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Abstract— In this paper, a novel framework is proposed for
optimizing the operation and performance of a large-scale multi-
hop millimeter wave (mmW) backhaul within a wireless small cell
network having multiple mobile network operators (MNOs). The
proposed framework enables the small base stations to jointly
decide on forming the multi-hop, mmW links over backhaul
infrastructure that belongs to multiple, independent MNOs, while
properly allocating resources across those links. In this regard,
the problem is addressed using a novel framework based on
matching theory composed of two, highly inter-related stages: a
multi-hop network formation stage and a resource management
stage. One unique feature of this framework is that it jointly
accounts for both wireless channel characteristics and economic
factors during both network formation and resource manage-
ment. The multi-hop network formation stage is formulated
as a one-to-many matching game, which is solved using a
novel algorithm, that builds on the so-called deferred acceptance
algorithm and is shown to yield a stable and Pareto optimal multi-
hop mmW backhaul network. Then, a one-to-many matching
game is formulated to enable proper resource allocation across
the formed multi-hop network. This game is then shown to exhibit
peer effects and, as such, a novel algorithm is developed to find
a stable and optimal resource management solution that can
properly cope with these peer effects. Simulation results show
that, with manageable complexity, the proposed framework yields
substantial gains, in terms of the average sum rate, reaching up
to 27% and 54%, respectively, compared with a non-cooperative
scheme in which inter-operator sharing is not allowed and a
random allocation approach. The results also show that our
framework improves the statistics of the backhaul sum rate and
provides insights on how to manage pricing and the cost of the
cooperative mmW backhaul network for the MNOs.

Index Terms— Millimeter wave communication, backhaul, cel-
lular networks, multi-hop networks, matching theory.

I. INTRODUCTION

N
ETWORK densification based on the concept of small

cell networks (SCNs) is seen as the most promising

solution to cope with the increasing demand for wireless
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capacity [1]. SCNs are built on the premise of a viral and

dense deployment of small base stations (SBSs) over large

geographical areas so as to reduce coverage holes and improve

the spectral efficiency [2]. However, such a large-scale deploy-

ment of SBSs faces many challenges in terms of resource

management, network modeling, and backhaul support [2].

In particular, providing backhaul support for a large number

of SBSs that can be deployed at adverse locations within a geo-

graphical area has emerged as one of the key challenges facing

the effective operation of future heterogeneous SCNs [3].

In particular, due to the density of SCNs, mobile network

operators (MNOs) will not be able to maintain an expensive

and costly deployment of fiber backhauls to service SBSs as

shown in [3] and [4]. Instead, MNOs are moving towards the

adoption of wireless backhaul solutions that are viewed as an

economically viable approach to perform backhauling in dense

SCNs. In fact, MNOs expect that 80% of SBSs will connect

to the core network via wireless backhaul as detailed in [3]

and [5].

Existing works have proposed a number of solu-

tions for addressing a handful of challenges facing SCN

backhauling [3]–[24]. The authors in [12] propose a fair

resource allocation for out-band relay backhaul links. The

approach developed in [12] seeks to maximize the throughput

fairness among backhaul and access links in LTE-Advanced

relay systems. In [13], a backhaul resource allocation

approach is proposed for LTE-Advanced in-band relaying.

This approach optimizes resource partitioning between relays

and macro users, taking into account the quality of both

the backhaul and access links. Dynamic backhaul resource

provisioning is another important problem for minimizing

outage at peak traffic hours and preventing an inefficient

utilization of frequency resources in low traffic scenarios. In

this regard, in [14], a dynamic backhaul resource allocation

approach is developed based on evolutionary game theory.

Instead of static backhaul resource allocation, the authors take

into account the dynamics of users’ traffic demand and allocate

sufficient resources to the base stations, accordingly. Although

interesting, the body of work in [12]–[14] does not consider

the potential deployment of millimeter wave communication

at the backhaul network and is primarily focused on modeling

rather than resource management and multi-hop backhaul

communication.

Providing wireless backhaul links for SBSs over millimeter

wave (mmW) frequencies has recently been dubbed as one of

the most attractive technologies for sustaining the backhaul

traffic of SCNs [3]–[11], due to the following promising

characteristics (among others): 1) The mmW spectral band



that lies within the range 30-300 GHz will deliver high-

capacity backhaul links by leveraging up to 10 GHz of avail-

able bandwidth which is significantly larger than any ultra-

wideband system operating over a sub-6 GHz frequency band.

In addition, high beamforming gains are expected from mmW

antenna arrays [9], 2) More importantly, mmW backhaul links

will not interfere with legacy sub-6 GHz communication links

at either backhaul or access links, due to operating at a

different frequency band. Even if the access network operates

over the mmW frequency band as done in self-backhauling

architectures, mmW communications will generally remain

less prone to interference, due to the directional transmissions,

short-range links, as well as susceptibility to the blockage

[25], and 3) Over the past few years, research pertaining

to the use of mmW frequencies for wireless backhaul net-

works has attracted a lot of attention in both academia and

industry [3]–[11], [26]. As an example, in 2014, a total of

15 telecom operators, vendors, research centers, and academic

institutions (including Nokia, Intel, and operators Orange

and Telecom Italia) have launched a collaborative project in

Europe, called MiWaveS, to develop mmW communications

for 5G backhaul and access networks [26].

However, compared to existing ultra-dense networks over

sub-6 GHz band, the major challenges of mmW backhaul net-

works include: 1) MmW backhaul links will typically operate

over a much shorter range than their sub-6 Ghz counterparts

(typically not exceeding 300 meters [16], [27]), and, thus,

more SBSs will be required to provide backhaul support for

the users within a certain geographical area. Therefore, mmW

SBS deployments are expected to be even denser, compared to

the already dense sub-6 GHz networks [28]. Such ultra dense

networks will require fast and efficient network formation

algorithms to establish a multi-hop backhaul link between

the core network and each demanding SBS, 2) The backhaul

network must be significantly reliable. However, the received

signal power of mmW signals may significantly degrade if

the backhaul link is blocked by an obstacle. For SBSs that

are deployed at adverse locations, such as urban furniture, the

received signal power may degrade due to rain or blockage

by large vehicles. One solution is to increase the density

of SBSs such that if a backhaul link between two SBSs is

blocked, the demanding SBS can establish a reliable link with

another SBS. However, this solution will increase the cost of

the backhaul network for the MNO. In this work, we will

motivate, the use of cooperation between MNOs to achieve a

robust and economically efficient backhaul solution, and 3)

Due to the directional transmissions of the mmW signals,

broadcast control channels can lead to a mismatch between

the control and data planes at mmW frequency bands [29].

Therefore, fully centralized approaches that rely on receiving

control signals from a central station over broadcast channels

may not be practical which, in turn, motivates the adoption

of suitable distributed algorithms for an effective resource

management.

Several recent works have studied the viability of mmW as

a backhaul solution as presented in [10] and [15]–[20]. For

instance, the work in [10] proposes a model based on stochas-

tic geometry to analyze the performance of the self-backhauled

mmW networks. The work in [15] analyzes the performance of

a dual-hop backhaul network for mmW small cells. In [16], the

authors perform channel measurements and provide insights

on mmW small cell backhaul links. In [17], the performance of

adaptive and switching beamforming techniques is investigated

and evaluated for mmW backhaul networks. Moreover, the

impact of diffraction loss within a mmW backhaul network is

analyzed in [19]. The authors in [18] propose a multi-objective

optimization framework for joint deployment of small cell

base stations and wireless backhaul links. In [20], the authors

propose an autonomous beam alignment technique for self-

organizing multi-hop mmW backhaul networks. In [28], the

authors have motivated the use of a multi-hop mmW backhaul

as a viable solution for emerging 5G networks and they

analyzed the impact of the deployment density on the backhaul

network capacity and power efficiency. Moreover, in [30], the

authors have proposed a multi-hop backhaul solution that uses

a TDMA MAC protocol for WiMAX.

The body of work in [10] and [15]–[20] solely focuses on

physical layer metrics, such as links’ capacity and coverage.

In addition, it is focused only on single-hop or two-hop back-

haul networks, while new standards such as IEEE 802.11ay

envision fully multi-hop networks. The work presented in [28]

does not provide any algorithm to determine how SBSs can

form a multi-hop mmW backhaul network. Moreover, the

proposed model in [28] is too generic and does not capture

specific characteristics of a mmW network, such as suscepti-

bility to blockage and directional transmissions. Last but not

the least, no specific analysis or algorithm is provided for

resource management in multi-hop mmW backhaul networks.

The solution presented in [30] is not directly applicable

to the mmW backhaul networks, as mmW is substantially

different from WiMAX systems. In fact, authors in [30]

focus primarily on the routing and link activation protocols in

order to minimize the interference among active links. Such

a conservative approach will lead to an inefficient utilization

of the mmW frequency resources, as the interference scenario

in WiMAX systems is completely different from directional

mmW communications.

Furthermore, the body of work in [10], [15]–[20], [28],

and [30] does not account for the effect of backhaul cost

in modeling backhaul networks. In fact, these existing works

typically assume that all of the infrastructure belongs to the

same MNO which may not be practical for dense SCNs. In

wireless networks, the backhaul cost constitutes a substantial

portion of the total cost of ownership (TCO) for MNOs as

indicated in [3] and [4]. In fact, it is economically ineffi-

cient for an individual MNO to afford the entire TCO of

an independent backhaul network as demonstrated in [3],

[4], and [24]. The main advantages of inter-operator back-

haul sharing is to reduce the number of required sites/radio

access technology (RAT) interfaces per MNO to manage

backhaul traffic, site rental, capital expenditures (CAPEX) by

avoiding duplicate infrastructure, site operating expenditures

(OPEX), and electricity costs [31]. Moreover, inter-operator

mmW backhaul architectures are more robust against blockage

and link quality degradation compared to schemes in which

operators act independently and non-cooperatively [6]. This



stems from the fact that cooperation increases the ability to

establish new backhaul links that can easily bypass obstacles.

Therefore, MNOs will need to share their backhaul network

resources with other MNOs that require backhaul support for

their SBSs [24]. Hence, beyond the technical challenges of

backhaul management in SCNs, one must also account for the

cost of sharing backhaul resources between MNOs.

To address such economic challenges, a number of solu-

tions are proposed in [11] and [21]–[24]. The work in [24],

motivates a business model for an SCN in which multiple

MNOs share the SBSs that are deployed on the street lights in

dense urban areas. In [21], an economic framework is devel-

oped to lease the frequency resources to different MNOs by

using novel pricing mechanisms. In [22], the authors propose

a cost evaluation model for small cell backhaul networks.

This work highlights the fact that integrating heterogenous

backhaul technologies is mandatory to achieve a satisfactory

performance in a backhaul network. Moreover, they show

that the TCO of an SCN is much higher than conventional

cellular networks. Therefore, it is more critical to consider

backhauling cost in small cell backhaul network design. The

authors in [23] propose a model in which MNOs buy energy

from the renewable power suppliers for their mmW back-

haul network and solve the problem as a Stackelberg game

between MNOs and power suppliers. In [11], we studied

the problem of resource management for mmW-microwave

backhaul networks with multiple MNOs. The approach in [11]

considers both cost and channel state information (CSI) to allo-

cate backhaul resources to the SBSs. The solutions provided

in [21]–[24] focus solely on the economic aspects of the

backhaul network, while a suitable backhaul network model

must integrate the cost constraints with the physical constraints

of the wireless network. In addition, [11] does not consider

multi-hop backhaul networks. Moreover, the backhaul model

studied in [11] is restricted to the case in which only two

MNOs are in the network.

The main contribution of this paper is to propose a novel

framework to model and analyze resource management and

pricing for facilitating inter-operator sharing of multi-hop,

mmW backhaul infrastructure in dense SCNs. In particular, the

proposed framework is formulated using suitable techniques

from matching theory [32] so as to provide a distributed

solution for managing the resources over multi-hop backhaul

links. In the formulated model, the SBSs of one MNO can act

as anchored BSs (A-BSs) to provide backhaul support to other,

demanding BSs (D-BSs) that may belong to other MNOs. The

proposed framework is composed of two highly-interrelated

matching games: a network formation game and a resource

management game. The goal of the network formation game

is to associate the D-BSs to A-BSs for every hop of the

backhaul links. This game is shown to exhibit peer effects

thus mandating a new algorithmic approach that differs from

classical matching works in [32] and [33]. To solve this

game, we propose a distributed algorithm that is guaranteed

to converge to a two-sided stable and Pareto optimal matching

between the A-BSs and the D-BSs. Once the stable and

optimal network formation solution is found, we propose a

second matching game for resource management that allocates

Fig. 1. An example of mmW-MBN with multiple MNOs. SBSs with the
same color belong to the same MNO.

the sub-channels of each A-BS to its associated D-BSs,

as determined by the first matching game. The proposed

approach considers the cost of the backhaul jointly with the

links’ achievable rates when allocating the sub-channels to

the D-BSs. To solve this resource management matching game

with peer effects, we propose a novel distributed algorithm that

yields a two-sided stable and Pareto optimal matching between

the sub-channels and the D-BSs. We compare the performance

of the proposed cooperative mmW multi-hop backhaul network

(mmW-MBN) with a baseline non-cooperative mmW-MBN.

Simulation results show that MNOs cooperation provides

significant gains in terms of the network’s average backhaul

sum rate, reaching up to 30%, compared to the non-cooperative

mmW-MBN. The results also show that the cooperation among

MNOs will significantly improve the statistics of the backhaul

rate per SBS.

The rest of this paper is organized as follows. Section II

describes the system model and formulates the problem.

Section III presents our distributed approach to solve the

network formation problem. Section IV provides the proposed

solution to solve the resource allocation problem. Section V

provides the simulation results and Section VI concludes the

paper.

II. SYSTEM MODEL

Consider a mmW-MBN that is used to support the downlink

transmissions of M SBSs within the set M . Each SBS belong

to one of N MNOs within the set N . The set M can be

decomposed into N subsets Mn , with
⋃

n∈N Mn = M and
⋂

n∈N Mn = ∅, where Mn represents the subset of SBSs

belonging to MNO n. The SBSs are distributed uniformly

over a planar area with radius dmax around a macro base

station (MBS), m0, located at (0, 0) ∈ �
2. The MBS is

connected to the core network over a broadband fiber link,

as shown in Fig. 1, that is shared by all MNOs. The SBSs

can be connected to the MBS via a single-hop or a multi-hop

mmW link. The mmW-MBN can be represented as a directed

graph G(M , E), in which the SBSs are the vertices and E is

the set of edges. Each edge, e(m′, m) ∈ E, represents a mmW



TABLE I

VARIABLES AND NOTATIONS

backhaul link from SBS m′ to m. Hereinafter, for any link, the

transmitting and the receiving SBSs (over the backhaul) will

be referred to, respectively, as the A-BSs and the D-BSs.

Thus, in our model, an SBS can be either a D-BS or an

A-BS. Each A-BS m will serve up to Qm D-BSs, while each

D-BS will be connected to one A-BS.

To show that an arbitrary D-BS m is connected to an A-BS

m′, we use the following binary variable

ǫe(m
′, m) =

{

1 if e(m′, m) ∈ E,

0 otherwise,
(1)

where ǫe(m
′, m) = 0 implies that no backhaul link exists from

SBS m′ to m. Finally, we denote by M D-BS
m′ the subset of

SBSs for whom SBS m′ serves as an A-BS. In other words,

M D-BS
m′ = {m ∈ M |ǫe(m

′, m) = 1}. The backhaul links are

operate over a mmW frequency band, composed of K sub-

channels, within the set K , each of which having a bandwidth

w. A summary of our notation is provided in Table I.

A. Channel Model

The state of a backhaul link is defined as a Bernoulli random

variable ζm′m with success probability ρm′m to determine if

the link is line-of-sight (LoS) or non-line-of-sight (NLoS).

In fact, ζm′m = 1, if e(m ′, m) is LoS, otherwise, ζm′m = 0.

Based on the field measurements carried out in [8] and [34]–

[36], the large-scale path loss of the link e(m′, m), denoted by

LdB

(

m′, m
)

in dB, is given by

LdB(m′, m) = 10 log10(l(m
′, m)) = 20 log10

(

4πd0

λ

)

+ 10α log10

(

‖ym − ym′‖

d0

)

+ χ, d ≥ d0,

(2)

where λ is the wavelength at carrier frequency fc = 73 GHz,

d0 is the reference distance, and α is the path loss exponent.

Moreover, ‖ym − ym′‖ is the Euclidean distance between SBSs

m and m′, located, respectively, at ym ∈ �2 and ym′ ∈ �2.

In addition, χ is a Gaussian random variable with zero mean

and variance ξ2. Path loss parameters α and ξ will naturally

have different values, depending on the state of the link.

In fact, depending on whether the link is LoS or NLoS, these

values can be chosen such that the path loss model in (2) will

provide the best linear fit with the field measurements carried

out in [8]. The benefit of the free space path loss model used

in (2), compared with other models such as the alpha-plus-beta

model, is that it is valid for all distances above the reference

distance d0 and the model parameters α and χ have concrete

physical interpretations.

In addition, the field measurements in [37]–[39] have shown

that the mmW channel delay spread can be large, reaching

more than 100 ns, for an outdoor deployment of mmW SBSs in

urban areas. To this end, for any link e(m′, m), a slow-varying

frequency flat fading channel hm′km is considered over sub-

channel k. Hence, conditioned to the link state ζ , the achiev-

able rate for a given link e(m′, m) over sub-channel k will be

given by

rm(k, m′; ζ )

= w log2

×

(

1+
pm′,kψ(m′, m)l

(

m′, m
)

|hm′km |2
∑

m′′ �=m,m′ pm′′,kψ(m′′, m)l (m′′, m) |hm′′km |2+σ 2

)

,

(3)

where pm′,k and σ 2 denote, respectively, the transmit power of

A-BS m′ over sub-channel k and the noise power. To strike a

balance between system performance and complexity, uniform

power allocation is assumed. Here, we assume that total

transmit power pt,m′ is distributed uniformly over all sub-

channels, such that pm′,k = pt,m′/K [40]–[43]. This uniform

power allocation assumption is also due to the fact that, at a

high SNR/SINR regime, as is anticipated in a mmW network

with relatively short-range links and directional transmissions,

it is well known that optimal power allocation policies such as

the popular water-filling algorithm will ultimately converge to

the uniform power allocation [43]. ψ(m ′, m) represents the

combined transmit and receive antenna gains. The antenna

gain pattern for each SBS is assumed to be sectorized and

is given by [10]:

G(θ) =

{

Gmax, if θ < |θm|,

Gmin, otherwise,
(4)

where θ and θm denote, respectively, the azimuth angle and the

antennas’ main lobe beamwidth. Moreover, Gmax and Gmin

denote, respectively, the antenna gain of the main lobe and

side lobes. For a desired link between A-BS m′ and D-BS



m, we have: ψ(m′, m) = G2
max. Moreover, ψ(m ′′, m) for an

interference link from A-BS m′′ to a target D-BS m is assumed

to be random. Using (3), we can write the achievable rate for

the link e(m′, m) over the allocated sub-channels as follows:

rm(m′; x) =
∑

k∈K

rm(k, m′; ζ )xm′km , (5)

where x is the resource allocation vector with elements

xm′km = 1, if SBS m′ transmits to m over sub-channel

k, otherwise, xm′km = 0. In (5), we omit the dependence

on ζ in the left-hand side to simplify the notation. Here,

considering a decode-and-forward scheme, we note that, if

an SBS m is connected to the MBS via a multi-hop link of

length n, then rm(m′; x) will be limited by 1/n times the

minimum (bottleneck) of all link rates over the multi-hop

connection [44]. In addition, by averaging with respect to ζ ,

the average achievable rate over all sub-channels by a D-BS

m assigned to A-BS m ′ will be

r̄m(m′) = �

⎡

⎣

∑

k∈K

rm(m′, k; ζ )

⎤

⎦ , (6)

= �(ζm′,m = 1)
∑

k∈K

rm(m′, k; ζ )xm′km

+�(ζm′,m = 0)
∑

k∈K

rm(m′, k; ζ )xm′km , (7)

= ρm′m

∑

k∈K

rm(m′, k; ζ = 1)xm′km

+ (1 − ρm′m)
∑

k∈K

rm(m′, k; ζ = 0)xm′km . (8)

For dense urban areas, the number of obstacles blocking an

arbitrary link e(m′, m) increases as ‖ym− ym′‖ increases. Such

severe shadowing will significantly reduce the received signal

power, particularly, for a street-level deployment of mmW

SBSs over urban furniture such as lamp posts. Therefore, the

communication range of each SBS will be limited to a certain

distance d , where d depends on the density of the obstacles,

as suggested in [16] and [27]. To this end, we define M d
m as

M d
m = {m′ ∈ M , m′ �= m

∣

∣‖ym − ym′‖ ≤ d}, (9)

which effectively represents the set of SBSs with which m is

able to communicate over an LoS or an NLoS link.

B. Network Formation and Resource Allocation

in mmW-MBN with Multiple MNOs

We consider a cooperative, inter-operator mmW-MBN in

which, under proper pricing incentives, the SBSs of each MNO

may act as A-BSs for other SBSs belonging to other MNOs.

We let qm be a unit of price per sub-channel for a given SBS

m ∈ Mn , as determined by MNO n. That is, if xmkm′ = 1 for

m ∈ Mn and m′ ∈ Mn′ , where n �= n′, MNO n′ will have to

pay qm to MNO n. To solve the resource management problem

for the proposed mmW-MBN, we first need to determine the

backhaul links, ǫe(m
′, m), and then specify the rate over each

link, rm(m′, x). To this end, as illustrated in Fig. 2, we must

solve two interrelated problems: 1) network formation problem

Fig. 2. Proposed multi-stage framework for joint backhaul network formation
and resource allocation.

that determines E, and 2) resource allocation problem to

assign sub-channels of each A-BS m to their corresponding

D-BSs in M D-BS
m .

The network formation problem can be formulated as fol-

lows:

argmax
E

∑

m∈M

∑

m′∈M d
m

ǫe(m
′, m)r̄m(m′) − κmq t

m′1mm′ ,(10a)

s.t. ǫe(m
′, m) + ǫe(m, m′′)

+ ǫe(m
′′, m′) ≤ 2,∀m, m′, m′′ ∈ M , (10b)

∑

m′∈M d
m

ǫe(m
′, m) ≤ 1,∀m ∈ M , (10c)

∑

m∈M d
m′

ǫe(m
′, m) ≤ Qm′ ,∀m′ ∈ M , (10d)

ǫe(m
′, m) + ǫe(m, m′) ≤ 1,∀m, m′ ∈ M , (10e)

ǫe(m
′, m) ∈ {0, 1}, ∀m, m′ ∈ M , (10f)

where 1mm′ = 1, if both SBSs m and m ′ belong to different

MNOs, otherwise, 1mm′ = 0. In addition, κm is a weighting

scalar that scales the cost of a link with respect to its rate. The

total cost of a link e(m′, m) for m is q t
m′ = qm′

∑

k∈K xm′km .

Constraint (10b) ensures that no cycles will occur. In addition,

(10c) indicates that each D-BS must be assigned to at most

one A-BS. Moreover, (10d) indicates that each A-BS m′ can

be assigned to up to Qm′ D-BSs. Constraint (10e) ensures

that all links are directional. That is, an SBS m may transmit

to m′ or receive its traffic from m′, however, cannot do both

simultaneously.

The solution of problem (10a)-(10f) yields E for the mmW-

MBN graph G(M , E) which also determines M D-BS
m′ for all

m′ ∈ M . Next, the sub-channels of each A-BS m′ must

be allocated to its assigned D-BSs in M D-BS
m′ . Each MNO

n seeks to minimize the cost of its backhaul network, while

maximizing the rate for each one of its SBSs m ∈ Mn . To this

end, the cooperative backhaul resource allocation problem can

be formulated at each D-BS m with ǫe(m
′, m) = 1 as follows:

argmax
x

∑

k∈K

[

rm(k, m′; ζ ) − κmqm′1m′m

]

xm′km , (11a)

s.t. rm(m′; x) ≤

1

|M D-BS
m′ | + 1

rm′ (m′′; x), m′ ∈ M
D-BS
m′′ , (11b)

rm(m′; x) ≥ rm,th, (11c)



∑

k∈K

xm′km ≤ K , (11d)

∑

m∈π(m′)

xm′km ≤ 1, (11e)

xm′km ∈ {0, 1}, (11f)

where |.| denotes the set cardinality and rm,th denotes the

minimum rate required by SBS m which is typically deter-

mined by the traffic that is circulating over the downlink of

the radio access network. Constraint (11b) ensures that the

backhaul capacity of each A-BS m′ will be shared between

its all assigned D-BSs in M D-BS
m′ as well as m′’s traffic. That

is why |M D-BS
m′ | is increased by one in (11b). This scheme

allows every A-BS receiving its traffic from the core network

in addition to the traffic of the associated D-BSs.

Prior to solving the proposed resource management problem

in (10a)-(10f) and (11a)-(11f), we note that the solution

of network formation problem will depend on the resource

allocation and vice versa. That is because for any multi-hop

backhaul connection, the rate of a backhaul link e(m′, m),

rm(m′, x), depends on the network formation M D-BS
m′ , as shown

in (11b). Moreover, to associate a D-BS m to an A-BS in M d
m ,

the backhaul rates for A-BSs must be considered. Next, we

propose a novel approach that allows to jointly solve these

two problems1.

III. MATCHING THEORY FOR MULTI-HOP

BACKHAUL NETWORK FORMATION

The problems in (10a)-(10f) and (11a)-(11f) are 0-1 integer

programming problems that do not admit closed-form solu-

tions and have exponential complexity [46]. To solve these

problems, we propose a novel approach based on matching

theory, a suitable mathematical framework that allows the

derivation of a decentralized solution with tractable complexity

for combinatorial allocation problems as shown in [32], [33],

and [47].

In particular, a matching game is essentially a two-sided

assignment problem between two disjoint sets of players

in which the players of one set must be matched to the

players of the other set, according to some preference profiles.

A preference profile ≻ is defined as a reflexive, complete,

and transitive binary relation between the elements of a given

set. We denote by ≻m the preference profile of player m.

Consequently, a ≻m b means player m prefers a more than b.

To jointly solve the network formation and resource alloca-

tion problems, we propose a multi-stage framework, as shown

in Fig. 2, using which the mmW-MBN will form as follows:

G1(A1 ∪ D1, E1) → G2(A2 ∪ D2, E2)

→ · · · → G J (AJ ∪ DJ , EJ ), (12)

where the arrows in (12) indicate the transformation

from sub-graph G j to G j+1, where A j+1 = D j and

1We note that the Dijkstra’s algorithm cannot be applied to the network
formation and resource allocation problems at hand, since the convergence of
this algorithm is contingent upon assuming a constant weight for each link,
which must be independent of the weights at other links [45]. However, due
to the intererence term in (3), this assumption will not be valid.

D j+1 =
{

m ∈
⋃

m′∈A j+1
M d

m′

∣

∣m /∈
⋃ j+1

j ′=1
A j ′

}

. Each sub-

graph G j (A j ∪ D j , E j ) is defined as a directed graph from

the set of A-BSs A j to the set of D-BSs D j via directed

links in E j . Initially, A1 = {m0}, and D1 = M d
m0

. Each

stage j corresponds to the formation and resource manage-

ment of j -th hop of the backhaul links. In fact, at each

stage j , we address the following two problems: 1) in

Subsections III-A-III-B, we find E j of sub-graph G j that

solves problem (10a)-(10f), given the rate of each back-

haul link from the previous stages, and 2) in Section IV,

we solve (11a)-(11f) for sub-graph G j to allocate the sub-

channels of each A-BS in A j to its associated D-BSs. The

variable J , resulting from the proposed solution, will yield

the maximum number of hops for the multi-hop backhaul link

from the MBS to SBSs. The final graph G(M , E∗) is the

overlay of all sub-graphs in (12), such that E∗ =
⋃J

j=1 E j .

A. Multi-Hop Backhaul Network Formation

Problem as a Matching Game

At each stage j , the backhaul network formation problem

can be cast as a one-to-many matching game [48] which is

defined next.

Definition 1: Given two disjoint sets A j and D j , the net-

work formation policy π j can be defined as a one-to-many

matching relation, π j : A j ∪ D j → A j ∪ D j , such that

1) ∀m ∈ D j , if π j (m) �= m, then π j (m) ∈ A j ,

2) ∀m′ ∈ A j , if π j (m
′) �= m′, then π j (m

′) ⊆ D j ,

3) π j (m) = m ′, if and only if m ∈ π j (m
′),

4) ∀m′ ∈ A j , |π j (m
′)| ≤ Qm′ ,

where π j (m) = m indicates that SBS m is unmatched.

The quota of A-BS m ′, Qm′ , represents the maximum number

of D-BSs that can be assigned to m′. The relationship between

the matching π j and the link formation E j is such that

m ∈ π j (m
′) is equivalent to ǫe(m

′, m) = 1. In addition,

the matching policy π j by definition satisfies the constraints

in (10c)-(10f).

To complete the definition of the matching game, we must

introduce suitable utility functions that will subsequently be

used to define the preference profiles of all players. In the pro-

posed mmW-MBN, in addition to the achievable rate, the

cost of cooperation among MNOs must be considered in the

preference relations of the SBSs. Here, we define the utility

of D-BS m ∈ D j that seeks to evaluate a potential connection

to an A-BS m′ ∈ A j , Um(m′), as

Um(m′) = min
(

r̄m(m′), rm′ (π j−1(m
′), x)

)

− κmqm′1mm′ ,

(13)

where r̄m(m′) is given by (8). Here, we note that

rm′(π j−1(m
′), x) is determined at stage j − 1. If j = 1, then

SBS m is directly connected to the MBS. The first term in

(13) captures the fact that the achievable rate for D-BS m is

bounded by the backhaul rate of A-BS m ′. The second term

indicates that D-BS m ∈ Mn considers the cost of the backhaul

link, if the A-BS does not belong to MNO n. However, if the

A-BS belongs to MNO n, the cost will naturally be zero.



Furthermore, the utility of an A-BS m′ ∈ A j that evaluates

the possibility of serving a D-BS m ∈ D j , Vm′(m) will be:

Vm′(m) = r̄m′ (m) + κm′qm′1mm′ . (14)

In fact, (14) implies that A-BS m′ aims to maximize

the backhaul rate, while considering the revenue of provid-

ing backhaul support, if 1mm′ �= 0. Based on the utilities

in (13) and (14), the preference profiles of D-BSs and A-BSs

will be given by:

m′
1 ≻D

m m′
2 ⇐⇒ Um(m′

1) > Um(m′
2), (15)

m1 ≻A
m′ m2 ⇐⇒ Vm′(m1) > Vm′(m2), (16)

where ≻D and ≻A denote, respectively, the preference

relations for D-BSs and A-BSs. Here, if Um(m′) ≤ 0, then

A-BS m′ ∈ Mn′ will not be acceptable to D-BS m ∈ Mn . This

allows MNO n to choose the control parameter κm in (13),

to prevent the formation of any link between a given D-BS

m and any A-BS m′ that is charging a high price for using

its sub-channels. Given this formulation, we next propose an

algorithmic solution for the proposed matching game that will

allow finding suitable network formation policies.

B. Proposed mmW-MBN Formation Algorithm

To solve the formulated game and find the suitable network

formation policy π j for stage j , we consider two important

concepts: two-sided stability and Pareto optimality. A two-

sided stable matching is essentially a solution concept that

can be used to characterize the outcome of a matching game.

In particular, two-sided stability is defined as follows [32]:

Definition 2: A pair of D-BS m ∈ D j and A-BS m′ ∈ A j

in network formation policy π j , (m ′, m) ∈ π j , is a blocking

pair, if and only if m′ ≻D
m π j (m) and m ≻A

m′ m′′ for some

m′′ ∈ π j (m
′). A matching policy π j is said to be two-sided

stable, if there is no blocking pair.

The notion of two-sided stability ensures fairness for the

SBSs. That is, if a D-BS m prefers the assignment of another

D-BS m′′, then m′′ must be preferred by the A-BS π j (m
′′) to

m, otherwise, π j will not be two-sided stable. While two-sided

stability characterizes the stability and fairness of a matching

problem, the notion of Pareto optimality, defined next, can

characterize the efficiency of the solution.

Definition 3: A matching policy π j is said to be Pareto

optimal (PO), if there is no other matching π ′
j such that π ′

j

is equally preferred to π j by all D-BSs, π ′
j (m) �D

m π j (m),

∀m ∈ D j , and strictly preferred over π j , π ′
j (m) ≻D

m π j (m)

for some D-BSs.

To find a stable policy π j , the deferred acceptance (DA)

algorithm, originally introduced in [49], can be adopted.

Hence, we introduce Algorithm 1 based on the DA algorithm

which proceeds as follows. Initially, no D-BS in D j is assigned

to an A-BS in A j . The algorithm starts by the D-BSs sending

a link request signal to their most preferred A-BS, based on

their preference relation ≻D
m . Next, each A-BS m′ receives the

request signals and approves up to Qm′ of the most preferred

D-BSs, based on ≻A
m′ and rejects the rest of the applicants.

The algorithm follows by rejected D-BSs applying for their

next most preferred A-BS. Algorithm 1 converges once each

Algorithm 1 Millimeter-Wave Mesh Backhaul Network For-

mation Algorithm

Inputs:A j , D j , ≻A
m′ , ≻D

m .

Output:π j .

1: Initialize: Temporary set of the rejected D-BSs Dr =

D j . Tentative set Aa
m′ = ∅ of accepted D-BSs by A-

BS m′, ∀m′ ∈ A j . Let Sm = A j ∩ M d
m , ∀m ∈ D j .

2: while Dr �= ∅ do

3: For each D-BS m ∈ Dr , find the most preferred A-

BS, m′∗ ∈ Sm , based on ≻D
m . Each D-BS m sends a

link request signal to its corresponding m′∗.
4: Add m to Aa

m′∗ and remove m′∗ from Sm . If Sm = ∅,

remove m from Dr .

5: Each A-BS m′ ∈ A j receives the proposals, tenta-

tively accepts Qm′ of the most preferred applicants

from Aa
m′ , based on ≻A

m′ and reject the rest.
6: Remove rejected D-BSs from Aa

m′ for every A-BS m′

and add them to Dr . Remove accepted D-BSs from

Dr .
7: end while

D-BS m is assigned to an A-BS or is rejected by all A-BS in

A j ∩ M d
m . Since it is based on a variant of the DA process,

Algorithm 1 is guaranteed to converge to a stable matching as

shown in [49]. Moreover, among the set of all stable solutions,

Algorithm 1 yields the solution that is PO for the D-BSs. Here,

we note that the role of an SBS will change dynamically

according to the changes of the CSI. However, due to the

slow-varying channels, the CSI will remain relatively static

within the channel coherence time (CCT), and consequently,

the role of SBSs can be considered fixed within one CCT. The

proposed distributed solution in Algorithm 1 allows the SBSs

to update their preference profiles, which depend on the CSI,

and accordingly their role, after each CCT period.

Given π j that results from Algorithm 1, the sub-channels of

each A-BS m ′ ∈ A j must be allocated to the D-BSs in π j (m
′).

To this end, we next propose a distributed solution to solve

the backhaul resource allocation problem.

IV. MATCHING THEORY FOR DISTRIBUTED BACKHAUL

RESOURCE MANAGEMENT

To solve the problem in (11a)-(11f), centralized approaches

will require MNOs to share the information from their SBSs

with a trusted control center. Therefore, centralized approaches

will not be practical to perform inter-operator resource man-

agement. To this end, we formulate the problem in (11a)-(11f)

in each stage j as a second matching game and propose a

novel distributed algorithm to solve the problem. The resulting

resource allocation over stage j will determine the rate for

each backhaul link in j -th hop. As discussed in the previous

section, this information will be used to find the network

formation policy π j+1 of the next stage j + 1.

A. Resource Management as a Matching Game

To allocate the sub-channels of an A-BS m′ ∈ A j to

its associated D-BSs in π j (m
′), we consider a one-to-many



matching game µ j composed of two disjoint sets of mmW

sub-channels, K , and the D-BSs in π j (m
′) associated to

A-BS m′. The matching µ j can be formally defined, similar to

the network formation matching π in Definition 1. However,

unlike in the network formation matching game, here, we do

not introduce any quota for the D-BSs. There are two key

reasons for not considering quotas in our problem. First, for a

resource allocation problem with minimum rate requirement,

as presented in (11b) and (11c), a quota cannot be determined a

priori for an SBS. That is because the number of sub-channels

required by a given SBS is a function of the CSI over all

sub-channels between an A-BS m′ and all D-BSs assigned

to m′. Therefore, sub-channel allocation for one D-BS will

affect the number of required sub-channels by other D-BSs.

This is a significant difference from classical solutions based

on matching theory such as in [33], [47], [48], and [50]. The

second practical reason for not using a fixed quota in our

resource allocation problem is that there is no clear approach

to determine the suitable quota values as a function of the

various system metrics, such as CSI. On the other hand, with

no constraint on the maximum number of sub-channels to be

allocated to a D-BS, a distributed matching algorithm may

assign all the sub-channels to a few D-BSs, resulting in an

inefficient allocation. Therefore, considering the significant

impact of the quota on the resource allocation, it is more

practical to limit the number of allocated sub-channels by

the natural constraint of the system, as captured by constraint

(11b).

Therefore, we let a D-BS m assign a utility �m(k; µ j ) to

a sub-channel k, where (m, k) /∈ µ j , only if

∑

k′∈µ j (m)

rm(k ′, π j (m)) <
1

|M D-BS
π j (m)| + 1

rπ j (m)(m
′′; x), (17)

where m′′ is the A-BS that serves π j (m), i.e., m ′′ =

π j−1(π j (m)). Otherwise, �m(k; µ j ) = −∞, meaning that

sub-channel k is not acceptable to D-BS m, given the current

matching µ j . In fact, (17) follows the rate constraint in (11b)

and prevents the D-BS m from being allocated to unnecessary

sub-channels. With this in mind, we define the utilities and

preferences of sub-channels and D-BSs, considering the rate

constraints, CSI, and the cost of each sub-channel. The utility

achieved by any D-BS m when being matched to a sub-channel

k will be given by:

�m(k; µ j ) =

{

rm(k, π j (m)), if (17)holds,

−∞, otherwise.
(18)

Note that (18) does not include the price of the sub-channels.

That is because the sub-channel price qπ j (m) is equal for all

sub-channels and will not affect the preference of the D-BS.

For the sub-channels, the utility is controlled by their

corresponding A-BS. The utility that is achieved by sub-

channel k when being matched to a D-BS m will be:

�k(m) = rm(k, π j (m)) + κπ j (m)qπ j (m)1mπ j (m). (19)

In (19), the second term represents the revenue obtained by

A-BS π j (m) for providing backhaul support to D-BS m over

sub-channel k. The scaling factor κπ j (m) enables the A-BS to

balance between the achievable rate and the revenue. In fact,

as κπ j (m) increases, a given A-BS will tend to assign more

resources to D-BSs of other MNOs. Similar to (15) and (16),

the preference profiles of sub-channels and D-BSs are given by

k1 P D
m k2 ⇐⇒ �m(k1) > �m(k2), (20)

m1 P K
k m2 ⇐⇒ �k(m1) > �k(m2), (21)

where P D
m and P K

k denote, respectively, the preference profiles

of D-BS m and sub-channel k.

B. Proposed Resource Allocation Algorithm for mmW-MBNs

Here, our goal is to find a two-sided stable and efficient

PO matching µ j between the sub-channels of A-BS m′ and

the D-BSs in π j (m
′), for every A-BS m′ ∈ A j . From (18),

we observe that the utility of a D-BS and, consequently,

its preference ordering depend on the matching of the other

D-BSs. This type of game is known as a matching game

with peer effect [51]. This is in contrast with the traditional

matching games in which players have strict and non-varying

preference profiles. For the proposed matching game, we can

make the following observation.

Proposition 1: Under the mmW-MBN specific utility func-

tions in (18) and (19), the conventional DA algorithm is not

guaranteed to yield a stable solution.

Proof: We prove this using an example. Let D j =

{m1, m2}, with preference profiles k1 P D
m1

k2 P D
m1

k3 and

k2 P D
m2

k3 P D
m2

k1. Moreover, let K = {k1, k2, k3} with preference

profiles m1 P K
ki

m2, for i = 1, 2, and m2 P K
k3

m1. Considering

achievable rates rm1(k1), rm2(k2) and rm2(k3) are greater than

rth, DA algorithm yields a matching µ where µ(k1) = {m1},

µ(k2) = ∅, and µ(k3) = {m2}. However, (m2, k2) form a

blocking pair, which means µ is not stable.

Thus, we cannot directly apply the DA algorithm to our

problem and we need to adopt a novel algorithm that handles

blocking pairs and achieves a stable solution. To this end, we

propose a distributed resource allocation scheme in Algorithm

2. This algorithm proceeds as follows. For every A-BS m′ ∈

A j , the initial set of rejected sub-channels is K r = K . The

algorithm initiates by each sub-channel k ∈ K r sending a

request signal to its most preferred D-BS, based on (21). The

D-BSs receive the requests and accept a subset of the most pre-

ferred sub-channels, based on (20), that satisfy their minimum

rate requirement and reject the rest. The rejected sub-channels

are added to K r . The accepted sub-channels and the sub-

channels that are rejected by all D-BSs in π j (m
′) are removed

from K r . Moreover, in step 9, D-BSs update their preferences

P D
m . The rejected sub-channels apply for their next most

preferred D-BS as per their preference profile. Algorithm 2

proceeds until K r is an empty set. Next, any unmatched sub-

channel k ∈ K is assigned to the most preferred D-BS m with

1mm′ = 0. The algorithm converges once all sub-channels are

matched. Throughout this algorithm, the corresponding A-BS

will send the matching requests to D-BSs on the behalf of its

sub-channels.

The proposed Algorithm 2 exhibits the following properties.

Theorem 1: Algorithm 2 is guaranteed to converge to a two-

sided stable matching µ j between sub-channels and D-BSs.



Algorithm 2 Backhaul Resource Allocation Algorithm

Inputs:A j , π j , rth.

Output:µ j .

1: for i = 1, i ≤ |A j |,i + + do

2: Initialize: Set A-BS m′ to i -th element of A j . Tem-

porary set of the rejected sub-channels K r = K .

Tentative sets Dm
j = ∅ and rm(m′) = 0 for each

D-BS m ∈ π j (m
′). For each sub-channel k, let

Ck = π j (m
′).

3: while K r �= ∅ do

4: For each sub-channel k ∈ K r , find the most preferred

D-BS, m∗ ∈ π j (m
′), based on P K

k . A-BS sends a

link request signal to the corresponding m∗ for each

sub-channel. Add k to Dm∗

j and remove m∗ from Ck .

5: If Ck = ∅, remove k from K r .

6: Each D-BS m ∈ π j (m
′) receives the proposals and

tentatively accepts the most preferred sub-channel

from Dm
j , based on P D

m and adds the corresponding

rate of the accepted sub-channels to rm(m′).

7: If (17) is not met, add the next most preferred sub-

channel and update rm(m′), otherwise, reject the rest

of sub-channels.

8: Remove rejected sub-channels from Dm
j for every D-

BS m and add them to K r . Remove accepted sub-

channels from K r .

9: Update µ j and P D
m for every D-BS.

10: end while

11: Based on current allocation, update �m(k; µ j ) for D-

BSs with 1mm′ = 0.

12: Let K ′r = {k ∈ K |µ j (k) = k}.

13: while K ′r �= ∅ do

14: Remove an arbitrary sub-channel k from K ′r and

allocate it to its most preferred D-BS m from π j (m
′),

with 1mm′ = 0, if (17) is held.
15: Update µ j , P D

m , and rm(m′).

16: end while

17: end for

Moreover, the resulting solution, among all possible stable

matchings, is Pareto optimal for the sub-channels.

Proof: Algorithm 2 will always converge, since no sub-

channel will apply for the same D-BS more than once,

through steps 3-12 or 13-16. Next, we show that the proposed

algorithm always converges to a two-sided stable matching. To

this end, let D-BS m and sub-channel k form a blocking pair

(m, k). That is, m P K
k µ j (k) and k P D

m k ′, where k ′ ∈ µ j (m).

We show that such a blocking pair does not exist. Here, there

are two possible cases for sub-channel k: 1) k ∈ K ′r , and 2)

k /∈ K ′r , in step 12.

If k ∈ K ′r in step 12, that means k is unmatched and

the minimum rate requirement is satisfied for all D-BSs,

including m. Thus, (m, k) is a blocking pair only if 1mm′ = 0,

otherwise, m will not accept more sub-channels. However, in

step 14, k will be assigned to its most preferred D-BS µ j (k)

with 1µ j (k)m′ = 0, meaning that µ j (k)P K
k m. Hence, (m, k)

cannot be a blocking pair.

Next, if k /∈ K ′r , then k is matched to a D-BS µ j (k) prior

to step 12. Here, m P K
k µ j (k) implies that k has applied for m

before µ j (k) and is rejected. Thus, k ′ P D
m k, for all k ′ ∈ µ j (m).

Therefore, (m, k) cannot be a blocking pair and matching µ j

is two-sided stable.

To prove Pareto optimality, we show that no sub-channel

k can improve its utility by being assigned to another D-BS

m, instead of µ j (k). If m P K
k µ j (k), it means k ′ P D

m k, for all

k′ ∈ µ j (m), due to the two-sided stability of µ j . Hence, a new

matching µ′
j that allocates k to m instead of a sub-channel

k′ ∈ µ j (m) will make (m, k ′) to be a blocking pair for µ′
j .

Therefore, no other stable matching exists that improves the

utility of a sub-channel.

Here, we note that the proposed solution is Pareto optimal

within each subgraph, corresponding to each stage, and it

is assumed that network formation in subsequent subgraphs

will not affect the utility functions in (13) and (14) for the

SBSs in previous subgraphs. This assumption is valid since

a given D-BS will experience random interference from the

interfering A-BSs. Given that the number of interfering A-BSs

is large, which is true for backhaul networks that support

many SBSs, the average interference power in (13) and (14)

will not depend on the network formation in subsequent

subgraphs. Hence, the preference profiles of the D-BSs and

A-BSs, and the consequent matching within each subgraph

will be independent of the other subgraphs. Therefore, given

that matching within each subgraph is Pareto optimal and is

not affected by other subgraphs, the overall network formation

is Pareto optimal in terms of maximizing the sum-rate.

C. Complexity Analysis of the Proposed Multi-Stage Solution

First, we analyze the network formation complexity of

an arbitrary stage j from Algorithm 1. For the purpose of

complexity analysis, we consider the maximum number of

requesting signals that D-BSs in D j will send to the A-BSs in

A j before Algorithm 1 converges. In the worst-case scenario,

i.e., the scenario with the highest conflict among D-BSs, all

D-BSs in D j have the same preference ordering. Let

m′
1 ≻m m′

2 ≻m · · · ≻m m′
|A j |−1 ≻m m′

|A j |
, (22)

be the preference ordering of all D-BSs m ∈ D j , where A j =

{m′
1, m′

2, · · · , m′
|A j |

}. Hence, only Qm′
i

D-BSs will be accepted

by the A-BS m′
i during iteration i of Algorithm 1. Moreover,

the number of iterations I is an integer that satisfies

I−1
∑

i=1

Qm′
i
< |D j | ≤

I
∑

i=1

Qm′
i
. (23)

Therefore, the total number of requests sent by D-BSs will be

|D j | +
(

|D j | − Qm′
1

)

+
(

|D j | − Qm′
1
− Qm′

2

)

+ · · · ,

+
(

|D j |−Qm′
1
−· · ·−Qm′

I−1

)

= I |D j |−

I−1
∑

i=1

(I − i)Qm′
i
,

= I |D j | − I

I
∑

i=1

Qm′
i
+

I
∑

i=1

i Qm′
i
≤

I
∑

i=1

i Qm′
i
, (24)
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where (23) is used to derive the inequality in (24). For the

special case in which Qm′
i
= Q,∀m′

i ∈ A j , (23) implies that

(I − 1)Q < |D j |. Hence, (24) can be simplified to

I
∑

i=1

i Qm′
i
=

1

2
Q(I )(I + 1) <

1

2
Q

(

|D j |

Q
+ 1

)(

|D j |

Q
+ 2

)

.

(25)

Hence, the complexity of stage j in Algorithm 1 is O(|D j |
2),

which admits a second-order polynomial relation with respect

to the number of D-BSs.

Similarly, for Algorithm 2, the worst-case scenario is when

all sub-channels of A-BS m′ have the same preference ordering

for D-BSs in π j (m
′) and only one sub-channel is accepted at

each iteration. Therefore, the number of signal requests sent

from A-BS m′ to its associated D-BSs in π j (m
′) will be at

most

K + (K − 1) + · · · +
(

K − |π j (m
′)| + 1

)

,

= |π j (m
′)|K −

1

2

(

|π j (m
′)|

) (

|π j (m
′)| + 1

)

< K Qm′ ,

(26)

where the inequality in (26) results from having 0 ≤

|π j (m
′)| ≤ Qm′ . Therefore, the total number of signal requests

is
∑

m′∈A j
K Qm′ . For Qm′

i
= Q,∀m′

i ∈ A j , and, thus,

the complexity of Algorithm 2 at stage j is O(K Q|A j |).

Thus, the overall complexity of an arbitrary stage j of the

proposed distributed solution is O(|D j |
2 + |A j |). This result

implies that the complexity of the proposed distributed solu-

tion, composed of Algorithms 1 and 2, is bounded by a

second-order polynomial with respect to the network size.

This result shows that the proposed approach yields a solution

with a manageable complexity for the two interrelated integer

programming problems in (10a)-(10f) and (11a)-(11f).

V. SIMULATION RESULTS

For our simulations, we consider a mmW-MBN with an

MBS located at (0, 0) ∈ �
2 and up to M = 65 SBSs

distributed uniformly and randomly within a planar area

having a radius dmax = 400 m. The simulation parameters

are summarized in Table II. Moreover, the number of SBSs

is considered to be equal for all MNOs. We compare our

proposed approach with the following three other approaches:

1) Optimal solution obtained via an exhaustive search

which finds the resource allocation that maximizes the

backhaul sum rate. In fact, this benchmark explores all

the possibilities for sub-channel allocation with uniform

transmission power.

2) Non-cooperative scheme which follows the proposed

algorithms for both network formation and resource

allocation, however, cooperation among MNOs is not

allowed. That is, the SBSs of an MNO do not provide

backhaul support to the SBSs of other MNOs.

3) Random allocation that assigns D-BSs randomly to

an A-BS within their communication range, subject to

the constraints in (10b)-(10f). In addition, each A-BS

randomly allocates sub-channels to its assigned D-BSs,

subject to the constraints in (11b)-(11f).

All statistical results are averaged over a large number of

independent runs.

A. Achievable Backhaul Sum Rate of the mmW-MBN

Fig. 3a shows a performance comparison between the pro-

posed framework and the optimal solution, non-cooperative,

and random allocation approaches, for a mmW-MBN with

K = 7 sub-channels, up to M = 20 SBSs, and N = 2 MNOs.

Due to the computational complexity of exhaustive search,

for this comparison figure, a relatively small network size is

considered. In Fig. 3a, the optimal solution and the random

allocation provide, respectively, an upper and lower bound on

the achievable sum-rate of the given network. Fig. 3a shows

that the proposed cooperative framework based on matching

theory yields a promising performance comparable with results

from the optimal solution. In fact, the performance gap will not

exceed 3.2% for a network size of M = 20 SBSs. In addition,

the results in Fig. 3a show that the proposed solution improves

the sum-rate up to 21% and 36% compared to, respectively, the

non-cooperative scheme and the random allocation scheme.

In Fig. 3b, the average sum rate resulting from the proposed

cooperative approach is compared to both the non-cooperative

and random allocation schemes, for a dense mmW-MBN with

N = 5 MNOs and up to M = 65 SBSs. From Fig. 3b, we

can see that the average sum rate increases as the number

of SBSs increases. This is due to the fact that more SBSs

will be able to connect to the MBS via a multi-hop backhaul

link. Fig. 3b shows that, the proposed approach outperforms

both the non-cooperative and random allocation schemes for

all network sizes. In fact, the proposed framework increases

the average sum rate by 27% and 54%, respectively, compared

to the non-cooperative and random allocation schemes, for

M = 65 SBSs. From this figure, we can clearly see that

the average sum rate and, hence, the spectral efficiency of

the network is significantly improved in multi-MNO scenarios

compared with the network scenario with only one MNO.

That is because directional transmissions over the millimeter

wave frequencies allow different MNOs to efficiently reuse the

available bandwidth which, in turn, results in higher spectral



Fig. 3. Average sum rate resulting from the proposed cooperative mm-
MBN approach, non-cooperative scheme, random allocation, and the optimal
solution as the number of SBSs varies.

Fig. 4. Average sum rate versus the LoS probability ρ.

efficiency.

In Fig. 4, we compare the average sum rate resulting from

the proposed approach to that of the non-cooperative and

random allocation schemes, versus the LoS probability. The

primary goal here is to analyze the severe impact of the

Fig. 5. The CDF of the average sum rate resulting from the proposed coop-
erative mmW-MBN, the non-cooperative baseline, and the random allocation
approach.

blockage on the network performance. In particular, Fig. 4

shows that blockage degrades the sum rate up to six times,

when ρ decreases from 1 to 0. However, the results in Fig. 4

show that the proposed approach is more robust against block-

age, compared to the non-cooperative and random allocation

schemes. In fact, the proposed approach yields up to 25% and

42% performance gains for ρ = 1, respectively, compared

to the non-cooperative and random allocation schemes. We

note that for extreme blockage scenarios, e.g., ρ = 0, 0.2,

it is expected that the gains will be small, since the achiev-

able rate for most of the links is degraded by blockage.

However, we can observe that, as more LoS backhaul links

become available, the performance gap increases. The main

reason for this trend is that the backhaul rate for each A-

BS increases, as ρ increases, which allows an A-BS to

support higher rates for its associated D-BSs. The average

sum rate increases by 27% for the proposed cooperative

mmW-MBN, as ρ increases from 0.6 to 1.

B. Statistics of the Achievable Rate for the mmW-MBN

Fig. 5 shows the cumulative distribution function (CDF) of

the average sum rate for the proposed cooperative approach,

compared to the non-cooperative and random allocation

schemes, for N = 5 MNOs and M = 60 SBSs. The results

show that the proposed cooperative approach substantially

improves the statistics of the average sum rate. For example,

Fig. 5 shows that the probability of achieving an 80 Gbps

target sum rate is 90%, 36%, and 20%, respectively, for

the proposed approach, the non-cooperative scheme, and the

random allocation.

Fig. 6 shows the empirical CDF of the average sum rate

for different LoS probabilities, for N = 5 MNOs and M =

20 SBSs. From this figure, we can see that severe blockage

with small ρ significantly degrades the performance of the

mmW-MBN. Interestingly, at ρ = 1, we can observe that the

average sum rate does not fall below 40 Gbps. However, as

the probability of LoS decreases to 0.2, the probability of the

average sum rate be less than 40 Gbps is 42%.



Fig. 6. The empirical CDF of the sum rate for different LoS probabilities.

C. Economics of the Proposed mmW-MBN Framework

Fig. 7 provides a design guideline to manage pricing and

the cost of the cooperative mmW-MBN for the MNOs. In

this figure, the cost of cooperation per MNO is defined as

the price per sub-channel q and the weighting parameter κ

vary, for N = 3 MNOs and M = 15 SBSs. The weighting

parameter κm , which is first defined in (10a) allows each MNO

to control the cost of its backhaul network, with respect to q

that is determined by other MNOs. Here, we explicitly define

the backhaul cost for an MNO n ∈ N , as the total money

that MNO n must pay to other MNOs for receiving backhaul

support to its SBSs in Mn . A larger κm implies that the MNO

has less incentive to cooperate with other MNOs. Hence, as

shown in Fig. 7, no cooperation will happen between MNOs,

as both q and κm increase, labeled as the no cooperation

region. As an example, if the budget of an arbitrary MNO

n is $500 and q = $10 is chosen by other MNOs, from Fig.

7, we can see that MNO n must choose κm ≥ 40Mbps/$ in

order to keep the cost less than its budget. In addition, Fig. 7

provides a systematic approach to determine a suitable pricing

mechanism for an MNO, if the model parameter κm and the

budget for other MNOs are known. This initial result can be

considered as a primary step towards more complex models,

which may consider dynamic pricing policies and competing

strategies for the MNOs.

Moreover, we note that the economic gains of the pro-

posed cooperative framework are indirectly reflected in its

performance gains, when, compared to the non-cooperative

and random allocation approaches, as shown in Figs. 3a-5.

Such an increase in the data rate of the backhaul network,

resulting from the cooperative framework, will provide addi-

tional revenues for the MNOs, either allowing them to offer

services with higher QoS to the users, or by increasing the

number of users served by each SBS. Here, we note that the

revenue for each MNO explicitly depends on several factors

such as the cost of maintenance per SBS, leasing the spectrum,

deployment of SBSs, providing power supply for SBSs, MNO

service plans, and other specific metrics that may differ from

one geographical area to another. Therefore, there is no direct

Fig. 7. Cooperation cost per MNO as a function of both sub-channel price
and the weighting parameter κm .

and general mechanism to map the physical layer metrics, such

as rate into revenue. However, such a mapping is definitely

being used by the economic departments of global operators

to define their KPI performance metrics.

Consequently, in Fig. 7, we have shown the robustness of

the proposed framework with regard to pricing mechanisms. In

fact, we have shown that the proposed resource management

framework allows MNOs to choose whether to cooperate or

not, depending on the system metrics, including the rate, their

available budget, and the pricing policy by other MNOs.

D. Snapshot of the mmW-MBN

Fig. 8 shows a snapshot of the mmW multi-hop backhaul

network for both the proposed cooperative scheme and the

non-cooperative baseline approach. In this figure, each circle

shows a small cell base station and the corresponding pair

(m, n) implies that SBS m belongs to MNO n (m ∈ Mn).

Moreover, the MBS is shown by a triangle. For illustration

purposes, we show the network for N = 2 MNOs and a total

of M = 10 SBSs, and the quota for each A-BS is Qm = 5.

From Fig. 8b, we first observe that SBS 9 ∈ M2 is not con-

nected to the non-cooperative mmW-MBN, since no other SBS

belonging to MNO 2 is located within SBS 9’s communication

range. That is, MNO 2 must increase the density of its SBSs to

provide ubiquitous backhaul connectivity. However, deploying

additional SBSs will increase the costs for the MNO, including

site rental costs, power consumption, and cell maintenance,

among others. In contrast, the proposed cooperative scheme

provides backhaul support for the SBS 9 ∈ M2 via SBS

1 ∈ M1 that belongs to the MNO 1, as shown in Fig. 8a.

Second, Fig. 8 shows that SBS 8 ∈ M2 is connected to A-BSs

7 ∈ M2 and 5 ∈ M1, respectively, in the non-cooperative and

proposed cooperative mmW-MBNs. We can clearly observe

that the proposed cooperative scheme provides a shorter path

via a two-hop backhaul link for the SBS m = 8, compared to

the non-cooperative approach.



Fig. 8. A snapshot of multi-hop mmW backhaul network via the proposed cooperative scheme and the non-cooperative baseline approach.

Fig. 9. The average overhead of the network formation and resource
allocation algorithms.

E. Complexity Analysis

In Fig. 9, the average signaling overhead of the proposed

network formation and resource allocation algorithms are

analyzed, respectively, in Fig. 9(a) and Fig. 9(b). Here, the

overhead captures the number of messages that must be

exchanged between A-BSs and D-BSs. Fig. 9.a shows that the

overhead of the proposed network formation policy increases

with the number of SBS per MNOs, since the sets of A-BSs

and D-BSs grow as more SBSs are deployed. However, we

can see that the algorithm converges quickly for all network

sizes. Moreover, it can be observed that the proposed cooper-

ative approach increases the overhead by 28% for M = 18

SBSs. This is because the proposed approach allows each

SBS to communicate with more SBSs, compared to the non-

cooperative scheme. Similarly, in Fig. 9.b, we can see that

the overhead of the resource allocation algorithm increases as

the number of SBSs increases. Regarding the complexity of

the proposed approach, we note the following: 1) An optimal

solution will require an exponential complexity which is not

tractable for dense mmW network deployments, while the

proposed approach yields a close-to-optimal performance, as

shown in Fig. 3b, while requiring a manageable signaling

overhead, 2) In this work, we have considered the MBS as the

only gateway, having a fiber backhaul, to the core network.

Therefore, the scenario that is considered in our simulation

is an extreme case. In contrast, in practice, there will be

more than one gateway for servicing M = 65 SBSs. Clearly,

increasing the number of gateways will reduce the size of

the problem, i.e., the number of SBSs to be managed, and 3)

The communication signals required by the proposed scheme

will be incorporated within the common control signals of the

system.

VI. CONCLUSION

In this paper, we have proposed a novel distributed backhaul

management approach for analyzing the problem of resource

management in multi-hop mmW backhaul networks. In par-

ticular, we have formulated the problem within a matching-

theoretic framework composed of two, dependent matching

games: a network formation game and a resource management

game. For the network formation game, we have proposed

a deferred acceptance-based algorithm that can yield a two-

sided stable, Pareto optimal matching between the A-BSs and

D-BSs. This matching represents the formation of the multi-

hop backhaul links. Once the network formation game is

determined, we have proposed a novel algorithm for resource

management that allocates the sub-channels of each A-BSs

to its associated D-BSs. We have shown that the proposed

resource management algorithm is guaranteed to converge to

a two-sided stable and Pareto optimal matching between the

sub-channels and the D-BSs. Simulation results have shown

that the proposed cooperative backhaul framework provides

substantial performance gains for the network operators and

incentivizes sharing of the backhaul links.
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