 
coupling among nodes in the same layer (σ) and the second for the interaction of each node with its replica in the 
other layer (λ). �e layers are identical but for a single lacking link in one of the networks, which can be chosen 
to be any link in the experiment.

�e chaotic dynamics of the Rössler-like circuits is well approximated by an electronic model, where the 
nodes’ state variables x, y, z are translated into three di�erent voltages ν 1, ν 2 and ν 3 that evolve in time as follows:

Figure 4. (a) Contour map of log(Einter) in the (σ, λ) parameter space with = = xg x h x( ) ( ) ( , 0, 0) (class III in 
the intra- and inter-layer dynamics) and m− =  50 links removed from 2. �e black contour line corresponds to 
the isoline where the MLE changes its sign from positive to negative. Color code is shown in the lateral bar.  
(b) MLE vs. σ for �xed λ =  0.12 (corresponding to the dotted line in the le� panel) where the 50 links with 
largest (m+ =  50, blue ) and lowest (m− =  50, ● ) betweenness are removed from 2. �e identical case m0 (*) is 
also plotted for comparison. (c) Averaged intra-layer error di�erence ∆ = −E E Ein in in

(2) (1) for the same 
parameter values as in (b). In all panels, the two layers are ER of N =  500 Rössler oscillators and 〈 k〉  =  8. Each 
point is an average over 5 realizations.
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Figure 5. (a) MLE vs. σ for the same parameter values as in Fig. 4, where the 50 links with the largest (m+ =  50, 
○ ) and lowest (m− =  50, ● ) degree product ki, kj are removed from 2. (b) Correlation between the degrees’ 
product ki, kj and edge betweenness for all the links in a sample network used in (a). �e red ellipse marks those 
nodes which simultaneously have high edge betweenness and low ki, kj.
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and Ci and Ri are a series of capacitors and resistances whose values are summarized in Table 1 (the interested 
reader can check refs 29 and 30 for a detailed description of the experimental implementation of the Rössler-like 
system, and at refs 9, 21 and 31 for previous realizations with di�erent network con�gurations).

Departing from the initial network con�guration of Fig. 7c, we carry out a series of experiments where, a link 
(each time a di�erent one) is removed from one of the layers (always the same one). �e removed link between 
nodes i and j will be referred to in the following as (ij). Both σ and λ values are initially set to zero, and the polar-
ization voltage of the circuits is turned o� and on, a�er a waiting time of 500 ms. �e signals corresponding to the 
x state variables of the 14 circuits are acquired by the analogue ports AI0–AI13 and saved in the PC for further 
analysis. For every σ value, λ is then incremented by one step, and the procedure is repeated 100 times (until the 
maximum value of λ is reached). When the entire run is �nished, σ is increased by one step, and another cycle of 
λ values is initiated. �e whole procedure is repeated for every link of the network.

Figure 6. Experimental setup. �e le� image is a sketch of the coupling topology of the 14 electronic circuits 
composing the multiplex network (see main text for the description of the experimental procedure used). �e 
whole experiment is controlled from a PC with Labview So�ware.

C1 = 4.7 nF C2 = 4.7 nF C3 = 4.7 nF σ = [0 − 0.25]

R1= 2 MΩ R2 =  200 KΩ R3 =  10 KΩ R4 =  100 KΩ

R5 =  50 KΩ R6 =  5 MKΩ R7 =  100 KΩ R8 =  10 KΩ

R9 =  10 KΩ R10 =  100 KΩ R11 =  100 KΩ R12 =  150 KΩ

R13 =  68 KΩ R14 =  10 KΩ R15 =  100 KΩ R16 =  100 KΩ

RC =  R3 +  R5 Id =  0.7 Vee =  15 λ =  [0 −  0.25]

Table 1. Values of the electronic components used for the construction of the electronic version of the 
Rössler-like system.
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�e experimental results for Einter are presented in Fig. 7a,b, which con�rm our predictions on the impact on 
the inter-layer dynamics of the removal of links with high or low betweenness. In Fig. 7a, as σ is increased while 
keeping constant λ =  0.3, the e�ect of deleting the links with the highest betweenness [links (12),(16),(23) and 
(25) in our example, see network scheme in panel c for reference] leads to a conspicuous increase in Einter. A very 
di�erent behavior is observed when we remove the links with lower betweenness [(45) and (67)], which consist-
ently decreases the inter-layer error as the intra-layer coupling strength increases. �is is in full qualitative agree-
ment with what observed in the numerical counterpart (see Fig. 4), and con�rms the entanglement between the 
intra-layer structure and the inter-layer dynamics. Figure 7b reports the dependence of Einter on λ when σ =  0.05, 
showing that the network can reach a quasi-synchronous state even in the presence of structural defects, as pre-
dicted in Fig. 4. Also note the robustness of the theoretical predictions despite the intrinsic parameter mismatch 
(~5%) of the electronic components.

Discussion
�ese results allow us to draw a series of important conclusions about the e�ects of structural layer di�erences 
on the capability of multiplex networks to display synchronized layers, with nodes in each layer which do not 
necessarily evolve in unison. It is important to remark that the study of inter-layer synchronization was restricted 
so far to the case in which all layers had an identical connectivity structure. When layers are not identical, several 
conceptual issues arise, the most relevant being that the inter-layer synchronous manifold is no longer invariant 
under the dynamics, and one has therefore to proceed with approximate treatments.

We have demonstrated that an approximate analytical treatment of a two-layer multiplex results in the intro-
duction of an extra inertial term accounting for structural di�erences. �e predictions have been validated 
numerically and, most importantly, by means of an experiment with electronic circuits. �e conclusion is that, 
even in this case in which layers are not identical and the exact synchronized solution does not exist, the approxi-
mate Master Stability Function is a very good tool to study the inter-layer dynamics of multiplex networks. Using 
such a framework, indeed, we could predict the e�ect that missing links in one of the layers has on the inter-layer 
synchronization, evidencing a non-trivial relationship between the edge centrality of the di�erent links and the 
balance between intra- and inter-layer couplings.

�e fact that the predictions are solidly veri�ed in an experimental setup (where �uctuations, noise and uncer-
tainty of nodes’ parameters are unavoidable) highlights the robustness of our analytical predictions. Our results 
can provide a starting point for the study of inter-layer synchronization in even more general con�gurations, as 
unidirected networks13 or general multilayer networks.

Figure 7. Experimental results for a perturbed multiplex network of electronic Rössler oscillator . (a) Einter 
as a function of σ for λ =  0.3 and (b) Einter as a function of λ for σ =  0.05 for each case when one of the links 
(see color code in the legend of panel (b)) in one of the layers is removed. �e color of the symbols corresponds 
to the color of the links in the layer structure scheme in panel (c). High (low) edge betweenness links are 
highlighted with continuous (dashed) lines.
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Methods
Approximate Master Stability Function (MSF) formalism for a two-layer network. We here sum-
marize the main steps of the perturbation analysis of Eq.  (1). First, one can always define 

δ δ δ δ= − = …t t tX Y X x x x( ) ( ) ( ) ( , , , )N
T

1 2  and calculate its law of motion

δ σ σ λ δ= − − ⊗ + ⊗ − ⊗ .X F Y F X G Y G X H X( ) ( ) ( ) ( ) 2 ( ) (6)N
2 1 

Notice  that  the  existence  of  a  per fec t  synchronous  inter- layer  solut ion means  that 
δ= ⇒ = ⇒ = − =    X Y X Y X Y X 0. Introducing these equivalences into Eq. (6), it leads:

δ λ δ σ σ= − − ⊗ − − ⊗ = − − ⊗ =X F X F X H X G X G X( ) ( ) 2 ( ) [( ) ] [( ) ] 0 (7)N
2 1 2 1   

which in principle is true if and only if σ =  0 (isolated nodes) or =
1 2  , that is, the layers are identical. In other 

words, we can conclude that the solution =X Y for all times is not compatible with Eq. (1).
Second, one can de�ne   ∆ = −

1 2, as the matrix representing the di�erence between the two Laplacians. 
Plugging = + ∆

1 2   into Eq. (6), one obtains the following dynamics at the level of individual nodes:

  

 

∑ ∑

∑ ∑

δ λ δ σ σ

λ δ σ σ

= − − − + + ∆

= − − − − + ∆ .

x f(y ) f(x ) 2 h( x ) g(y ) ( )g(x )

f(y ) f(x ) 2 h( x ) [g(y ) g(x )] g(x )
(8)

i i i i
k

ik k
k

ik ik k

i i i
k

ik k k
k

ik k

2 2

2

However, let now assume that, in a large enough network the e�ect of the perturbation ∆  is small enough for 
an inter-layer almost synchronous dynamics ≈t ty x( ) ( )

i i  to emerge. �en, one can take δxi to be small quantities, 
and expand to �rst order around tx ( )i . �e equations resulting from the linearization are:

∑ ∑δ λ δ σ δ σ= − − + ∆    J J Jx f x h x x g x x g x[ ( ) 2 ( )] ( ) ( )i i i i
k

ik k k
l

il l
2 

where xi is the state of node i in an isolated layer evolving according to σ= − ∑  fx x g x( ) ( )i i k ik k
1 .

By comparing this result with the identical case21, it can be seen that the non-identity of the systems is re�ected 
in the last inertial term, whose role in pushing the dynamics away from the identical case is expected to become 
more prominent when the topological di�erences are large. Additionally, it predicts that the divergence from 
the inter-layer synchronization will depend on the the intra-layer coupling strength, which is in its own right an 
interesting result on the rich interplay between intra-layer and inter-layer e�ects, an aspect of inter-layer synchro-
nization that was thoroughly explored in the identical case in ref. 21. Following the MSF approach, a negative sign 
in the maximum conditional Lyapunov exponent (MLE) obtained from Eq. (9) can be taken as an indication for 
the presence of inter-layer synchronization21.
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