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ABSTRACT

Raman scattering among conventional linearly polarized (LP) modes in single mode optical fibers is generally accepted as a
promising way to achieve distributed amplification due to the fact that Raman amplification may provide gain at any wavelength,
determined by the used pump wavelength, and excellent noise performance. Here, we show that Raman scattering among orbital
angular momentum (OAM)modes in optical fibers have similar properties. We show theoretically that the Raman gain amongOAM
modes is independent on the topological charge of the OAM modes and that the gain efficiency when the pump and signal are
parallel (orthogonally) polarized is similar to the Raman scattering among LP modes in parallel (orthogonal) states of polarization.
In addition, we experimentally characterize Raman gain among OAM modes in a fiber supporting multiple OAM modes for both
the pump and signal. Finally, we discuss the impact of polarization mode dispersion.

© 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5051794

I. INTRODUCTION

Modes in optical fibers that carry orbital angular momen-
tum (OAM) have recently received strong interest. Suchmodes
have many interesting applications, for example, within high-
resolution microscopy,1 materials processing,2 and quantum
information science.3 However, OAM modes have also been
suggested as a key to address the everlasting need for more
and more capacity in classical communication systems, a
need that is currently pushing optical communication systems
towards mode-division multiplexing. In this regard, applica-
tions of OAM modes hold great promise, especially when con-
sidering short range data transmission, for example, in data-
centers. In such an application, one may explore the capability
of OAM modes to carry data in the spatial dimension in addi-
tion to wavelength and time, while at the same time potentially
eliminating the need for electrical signal processing, specifi-
cally multiple input-multiple output (MIMO) processing.4 The
latter may be achieved since OAM modes potentially have
less mode coupling than other modes, for example, linearly
polarized (LP) modes.5,6

The potential for using OAM modes in mode-division
multiplexed optical communication has been demonstrated
by several research groups. One of the pioneering system
demonstrations was achieved by Bozinovic and co-workers
in 2013, where transmission of 1.6 terabits per second, using
two OAM modes and 10 wavelengths, through 1.1 km of fiber
was achieved.7 More recently, Ingerslev et al. demonstrated
high capacity optical communication using as many as 12 OAM
modes and 60 wavelengths per mode transmitted simultane-
ously, corresponding to a total aggregate capacity of 10.56
Tbit/s including forward error correction coding. The data
were transmitted through 1.2 km of OAM fiber.8 In relation
to the maximum number of OAM modes guided by a fiber, as
many as 36 OAM modes have been demonstrated by Brunet
and co-workers in 2014.9

Without MIMO processing, the transmission distance of
OAM modes has been limited to km-scale.7 One reason for
this is the lack of a fiber amplifier that can provide gain to
OAM modes. However, erbium doped fiber amplifiers capa-
ble of amplifying OAM modes have been theoretically10 and
experimentally11 researched. An alternative method is by the
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use of Raman amplifiers, distributed as well as discrete. In 2017,
Ingerslev and co-workers demonstrated Raman amplification
in a fiber supporting 8 OAM modes.12 The fiber length was
constrained to 1.2 km. More recently, Long Zhu et al.13 demon-
strated a Raman amplifier providing gain over an 18 km OAM
fiber. An on-off gain of about 3 dB for two OAM modes was
shown.

Raman amplification for OAM modes has some funda-
mental benefits, such as simple amplifier architecture, broad
gain bandwidth, flexible wavelength of operation, and low
noise figure. In addition, since the intensity profiles of differ-
ent OAM modes are very similar,9 it is expected that Raman
amplification exhibits only weak mode-dependence.

When considering the pump and signal in LP modes,
guided by standard weekly guiding single mode fibers (SMFs),
stimulated Raman scattering is conveniently described in
terms of simple first order scalar differential equations in
power or amplitude for the pump and signal. The descrip-
tion involves a scalar gain coefficient derived from the Raman
susceptibility in a Cartesian coordinate system. To treat OAM
modes using the same susceptibility requires solution of a
vectorial problem. However, by translating the susceptibility
to cyclic coordinates, the differential equations in power or
amplitude again reduce to scalar equations.

As mentioned above, optical fibers that support stable
propagation of OAM modes are different from SMFs. Sug-
gested designs consist of an air core surrounded by a ring of
relatively high refractive index compared to the cladding.9,14

These fibers typically support not only a single OAM state but
also multiple OAM states and superpositions of OAM states,
or other beams with a singularity in the center, e.g., radially
and azimuthally polarized modes, generally classified as vor-
tex modes, and the fibers supporting such modes are referred
to as vortex fibers.

In this paper, we provide a theoretical treatment of inter-
modal Raman scattering in Sec. II followed by an experimental
characterization in Sec. III. The theoretical treatment focuses
on a comparison between Raman scattering among vortex
modes and Raman scattering among LP modes. More specif-
ically, we focus on vortex modes, i.e., superpositions of two
OAM modes with opposite topological charge, resulting in
non-uniform polarization across the transverse plane of the
beam, as opposed to modes where the polarization is uniform
across the beam, i.e., beams formed on the basis of LP modes,
as detailed in Sec. II A. For convenience, we refer to the latter
modes as conventional modes. Starting from the coupled dif-
ferential equations derived from Maxwell equations, we show
in Sec. II B that the effective susceptibility and the effective
Raman area are key when comparing intermodal Raman scat-
tering among different modes. In Sec. II C, we evaluate the
Raman effective area for various OAM modes, and in Sec. II D,
we compare the effective Raman susceptibility for different
modes with focus on cases where the pump and signal are
in parallel and orthogonal states of polarization. The impact
of polarization mode dispersion (PMD) on Raman amplifiers
where the pump and signal propagate simultaneously has been
analysed for the pump and signal in different states of polar-
ization in SMFs.15 Here, we discuss the impact of PMD in

Raman amplifiers in vortex fibers, and finally, we show the sus-
ceptibility tensor in cyclic coordinates. In Sec. III, we compare
the theoretical results against experimental data and confirm
that a simple scalar approach may be used to predict the gain
of a signal in an OAM mode being Raman amplified by a pump
in an OAMmode and that the gain efficiency agrees with theo-
retical predictions. Finally, we compare the Raman gain among
different combinations of pump and signal OAM states.

II. THEORY

In a conventional optical fiber, SMF, or multimode fiber,
which supports propagation of LP modes, stimulated Raman
scattering between a pump and a signal is described by a
set of first order coupled differential equations. The cou-
pling strength, i.e., the Raman gain coefficient, depends on the
material as described through the material Raman susceptibil-
ity, and the spatial overlap between the intensity distribution
of the pump and the signal, i.e., the effective Raman interac-
tion area.16 In germanosilicate glass based optical fibers, the
symmetry of the Raman susceptibility tensor reflects that the
Raman scattering depends on the relative polarization states
of the pump and signal. Thus, to describe intermodal stimu-
lated Raman scattering, we consider an electric field that con-
sists of a superposition of two monochromatic vector fields,

a pump, ~Ep at frequency ωp, and a signal, ~Es, at frequency ωs.
The pump and signal propagate simultaneously in individual
but arbitrary and possibly distinct modes guided by the opti-
cal fiber. Therefore, the composite electric field we consider
is

~E =
1

2

{
~Epe

−iωpt+iβpz + ~Ese
−iωst+iβsz + c.c.

}
, (1)

where βp and βs are the propagation constants of the pump
and signal, respectively, and c.c. is the complex conjugate. The
pump and signal propagate along the z-axis, and it is valid

to assume that ~Ep and ~Es are in the xy-plane. To analyse the
dependence on the transverse field distribution and the polar-
ization state of the field, we write the amplitude of the fields
at the pump and signal as

~Ej = Aj

~Fj

Nj
, (2)

where Aj is a complex amplitude; here and in the following, we

use index j to indicate the signal ( j = s) or the pump ( j = p). ~Fj
is the vectorial electric transverse mode distribution, and Nj

is a normalization factor which ensures that |Aj|
2 is the power

in Watts carried by the electric field in the pump and signal,
respectively. In our discussion of the mode dependency that
follows, we write the vectorial electric transverse mode distri-
bution, ~Fj, in terms of a scalar radial field distribution f j(x, y)

and a polarization unit vector êj, i.e., ~Fj = fj(x, y)êj.
In the following, we discuss stimulated Raman scatter-

ing among vortex beams and, in particular, OAM beams. In
Sec. II A, we summarize the relevant properties of vortex
beams with respect to Raman scattering, and in Sec. II B, we
describe the propagation equation with emphasis on Raman
scattering. Section II C focuses on the effective Raman area,
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while Sec. II D focuses on the effective Raman susceptibil-
ity; its polarization dependence Sec. II D 1, the impact of
PMD Sec. II D 2, and we show that by using a cyclic coor-
dinate system Sec. II D 3, Raman gain among OAM states
may be described using a single tensor element and a single
propagation equation.

A. Modes

Before introducing a detailed theoretical description of
the Raman interaction amongmodes, we start by summarizing
the most importing properties of OAM modes as compared to
the more conventional LP modes.

LP modes are characterized by two numbers: l and p. The
number l quantifies the number of zero crossings of the field
when going one full circle at a constant radius from the core.
The number p quantifies the number of zero crossings of the
field in the radial direction. If the z-component of the electric
field may be neglected, for example, under the weakly guiding
approximation, the electric field vector for a continuous wave
(CW) is a two-dimensional vector

~E =
1

2

A

N
êflp(~r⊥)eiβlpze−iωt + c.c., (3)

where A is the amplitude of the field, N is the normalization
factor, ê is the polarization vector, and flp(~r⊥) is the transverse
envelope of the modes of the electric field, all introduced in
Eq. (2). Each mode has a unique transverse field distribution
identified by the sub-index “lp” that is a function of a point
in the transverse plane (~r⊥ = (x, y)). βlp is the propagation
constant of mode lp.

The polarization vector, ê, is a two-dimensional column
unit vector that describes the polarization state of the electric
field, i.e., the Jones vector of the field. Here and in the follow-
ing, “hat” ˆ denotes a unit vector. êmay, for example, be a vec-
tor along the x axis or the y axis or for arbitrary but linear state
of polarization ê = [cos(φ) sin(φ)]T or a circular state of polar-

ization ê = (1
√
2)(1 ± i)T, the latter obtained, for example, by

adding two cross polarized mode-degenerate LP modes with a
π/2 phase shift. Any arbitrary state of polarization is obtained
by combining two degenerate orthogonal LP modes with an
appropriate phase difference. A characteristic of such a beam
is that the polarization is spatially uniform across the trans-
verse plane of the beam. Its state of polarization is commonly
mapped onto a Poincare sphere (PS).17

OAM modes are characterized by three quantities:6 (i) an
optical angular momentum (ℓ~) per photon, where ℓ (= 0, ±1,
±2, ±3,. . .) is referred to as the topological charge, related to
the phase front of the beam, more specifically the number
of azimuthal phase windings about the propagation axis, (ii)
a radial order (also referred to as the mode number), identi-
cal to the number of concentric intensity rings in the inten-
sity profile of the beam, and (iii) a spin angular momentum of
(±~) per photon—positive: (+~) for the left-polarization vector:

σ̂+
= (x̂ + iŷ)/

√
2 and negative: (−~) for the right-polarization

vector: σ̂− = (x̂ − iŷ)/
√
2.

OAM modes are conveniently described by so-called
aligned and anti-aligned modes.6 A continuous wave in an

aligned mode, for which spin and topological charges have the
same sign, is described by

~EV =
1

2

A

N
fℓm(~r⊥)σ̂±e±i|ℓ |φeiβvze−iωt + c.c., (4)

where A is the amplitude of the field, N is the normalization
factor, fℓm(~r⊥) is the radial field distribution, ~r⊥ = (r,φ) are
the transverse spatial coordinates, and βv is the propagation
constant, similar to Eq. (3).

A continuous wave in an anti-aligned mode, where the
spin and angular momentum have opposite signs, is described
by

~EW =
1

2

A

N
fℓm(~r⊥)σ̂±e∓i|ℓ |φeiβwze−iωt + c.c., (5)

where A, N, fℓm(~r⊥), σ̂±, and βw are defined in analogue to
Eq. (4).

In circular cylindrical optical fibers, the alignedmodes are
based on a sum of two cross polarized degenerate HE modes
added with a π/2 phase shift, whereas the anti-aligned modes
are based on a sum of two cross polarized degenerate EH
modes added with a π/2 phase shift.6 The aligned and anti-
aligned modes are in general slightly non-degenerate from
each other, i.e., βw , βv.

The state of polarization of a vortex beam is described by
a linear combination of two orthogonal OAM states with oppo-
site topological charge, appropriate weight, and phase differ-
ence. More specifically, the polarization vector of a vortex
beam is described by

ê = [cos(Θ/2) exp(−iΦ/2)] |Lℓ〉 + [sin(Θ/2) exp(iΦ/2)] |Rℓ〉, (6)

where Θ and Φ are the spherical coordinates on the so-called
higher order Poincare sphere (HOPS) and |Lℓ〉 = e−iℓφ ��σ̂+〉 and
|Rℓ〉 = eiℓφ ��σ̂−〉. It is noted that the basis vectors are the two
OAM states corresponding to the poles on the HOPS (Θ = 0)
and (Θ = π), respectively. As pointed out by Milione et al.,18 it
is necessary to differentiate between ℓ ≥ 1 and ℓ < 0 (ℓ = 0
represents a trivial case of no orbital angular momentum). For
ℓ ≥ 1, the beams are referred to as general vector beams and on
the equator of the HOPS, azimuthally polarized beams, (Θ,Φ, ℓ)
= (π/2, π, 1), and radially polarized beams, (Θ, Φ, ℓ) = (π/2, 0, 1),
are found.18–20 For ℓ < 0, the beams are referred to as π-vector
beams and on the equator of the HOPS, π-azimuthally polar-
ized beams, (Θ, Φ, ℓ) = (π/2, π, −1), and π-radially polarized
beams, (Θ, Φ, ℓ) = (π/2, 0, −1), are found.18

B. Propagation equations

With the above definitions of the pump and signal fields,
one may now derive coupled propagation equations for the
pump and signal, starting from Maxwell equations.21,22 The
resulting propagation equations are

dAp

dz
=

iωpe−iβpz

4Np

∫
S

~F∗p · ~PNL
ωp

ds − αp

2
Ap (7)

for the amplitude of the pump and

dAs

dz
=

iωse−iβsz

4Ns

∫
S

~F∗s · ~PNL
ωs

ds − αs

2
As (8)

APL Photon. 4, 030802 (2019); doi: 10.1063/1.5051794 4, 030802-3

© Author(s) 2019

https://scitation.org/journal/app


APL Photonics ARTICLE scitation.org/journal/app

for the amplitude of the signal. The vector ~Pωp (~Pωs ) is the
nonlinear induced polarization at the frequency of the pump
(signal). The normalization factor for the pump and signal is
evaluated to be

N2
j =

cε0n
eff
j

2

∫
S
|~Fj |2ds, (9)

where n
eff
j

is the effective refractive index of the pump ( j = p),

respectively, the signal (j = s). The intrinsic attenuation of the
pump and signal is included through αp and αs, and the other
parameters are as defined earlier. Note that due to the vecto-
rial representation, these equations are valid independent on
the choice of the coordinate system.

The induced polarization at the signal frequency ωs is
related to the material susceptibility and the electric field
through

~Pωs = ε0
3

2
*
,
p11 p12
p11 p22

+
- ·

~Es, (10)

where ε0 is the vacuum permittivity, the factor (3/2) takes into
account the intrinsic permutation symmetry of the suscepti-
bility tensor, and

p11 = χxxxx |Ep
x |2 + χxxyy |Ep

y |2, (11)

p12 = χxyyxE
p
y (E

p
x)
∗ + χxyxyE

p
x(E

p
y )
∗, (12)

p21 = χyxxyE
p
x(E

p
y )
∗ + χyxyxE

p
y (E

p
x)
∗, (13)

p21 = χyyyy |Ep
y |2 + χyyxx |Ep

x |2, (14)

where χijkl are the susceptibility tensor elements, and, finally,

E
p
i
is the ith-component of ~Ep and similarly for Es

i
.23

By using ~Fj = fjêj, for the transverse part of the electric
field as introduced in Eq. (2), we obtain the vector product of
the transverse mode vector and the induced polarization at
the signal frequency in Eq. (8)

~F∗s · ~PNL
ωs
=
�� fs��2 As

Ns

����� fp
Ap

Np

�����
2

ε0
3

2
χeff , (15)

where we have introduced the effective susceptibility χeff as23

χeff = ê∗s ·
(

c1
c2

)

, (16)

where

c1 = ( χxxxx |epx |2 + χxxyy |epy |2)esx + ( χxyyxepy (epx)∗ + χxyxye
p
x(e

p
y )
∗)esy,

(17)

c2 = ( χyxxye
p
x(e

p
y )
∗ + χyxyxe

p
y (e

p
x)
∗)esx + ( χyyyy |epy |2 + χyyxx |epx |2)esy.

(18)

It is noted that, for each tensor element, the sub-index is asso-
ciated with a frequency, specifically χijkl (−ωs; ωs, ωp, −ωp).
However, to keep the notation short, the frequency arguments
are skipped here and in the following.

Assuming that there is no pump depletion, the solution to
the propagation equation (8) is

As(z) = As(z = 0) exp


i3ωs

2c2ε0npns

χeff

A
ps

eff

PLLeff −
αs

2
L


, (19)

where PL is the launched pump power and where we have
included the intrinsic fiber attenuation of the pump through
the effective length (Leff = (1 − e−αpL)/αp), where αp (αs) is the
attenuation rate of the pump (signal) mode, as introduced in
Eq. (7) [Eq. (8)], and L is the physical length of the fiber. Finally,
the Raman effective area A

ps

eff
equals

A
ps

eff
=

∫
|fp |2ds

∫
|fs |2ds∫

|fp |2 |fs |2ds
. (20)

The superscript index (ps) to the effective area is used to
differentiate the Raman effective area from the standard
self-phase modulation area used when describing the non-
linear refractive index.24 To arrive at Eq. (19), it has fur-
thermore been assumed that the susceptibility is constant
throughout the region where the electric field is significant.
Hence, integrals that have the form ∫ χijkl| fp|

2| fs|2ds reduces to

χijkl ∫ | fp|2| fs|2ds.
From the above, it is clear that the Raman gain is deter-

mined by the Raman effective area which is an overlap inte-
gral between the intensities of the interacting fields and the
effective susceptibility. This also holds for any fields and
modes including OAM states, and consequently, we discuss
the Raman effective area and the effective Raman suscepti-
bility in the following.

C. The Raman effective area

The Raman effective area of OAM modes is naturally
determined by the fiber design. In the following, we consider
a fiber designed to support 8 different OAM modes6,12 with
|ℓ| = 5 and |ℓ| = 7 each with right and left circular polarization,
i.e., σ̂±. The fiber is based on an air core surrounded by a ring
of higher refractive index than the cladding. The mode size
of OAM modes is in general larger than the mode size of LP
modes, and it is thus expected that the Raman effective area
is larger than the Raman effective area of LP modes guided
by SMFs, which is around 80 (µm)2. Figure 1 shows the mea-
sured intensity plots of the modes of the transverse intensity
profile.

Based on Eq. (20), we predict the Raman effective area,
shown in Fig. 2. Fig. 2 shows four pump modes, given by
two values of the topological charge (ℓ = 5, ℓ = 7) and for
both right and left circular polarizations, i.e., σ±. In Fig. 2 and
the following text, the four modes are referred to as 5a for
(ℓ = 5, σ+) and 7a for (ℓ = 7, σ+) for the two aligned modes and
correspondingly for the anti-aligned modes: 5aa for (ℓ = 5, σ−)
and 7aa for (ℓ = 7, σ−). The Raman effective area is only pre-
dicted for positive values of the topological charge, since the
intensity distribution is identical for similar negative topologi-
cal charges. In Fig. 2, and the following discussion, the notation

APL Photon. 4, 030802 (2019); doi: 10.1063/1.5051794 4, 030802-4
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FIG. 1. (a) and (b) show two measured intensity distributions of |ℓ| = 5 and |ℓ| = 7
modes. (c) shows the intensity profile of the two modes and the profile of a pump
distributed equally among all guided pump modes. The gray shaded area indicates
the ring core of the fiber.

(sm, pm) refers to a set of signal-mode (sm) and pump-mode
(pm).

From Fig. 2, it is clear that the Raman effective area is
lowest for the pump and signal in similar modes; predicted
effective area values (sm, pm) = (5a, 5a) of 156 µm2 and (sm, pm)
= (7a, 7a) = 158 µm2. The Raman effective area between dissimi-
lar modes having the same topological charge, and same radial
order, but aligned versus anti-aligned modes, e.g., (sm, pm)
= (5a, 5aa), depends only on the overlap between radial dis-
tributions as in Eq. (20). Consequently, such dissimilar modes
exhibit a small Raman effective area. The Raman effective area
between dissimilar modes (sm, pm) = (7a, 5a) equals 165 µm2

and between (sm, pm) = (5a, 7a) the Raman effective area

FIG. 2. Raman effective area versus signal wavelength. “pm” refers to the pump
mode, the legend to the right provides the signal mode. The frequency of the pump
is always 13 THz higher than the frequency of the signal wavelength.

equals 160 µm2. These numbers may be compared against
the effective Raman areas of SMFs of approximately 80 (µm)2.
Thus, from this, it is expected that the Raman gain coeffi-
cient is approximately half of what it is in more conventional
SMFs of around 0.7 (W km)−1 when the pump or signal is
un-polarized.

D. The effective Raman susceptibility

Raman gain in SMF’s is known to be polarization depen-
dent. If the polarization state of the pump as well as the sig-
nal remain unchanged during propagation, the Raman gain is
strongest if the pump and signal are in parallel states of polar-
ization and weakest if the pump and signal are in orthogonal
states of polarization. However, because of, for example, PMD,
and the fact that the pump and signal are separated signifi-
cantly in wavelength space, the polarization dependence may
be mitigated, if the fiber is sufficiently long. We return to this
mitigation later in this section. However, first, we discuss the
polarization dependence, ignoring all propagation effects.

The polarization effects are described through the sus-
ceptibility tensor of the material by Eq. (16). Due to the spatial
symmetry of amorphous germanium-codoped silicate glass,
i.e., the host material of the optical fibers considered here,
the susceptibility may be expressed conveniently through only
two scalar functions AΩ and BΩ25

χiiii = (AΩ + BΩ), χijij = AΩ,
χiijj = BΩ/2 , χijji = BΩ/2.

The two functions AΩ and BΩ are both functions of the dif-
ference in frequency between the pump and signal frequency,
indicated by subindex Ω, and both are directly measurable
through Raman scattering. By measuring the Raman gain coef-
ficient when the pump and signal are linearly co-polarized,
(AΩ + BΩ) is determined, whereas BΩ is measured by having the
pump and signal in linearly orthogonally polarized modes.15,26

The achievable Raman gain when the pump and signal are in
perpendicular states of polarizations is more than an order of
magnitude smaller than the gain when the pump and signal
are in parallel states of polarizations, at pump-signal wave-
length separations of interest in Raman amplifiers, i.e., when
the signal frequency is shifted by 13 THz from the frequency
of the pump (AΩ ≫ BΩ for Ω ≈ 13 THz). In typical long non-
polarization maintaining fibers, the Raman gain assumes an
average value of half of the gain when the pump and signal
are parallel polarized.

For the purpose of comparing Raman scattering among
modes guided by SMFs, i.e., conventional modes and fibers
supporting propagation of vortex modes and, in particular,
OAM modes, we calculate below the effective susceptibility
for the Raman interaction among various vortex modes and,
in particular, OAM states.

1. Polarization dependence

Below we consider two cases: case (a)—pump and signal in
parallel states of polarization and case (b)—pump and signal in
orthogonal states of polarization. The results are summarized
in Table I.
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TABLE I. Effective Raman susceptibility for various pump and signal mode combina-
tions. Note: “pol.” refers to polarization.

Conventional modes Vortex modes χeff

Case (a) parallel

Both linearly pol. Both radially
(π-radially)
or azimuthally
(π-azimuthally): (AΩ + BΩ)

Both circularly pol. Both OAM (AΩ + BΩ/2)

Case (b) orthogonal

Both linearly pol. One radially
(π-radially)
one azimuthally
(π-azimuthally): BΩ/2

Both circularly pol. Both OAM BΩ

Case (a)—parallel states of polarization: In SMFs, modes
are naturally expressed through LP modes and the strongest
Raman interaction is found when the pump and signal are in

parallel states of polarization, (ês, êp) = (î, î), where î ∈ (x̂, ŷ).
This gives an effective susceptibility of AΩ + BΩ. In the case of
fibers supporting propagation of vortex modes, the strongest
Raman interaction is also found when the pump and signal are
in parallel states of polarization, that is, both radially polar-

ized, i.e., êj =
(���Rℓj

〉

+ ���Lℓj

〉)

/
√
2, ℓj = 1, where ( j = s, p) or both

azimuthally polarized êj = (���Rℓj

〉

− ���Lℓj

〉

)/
√
2, ℓj = 1, where ( j = s, p).

In both of these scenarios, the effective induced susceptibility
equals AΩ + BΩ. The same results are obtained when both the
pump and signal are π-radially or both π-azimuthally polar-

ized (ês, êp) = ((��Rℓs

〉 ± ��Lℓs

〉

)/
√
2,

(���Rℓp

〉

± ���Lℓp

〉)

/
√
2), ℓs = ℓp = −1.

Amplifying a circularly polarized signal using a circularly
polarized pump, both with the same handedness and both
propagating in SMFs, results in an effective Raman suscep-
tibility of AΩ + BΩ/2. In a vortex fiber, this corresponds to
amplifying a signal in an OAM state of given polarization using
a pump in an OAM state with the same polarization, i.e.,
(ês, êp) =

(��Rℓs

〉

, ���Rℓp

〉)

or (ês, êp) =
(��Lℓs

〉

, ���Lℓp

〉)

. In this case, the

effective susceptibility also equals AΩ + BΩ/2. It is emphasized
that this is independent of the topological charge of the pump
and signal.

Case (b)—orthogonal states of polarization: When the
pump and signal in SMFs are in orthogonal states of polar-
ization, a minimum Raman interaction is found, e.g., when
(ês, êp) = (x̂, ŷ), or (ês, êp) = (ŷ, x̂), an effective susceptibility of
BΩ/2 is found. In terms of vortex modes, an effective sus-
ceptibility of BΩ/2 is also found if the pump (signal) is radi-
ally polarized, while the signal (pump) is azimuthally polarized

(ês, êp) = ((��Rℓs

〉 ∓ ��Lℓs

〉

)/
√
2,

(���Rℓp

〉

± ���Lℓp

〉)

/
√
2), ℓs = ℓp = 1. The

same results are obtained when the pump (signal) is π-radially
polarized, while the signal (pump) is π-azimuthally polarized

(ês, êp) = ((��Rℓs

〉 ∓ ��Lℓs

〉

)/
√
2,

(���Rℓp

〉

± ���Lℓp

〉)

/
√
2), ℓs = ℓp = −1.

Amplifying a circularly polarized signal in an SMF using a
circularly polarized pumpwith the opposite handedness as the

signal, then an effective susceptibility of BΩ is found. Amplify-
ing a signal in an OAM state, for example, ��Rℓs

〉

, using a pump

with orthogonal polarization, i.e., ���Lℓp

〉

also gives a minimum

effective susceptibility of BΩ. Note, similar to the case of pump
and signal in parallel polarized OAM states and also for orthog-
onal polarized OAM states, the effective Raman susceptibility
is independent of the topological charge.

As noted, radially (π-radially) and azimuthally (π-
azimuthally) polarized light are special cases of superposi-
tion’s of two OAM states, both with topological charge equal
to +1 (and −1 for π-vector beams), and the effective suscep-
tibility is independent on the sign of the topological charge.
Considering the more general cases, i.e., in the parallel case:

(ês, êp) = ((��Rℓs

〉 ± ��Lℓs

〉

)/
√
2,

(���Rℓp

〉

± ���Lℓp

〉)

/
√
2) gives an effective

Raman susceptibility equal to AΩ + BΩ for ℓs = ℓp (positive
for general vector beams and negative for π-vector beams).
This is explained by the fact that at any spatial point, the
pump and signal are parallel polarized. In the orthogonal cases:

(ês, êp) = ((��Rℓs

〉±��Lℓs

〉

)/
√
2,

(���Rℓp

〉

∓ ���Lℓp

〉)√
2), the effective suscep-

tibility equals BΩ/2 for ℓs = ℓp (again positive for general vector
beams and negative for π-vector beams) since the pump and
signal are orthogonally polarized at any spatial point on the
beams. The effective susceptibility for the orthogonal cases
is thus much smaller than the effective susceptibility for the
parallel cases, since AΩ ≫ BΩ, as discussed in Sec. II D.

When the topological charge of the pump differs from
the topological charge of the signal (ℓs , ℓp) in any of the
two cases, the effective susceptibility equals a simple aver-
age of the two scenarios, i.e., the effective susceptibility equals
(AΩ + 3BΩ/2)/2. This is found by utilizing orthogonality of
beams having different topological charges. It is noted that
in this case, the Raman amplification is non-uniform across
the mode, which can in principle induce mode and polariza-
tion coupling. The average gain is expected in systems where
averaging occurs due to fast mode coupling.

As shown in Table I, it is also found that when the pump
and signal have the same topological charge, then in all cases,
the Raman interaction among vortex modes depends on the
polarization and not on the topological charge.

2. Impact of PMD

As mentioned earlier, non-polarization maintaining fibers
randomize the state of polarization as a beam propagates
through the fiber, i.e., the polarization rotates and goes
through all states of polarization during propagation. This is
explained by PMD and has been extensively analyzed in SMFs
and recently also been researched in fibers supporting propa-
gation of vortex modes.27 In a fiber Raman amplifier, where
the gain is accumulated over long lengths (typically several
kilometers), the consequence of PMD and the fact that the
pump and signal are separated significantly (up to around 13
THz or ten to hundreds of nanometers) the Raman gain is
reduced from its maximum value and similarly increased from
its minimum value.15

Analogously, when considering fibers supporting vortex
modes, the polarization states of modes also change along

APL Photon. 4, 030802 (2019); doi: 10.1063/1.5051794 4, 030802-6

© Author(s) 2019

https://scitation.org/journal/app


APL Photonics ARTICLE scitation.org/journal/app

TABLE II. Effective Raman susceptibility when allowing pump and signal polarization
to rotate but locked to each other. “‖” (“⊥”) refers to parallel (orthogonal) states of
polarization.

Pump and signal polarization

Conventional modes Vortex modes χeff

(sm ‖ pm) (sm ‖ pm)
any state on PS any state on HOPS (AΩ + 5BΩ/6)

(sm ⊥ pm) (sm ⊥ pm)
any point on PS any point on HOPS 2BΩ/3

propagation due to PMD. Table II shows the impact on Raman
gain due to PMD when averaging over the HOPS.

Let us first discuss the limit of large polarization-mode
coupling but low PMD. When the pump and signal are
launched in parallel, but arbitrary states of polarization, and
assuming that they remain parallel polarized during propa-
gation, i.e., the state of polarization of the pump and signal
undergoes the same changes during propagation, then the
resulting effective Raman susceptibility equals AΩ + 5BΩ/6.
If on the other hand, the pump and signal are launched in
orthogonal, but arbitrary states of polarization, and again
remain orthogonal yet changing, then the Raman interaction
is 2BΩ/3.

Finally, and more realistically, consider the case of large
polarization-mode coupling and large PMD. In this scenario,
both the states of polarization of the pump and signal rotate
independently on the PS and the HOPS, respectively, corre-
sponding to conventional modes and vortex modes, respec-
tively. In both cases, we find that the effective susceptibility
equals AΩ/2 + 3BΩ/4 independent of the topological charge.
This is exactly the average of the above.

3. Cyclic coordinates

Raman scattering among LP modes is most conveniently
described in a standard Cartesian basis (x̂, ŷ, ẑ), whereas it is
natural to describe Raman scattering among OAM modes in a
cyclic basis (σ̂+, σ̂−, ẑ). In either coordinate system, the Raman
effect is described using the simple first order differential
equations [Eqs. (7) and (8)]. This scalar approach is justified
if, for example, the polarization states of the pump and sig-
nal fields do not change along the fiber, or if the fiber length
is sufficiently long to ensure that an average gain coefficient
may be used or when making simple predictions of Raman
amplification.

Here, our focus is on Raman amplification of a signal in
an OAM state pumped by a pump in an OAM state, either the
same OAM state or a different OAM state. From the above,
we have seen that the Raman interactions in such cases are
independent on the topological charge and only depend on
the polarization σ̂+ or σ̂−. Thus, by transferring the Raman
susceptibility to a cyclic coordinate system28 with the basis
vectors (σ̂+, σ̂−, ẑ) as opposed to (x̂, ŷ, ẑ), the task of theo-
retically/numerically predicting amplification of OAM modes
simplifies. In this basis, the inter-modal Raman scattering
among OAM states is described by a single differential equa-
tion similar to Eq. (8) for the rate of change in the amplitude

with the distance equal to a simpler expression involving only
one tensor element identified from Eqs. (21)–(24). If, for exam-
ple, the pump and signal are in parallel polarized OAM modes,
the gain coefficient is χiiii, i ∈ (R, L), or if the pump and sig-
nal are in are in orthogonal states of polarized OAM modes,
the gain coefficient is simply described by χiijj, (i, j) ∈ (R, L). It
is emphasized that the Raman susceptibility is independent of
the topological charge

χRRRR =
1

2
( χ

(3)
xxxx + χ

(3)
xxyy + χ

(3)
xyxy − χ

(3)
xyyx)

= AΩ + BΩ/2 (= χLLLL), (21)

χRRLL =
1

2
( χ

(3)
xxxx + χ

(3)
xxyy − χ

(3)
xyxy + χ

(3)
xyyx)

= BΩ (= χLLRR), (22)

χRLLR =
1

2
( χ

(3)
xxxx − χ

(3)
xyyx − χ

(3)
xyxy − χ

(3)
xxyy),

= 0 (= χLRRL), (23)

χRLRL =
1

2
( χ

(3)
xxxx + χ

(3)
xyyx + χ

(3)
xyxy − χ

(3)
xxyy)

= AΩ + BΩ/2 (= χLRLR). (24)

The gain among two OAM states with the same polarization is
nearly identical to gain among two linear polarizations (χxxxx

≈ χRRRR). This approximation is most valid when the pump and
signal are separated close to the gain peak (13 THz) as com-
pared with the pump and signal being close in wavelength
space, since BΩ is larger close to the pump than at the gain
peak where BΩ ≈ 0.25

On the other hand, the Raman gain is twice as strong if
the pump and signal are in two orthogonal OAM states (|Rℓ 〉,
|Lℓ 〉) as opposed to two orthogonally linearly polarized modes.
Yet, in both cases, the Raman scattering is still orders of
magnitude smaller among orthogonal polarizations compared
against parallel polarizations.

III. EXPERIMENTAL CHARACTERIZATION

In Sec. II, we addressed the question how Raman ampli-
fication among OAM modes compare against Raman ampli-
fication among conventional modes, as currently used in
high capacity communications systems. In the following, we
address this question experimentally by characterizing the
Raman efficiency, scaled by the appropriate effective area and
the attenuation of the fiber. First, we characterize the fiber
loss and then the Raman gain efficiency.

The fiber that we used was the same as considered in
Sec. II, i.e., an air core fiber12 that supports propagation of 8
different OAM modes |ℓ| = 5 and |ℓ| = 7 and the polarizations
given by σ+ and σ−.

Figure 3 shows the measured loss of the modes used in
the following. The loss at the wavelength ≈1572 nm (later to be
used as signal wavelength) is close to 1.1 dB/km. The loss at the
wavelength ≈1470 nm (later to be used as pump wavelength)
is 3.5 dB/km for the OAM |ℓ| = 5 mode corresponding to an
effective length of 769 m and 2.5 dB/km for the OAM |ℓ| = 7
mode, corresponding to an effective length of 867 m.
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FIG. 3. Measured loss versus wavelength for four modes: two aligned (ℓ,σ)
= (+5, σ̂+) and (ℓ,σ) = (+7, σ̂+) and for two anti-aligned (ℓ,σ) = (−5, σ̂+)
and (ℓ,σ) = (−7, σ̂+). The physical length of the fiber was 1.2 km.

From Sec. II, it is expected that the Raman efficiency
(=grLeff ) among OAM states, i.e., the Raman interaction
between a pump in an OAM state and a signal also in an OAM
state, is comparable to the Raman efficiency among LP modes
only scaled in accordance with the effective area (Fig. 2) and
the loss (Fig. 3). To verify this, we designed a well-calibrated
experimental setup (see Fig. 4) to measure the Raman gain
coefficient, i.e., the rate of change in gain in individual modes
with the pump power also in individual modes.

In the experiment, a continuous wave (CW) external cav-
ity laser (ECL) is used as a signal. Signal pulses are carved out
from the CW signal using an external modulator (Mod). The
signal is then launched into the OAM fiber, by using a spatial
light modulator (SLM) and a quarter-wave plate, thus exciting
a single OAM mode with a purity of at least 18 dB.

A pulsed pump beam is co-propagating with the signal.
The pump beam is derived from another external cavity laser,
also pulsed by using an external modulator. High pump power

FIG. 4. Setup used to measure Raman gain. To obtain high pump power levels,
we used a pulsed pump configuration, and consequently, the pump and signal are
copropagating. Details are provided in the main text.

levels are achieved by the use of a thulium doped fiber ampli-
fier. However, due to a mode dependent coupling loss, when
coupling pump power to the fiber, a maximum pump power
in the fiber equal to 4.7 W for the |ℓ| = 5 modes and 3.5 W for
the |ℓ| = 7 was achieved. The mentioned power levels are peak
power levels of the pump-pulses; however, the pump pulses
are as a good approximation flat topped. A pulsed pump was
chosen to give a maximum pump power. The duration of a sig-
nal pulse was 1 ns, while the duration of the pump pulse was
50 ns. These durations were chosen such that the signal in
effect experience a CW pump.

Thewavelength of the pumpwas 1470 nm, while the wave-
length of the signal was 1572 nm. This was chosen as a compro-
mise between ensuring as low a loss of the pump as possible
while at the same time also ensuring the lowest possible loss
for the signal (see Fig. 3) and ensuring a frequency difference
between the pump and signal close to 13 THz where germa-
nium doped silica fibers have the strongest Raman interaction.
At the output end of the fiber, the signal was separated from
the pump using a dichroic mirror and a long pass filter, and the
signal power was measured. By using two spatially separated
points on the SLM, we were able to control specifically what
modes were excited for the pump as well as for the signal.

By making a linear fit to the measured data for the on-off
Raman gain, i.e., output signal power with the pump on rel-
ative to output signal power with the pump off, we obtained
the curves illustrated in Fig. 5. From the slope of the on-off
Raman gain with pump power, we obtained the Raman gain
coefficient gr by dividing the slope by the effective length for
the respective pump modes times 4.3 (= 10 log e), (dGdB/dPp

= 4.3grLeff ). From this, the Raman gain coefficients listed in

Fig. 5, all in units of [(W km)−1], are found.

FIG. 5. On-off Raman gain versus pump power for four different combinations of
signal and pump mode (sm, pm). Each curve is labeled with respective (sm, pm).
Marks are measured data, whereas lines represent best fit and the slopes of the
fit provides the value of the Raman gain coefficient, gr (sm, pm), in [(W km)−1].
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FIG. 6. Left: Predicted Raman gain versus PMD parame-
ter, Dp, when the pump and signal are in parallel states
of polarization (solid red curve) and orthogonal states of
polarization (dashed blue curve). Parameters used: pump
power—4 W, fiber length—1.2 km, attenuation—3.5 dB/km
for the pump, 1.1 dB/km for the signal, Raman gain
coefficients—0.7 (W km)−1 for parallel and 0.006 for orthog-
onal Right: Measured Raman gain between similar modes
and dissimilar modes.

The gain coefficients listed in Fig. 5 should be compared
against the Raman gain coefficients for single mode transmis-
sion fibers supporting propagation of LP modes. Such fibers
have Raman gain coefficients of around 0.7 (W km)−1. However,
due to the larger Raman effective area, discussed earlier, we
expected a Raman gain coefficient reduced by approximately
a factor of 2, i.e., to around 0.35 (W km)−1.

Combining data from Figs. 2 and 3, it is expected that the
Raman efficiency of the modes (sm, pm) = (7a, 7a) is favourable
over the (sm, pm) = (5a, 5a) modes. This is explained by the
fact that even though the Raman effective area is lowest for
the pump and signal in similar modes, (sm, pm) = (5a, 5a) of
156 µm2 and (sm, pm) = (7a, 7a) of 158 µm2 the difference in
effective length Leff (|ℓ| = 5) = 769 m and Leff (|ℓ| = 7) = 867 m,
make the Raman efficiency of the (sm, pm) = (7a, 7a) favourable
over the (sm, pm) = (5a, 5a).

In addition, the dissimilar modes (sm, pm) = (7a, 5a) and
(sm, pm) = (5a, 7a) have a larger Raman effective area compared
against the Raman effective area between similar modes (sm,
pm) = (5a, 5a) and (sm, pm) = (7a, 7a). However, the relatively
low loss for the pump mode |ℓ| = 7 compared to |ℓ| = 5 make
the Raman efficiency of the dissimilar modes (sm, pm) = (5a,
7a) comparable to the Raman efficiency of the similar modes
(sm, pm) = (7a, 7a).

To examine the polarization dependence further, we
selected a pump mode where the Raman effective area is
expected to be the same when coupling to other modes. More
specifically, from Fig. 2, by considering the pump in one of the
aligned modes (ℓ, σ̂) = (±5, σ̂±) or in one of the anti-aligned
modes (ℓ, σ̂) = (±5, σ̂∓) and the signal in any of these four
modes, then all cases are expected to have the nearly same
effective area (Fig. 2) and the same effective length (Fig. 3).
If the pump and signal propagate simultaneously without any
change in their polarization state, then a significantly differ-
ent gain would be expected when the pump and signal are
parallel polarized as opposed to when the pump and signal
are orthogonally polarized. However, as discussed above, since
the polarization state of the pump and signal evolve differently
throughout the 1.2 km fiber, an averaging is expected.

Using the method shown by Lin and Agrawal,15 we pre-
dict that the gain for a signal polarized parallel to the pump is

described by the solid line in Fig. 6, i.e., when there is no PMD,
the pump and signal remain parallel polarized even though
both move around on PS, i.e., they are locked together. Simi-
larly, when the pump and signal are orthogonally polarized and
remain orthogonally polarized during propagation, the lower
trace in Fig. 6 is obtained. When the polarization state of the
pump and signal evolve independently due to a large PMD,
the pump and signal go through all states of polarization, an
average gain is achieved with no dependence on the initial
polarization state.

For comparison, we show in Fig. 6 (right) two sets of
measured Raman gain; red marks when the pump and the sig-
nal have parallel polarization, while the blue marks when the
pump and the signal have orthogonal polarization. The data
are based on experimentally measured gain coefficients, from
which we have extrapolated gain for pump values of 4 W. In
addition, to the left of the dashed line, the pump and signal are
in similar modes, i.e., (sm, pm) = (aligned, aligned) or (sm, pm) =
(anti-aligned, anti-aligned), whereas to the right of the dashed
line, the pump and signal are in dissimilar modes, i.e., (sm, pm)
= (aligned, anti-aligned) or (sm, pm) = (anti-aligned, aligned).

Unfortunately, we have no experimental data for the PMD
of the OAM fiber that we have used. However, adopting val-
ues from Ref. 27, a PMD coefficient from few hundredths of
ps/
√
km to tens of ps/

√
km could exist in the fiber. Thus, from

Fig. 6 (left), PMD could significantly impact our results and lead
to PMD averaging of the Raman gain. Even though the data
suggest that larger averaging happens when using dissimilar
modes for the pump and signal than when using similar modes,
we have only a few data points to support this conclusion.

IV. CONCLUSION

We have theoretically described the Raman interac-
tion among vortex modes, with emphasis on orbital angular
momentum (OAM) modes. In general, the Raman gain among
any two modes scales linearly with the effective Raman sus-
ceptibility and inversely with the effective Raman area. We
have shown that the Raman gain provided by an OAM mode
to an OAM mode depends on the state of polarization but
not on the topological charge. Parallel states give maximum
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gain, whereas orthogonal states give order of magnitude less.
We have analyzed the effective Raman susceptibility among
radially and azimuthally polarized modes and shown that the
Raman susceptibility between a pump and a signal both being
radially or both being azimuthally polarized is identical to the
effective Raman susceptibility between parallel linearly polar-
ized modes, whereas the Raman susceptibility between a radi-
ally (azimuthally) polarized pump and an azimuthally (radi-
ally) polarized signal is identical to the Raman susceptibility
between the orthogonal linearly polarized pump and signal.
Similar results are found when replacing general vector modes
with π-vector modes, i.e., radially and azimuthally polarized
modes with π-radially and π-azimuthally polarized modes. For
the purpose of theoretical predictions, we have evaluated the
Raman susceptibility in a cyclic coordinate system, well suited
to predict the Raman gain among OAM states. Finally, we
have experimentally characterized the Raman gain in a vortex
fiber supporting propagation of multiple OAM states. We have
experimentally confirmed that the Raman scattering among
the pump and signal in OAM states (parallel/orthogonally
polarized) is equally strong as the Raman scattering among lin-
early polarized modes (parallel/orthogonally polarized), only
scaled by the difference in effective Raman area. The impact of
polarization mode dispersion on the Raman gain among vortex
modes has been discussed.
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